Skip to main content

Future Prospects for Structural, Functional, and Evolutionary Genomics

  • Chapter
  • First Online:
Book cover The Brassica napus Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

  • 1301 Accesses

Abstract

Completion of the genome assemblies of the first three Brassica napus genotypes provided a reference for genome evolution research, gene discovery, and breeding of Brassica crops—in particular the availability of a reference genome has greatly facilitated mapping of trait loci. After the previous chapters, this chapter provides future prospects on three aspects: (1) Structural genomics—The current B. napus reference genomes remain a great space for improvement. This is urgent need for at least one chromosome-level assembly should be achieved which corrects collapsed genomic regions such as highly repeated sequences from the previous versions. Highly structural variation also necessitated construction of a B. napus pan-genome which describes species-level structural variation in as much detail as possible. Meanwhile, substantial improvement should be undertaken to the annotations of genomic composition and gene models, in order to provide a set of comprehensive annotations including non-coding RNA and alternative splicing transcripts. (2) Functional genomics—There are many ways for making use of the B. napus genome resources to assist genetics-related research. With genome resources and related technologies, one can further speed up discovery of molecular markers and functional genes by linkage mapping, association mapping, syntenic comparison approaches, and their combination (among themselves and with other omics data). (3) Genome evolution—This gives insight into allopolyploid B. napus genome origin, its dynamic genome structure variation, genetic diversity, and selection patterns. Insight into the processes of multiple cycles of “whole-genome duplication and subsequent diploidization”, such as structural variation and its underlying mechanism, patterns and origins of duplicate gene expression changes, the relative contributions of duplicate genes to trait expression, and asymmetrical recombination and selection between B. napus subgenomes and regional “hot” and “cold” spots, will broaden our understanding of B. napus polyploid genetic diversity and benefit breeding method innovation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ainouche ML, Jenczewski E (2010) Focus on polyploidy. New Phytol 186:1–4

    Article  Google Scholar 

  • Allender CJ, King GJ (2010) Origins of the amphiploid species Brassica napus L. investigated by chloroplast and nuclear molecular markers. BMC Plant Biol 10:54

    Article  Google Scholar 

  • Amborella Genome Project, A.G (2013) The Amborella genome and the evolution of flowering plants. Science 342:1241089

    Article  Google Scholar 

  • Badouin H, Gouzy J, Grassa CJ, Murat F, Staton SE, Cottret L, Lelandais-Brière C, Owens GL, Carrère S, Mayjonade B et al (2017) The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution. Nature 546:148–152

    Article  CAS  Google Scholar 

  • Bancroft I, Morgan C, Fraser F, Higgins J, Wells R, Clissold L, Baker D, Long Y, Meng J, Wang X et al (2011) Dissecting the genome of the polyploid crop oilseed rape by transcriptome sequencing. Nat Biotechnol 29:762–766

    Article  CAS  Google Scholar 

  • Bayer PE, Hurgobin B, Golicz AA, Chan C-KK, Yuan Y, Lee H, Renton M, Meng J, Li R, Long Y et al (2017) Assembly and comparison of two closely related Brassica napus genomes. Plant Biotechnol J 15:1602–1610

    Article  CAS  Google Scholar 

  • Beilstein MA, Nagalingum NS, Clements MD, Manchester SR, Mathews S (2010) Dated molecular phylogenies indicate a Miocene origin for Arabidopsis thaliana. Proc Nat Acad Sci 107:18724–18728

    Article  CAS  Google Scholar 

  • Bowers JE, Chapman BA, Rong J, Paterson AH (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422:433–438

    Article  CAS  Google Scholar 

  • Bus A, Hecht J, Huettel B, Reinhardt R, Stich B (2012) High-throughput polymorphism detection and genotyping in Brassica napus using next-generation RAD sequencing. BMC Genom 13:281

    Article  CAS  Google Scholar 

  • Cai G, Yang Q, Yi B, Fan C, Edwards D, Batley J, Zhou Y (2014) A complex recombination pattern in the genome of allotetraploid Brassica napus as revealed by a high-density genetic map. PLoS ONE 9:e109910

    Article  Google Scholar 

  • Chalhoub B, Denoeud F, Liu S, Parkin IA, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B et al (2014) Early allopolyploid evolution in the post-neolithic Brassica napus oilseed genome. Science 345:950–953

    Article  CAS  Google Scholar 

  • Chen X, Li X, Zhang B, Xu J, Wu Z, Wang B, Li H, Younas M, Huang L, Luo Y et al (2013) Detection and genotyping of restriction fragment associated polymorphisms in polyploid crops with a pseudo-reference sequence: a case study in allotetraploid Brassica napus. BMC Genom 14:346

    Article  Google Scholar 

  • Clarke WE, Parkin IA, Gajardo HA, Gerhardt DJ, Higgins E, Sidebottom C, Sharpe AG, Snowdon RJ, Federico ML, Iniguez-Luy FL (2013) Genomic DNA enrichment using sequence capture microarrays: a novel approach to discover sequence nucleotide polymorphisms (SNP) in Brassica napus L. PLoS ONE 8:e81992

    Article  Google Scholar 

  • Clarke WE, Higgins EE, Plieske J, Wieseke R, Sidebottom C, Khedikar Y, Batley J, Edwards D, Meng J, Li R, Lawler CT, Bouquet J, Laga B, Chung W, Iniguez‑Luy F, Dyrszka E, Rae S, Stich B, Snowdon RJ, Sharpe AG, Ganal MW, Parkin IAP (2016) A high-density SNP genotyping array for Brassica napus and its ancestral diploid species based on optimised selection of single-locus markers in the allotetraploid genome. Theor Appl Genet 129:1887–1899.

    Article  CAS  Google Scholar 

  • Comai L (2005) The advantages and disadvantages of being polyploid. Nat Rev Genet 6:836–846

    Article  CAS  Google Scholar 

  • Dalton-Morgan J, Hayward A, Alamery S, Tollenaere R, Mason AS, Campbell E, Patel D, Lorenc MT, Yi B, Long Y et al (2014) A high-throughput SNP array in the amphidiploid species Brassica napus shows diversity in resistance genes. Funct Integrative Genomics 14:643–655

    Article  CAS  Google Scholar 

  • Dassanayake M, Oh DH, Haas JS, Hernandez A, Hong H, Ali S (2013) The genome of the extremophile crucifer Thellungiella parvula. Nat Genet 43:913–918

    Article  Google Scholar 

  • Delourme R, Falentin C, Fomeju B, Boillot M, Lassalle G, André I, Duarte J, Gauthier V, Lucante N, Marty A et al (2013) High-density SNP-based genetic map development and linkage disequilibrium assessment in Brassica napus L. BMC Genom 14:120

    Article  CAS  Google Scholar 

  • Dubcovsky J, Dvorak J (2007) Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316:1862–1866

    Article  CAS  Google Scholar 

  • Edwards D, Batley J, Snowdon RJ (2013) Accessing complex crop genomes with next-generation sequencing. Theor Appl Genet 126:1–11

    Article  CAS  Google Scholar 

  • Gaeta RT, Pires JC (2010) Homoeologous recombination in allopolyploids: the polyploid ratchet. New Phytol 186:18–28

    Article  CAS  Google Scholar 

  • Gaeta R, Pires J, Iniguez-Luy F, Leon E, Osborn T (2007) Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype. Plant Cell 19:3403–3417

    Article  CAS  Google Scholar 

  • Gnerre S, MacCallum I, Przybylski D, Ribeiro FJ, Burton JN, Walker BJ, Sharpe T, Hall G, Shea TP, Sykes S et al (2011) High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc Nat Acad Sci 108:1513–1518

    Article  CAS  Google Scholar 

  • Haudry A, Platts AE, Vello E, Hoen DR, Leclercq M, Williamson RJ (2013) An atlas of over 90,000 conserved noncoding sequences provides insight into crucifer regulatory regions. Nat Genet 45:891–898

    Article  CAS  Google Scholar 

  • He Z, Wang L, Harper AL, Havlickova L, Pradhan AK, Parkin IAP, Bancroft I (2017) Extensive homoeologous genome exchanges in allopolyploid crops revealed by mRNAseq-based visualization. Plant Biotechnol J 15:594–604

    Article  CAS  Google Scholar 

  • Hu TT, Pattyn P, Bakker EG, Cao J, Cheng JF, Clark RM (2011) The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat Genet 43:476–481

    Article  Google Scholar 

  • Huang S, Deng L, Guan M, Li J, Lu K, Wang H, Fu D, Mason AS, Liu S, Hua W (2013) Identification of genome-wide single nucleotide polymorphisms in allopolyploid crop Brassica napus. BMC Genom 14:717

    Article  CAS  Google Scholar 

  • Jackson S, Chen ZJ (2010) Genomic and expression plasticity of polyploidy. Current Opin Plant Biol 13:153–159

    Article  CAS  Google Scholar 

  • Jarvis DE, Ho YS, Lightfoot DJ, Schmockel SM, Li B, Borm TJA, Ohyanagi H, Mineta K, Michell CT, Saber N et al (2017) The genome of Chenopodium quinoa. Nature 542:307–312

    Article  CAS  Google Scholar 

  • Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE, Tomsho LP, Hu Y, Liang H, Soltis PS (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473:97–100

    Article  CAS  Google Scholar 

  • Jiao Y, Peluso P, Shi J, Liang T, Stitzer MC, Wang B, Campbell MS, Stein JC, Wei X, Chin CS et al (2017) Improved maize reference genome with single-molecule technologies. Nature 546:524–527

    CAS  PubMed  Google Scholar 

  • Johnston JS, Pepper AE, Hall AE, Chen ZJ, Hodnett G, Drabek J, Lopez R, Price HJ (2005) Evolution of genome size in Brassicaceae. Ann Bot 95:229–235

    Article  CAS  Google Scholar 

  • Kagale S, Robinson SJ, Nixon J, Xiao R, Huebert T, Condie J, Kessler D, Clarke WE, Edger PP, Links MG et al (2014) Polyploid evolution of the Brassicaceae during the Cenozoic Era. Plant Cell 26:2777–2791

    Article  CAS  Google Scholar 

  • Kajitani R, Toshimoto K, Noguchi H, Toyoda A, Ogura Y, Okuno M, Yabana M, Harada M, Nagayasu E, Maruyama H et al (2014) Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads. Genome Res 24:1384–1395

    Article  CAS  Google Scholar 

  • Larkan NJ, Lydiate DJ, Parkin IAP, Nelson MN, Epp DJ, Cowling WA, Rimmer SR, Borhan MH (2013) The Brassica napus blackleg resistance gene LepR3 encodes a receptor-like protein triggered by the Leptosphaeria maculans effector AVRLM1. New Phytol 197:595–605

    Google Scholar 

  • Liu C, Wang J, Huang T, Wang F, Yuan F, Cheng X, Zhang Y, Shi S, Wu J, Liu K (2010) A missense mutation in the VHYNP motif of a DELLA protein causes a semi-dwarf mutant phenotype in Brassica napus. Theor Appl Genet 121:249–258

    Article  CAS  Google Scholar 

  • Liu L, Stein A, Wittkop B, Sarvari P, Li J, Yan X, Dreyer F, Frauen M, Friedt W, Snowdon RJ (2012) A knockout mutation in the lignin biosynthesis gene CCR1 explains a major QTL for acid detergent lignin content in Brassica napus seeds. Theor Appl Genet 124:1573–1586

    Article  CAS  Google Scholar 

  • Liu L, Qu C, Wittkop B, Yi B, Xiao Y, He Y, Snowdon RJ, Li J (2013) A high-density SNP map for accurate mapping of seed fibre QTL in Brassica napus L. PLoS ONE 8:e83052

    Article  Google Scholar 

  • Liu S, Liu Y, Yang X, Tong C, Edwards D, Parkin IA, Zhao M, Ma J, Yu J, Huang S et al (2014) The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun 5:3930

    Article  CAS  Google Scholar 

  • Liu J, Hua W, Hu Z, Yang H, Zhang L, Li R, Deng L, Sun X, Wang X, Wang H (2015) Natural variation in ARF18 gene simultaneously affects seed weight and silique length in polyploid rapeseed. Proc Natl Acad Sci USA 112:5123–5132

    Article  Google Scholar 

  • Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y et al (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience 1:18

    Google Scholar 

  • Lyons E, Pedersen B, Kane J, Alam M, Ming R, Tang H, Wang X, Bowers J, Paterson A, Lisch D et al (2008) Finding and comparing syntenic regions among Arabidopsis and the outgroups papaya, poplar, and grape: CoGe with rosids. Plant Physiol 148:1772–1781

    Article  CAS  Google Scholar 

  • Lysak MA, Koch MA, Pecinka A, Schubert I (2005) Chromosome triplication found across the tribe Brassiceae. Genome Res 15:516–525

    Article  CAS  Google Scholar 

  • Mason AS, Higgins EE, Stein A, Werner C, Batley J, Parkin IAP, Snowdon RJ (2017) A user guide to the Brassica 60K Illumina Infinium™ SNP genotyping array. Theor Appl Genet 130:621–633.

    Article  CAS  Google Scholar 

  • Masterson J (1994) Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science 264:421–424

    Article  CAS  Google Scholar 

  • Osborn TC, Butrulle DV, Sharpe AG, Pickering KJ, Parkin IAP, Parker JS, Lydiate DJ (2003) Detection and effects of a homeologous reciprocal transposition in Brassica napus. Genetics 165:1569–1577

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ott J, Kamatani Y, Lathrop M (2011) Family-based designs for genome-wide association studies. Nat Rev Genet 12:465–474

    Article  CAS  Google Scholar 

  • Parkin IAP, Sharpe AG, Keith DJ, Lydiate DJ (1995) Identification of the A and C genomes of amphidiploid Brassica napus (oilseed rape). Genome 38:1122–1131

    Article  CAS  Google Scholar 

  • Parkin IA, Gulden SM, Sharpe AG, Lukens L, Trick M, Osborn TC, Lydiate DJ (2005) Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171:765–781

    Article  CAS  Google Scholar 

  • Pires JC, Zhao J, Schranz ME, Leon EJ, Quijada PA, Lukens LN, Osborn TC (2004) Flowering time divergence and genomic rearrangements in resynthesized Brassica polyploids (Brassicaceae). Biol J Linn Soc 82:675–688

    Article  Google Scholar 

  • Raman H, Dalton-Morgan J, Diffey S, Raman R, Alamery S, Edwards D, Batley J (2014) SNP markers-based map construction and genome-wide linkage analysis in Brassica napus. Plant Biotechnol J 12:851–860

    Article  CAS  Google Scholar 

  • Rana D, Boogaart T, O’Neill CM, Hynes L, Bent E, Macpherson L, Park JY, Lim YP, Bancroft I (2004) Conservation of the microstructure of genome segments in Brassica napus and its diploid relatives. Plant J 40:725–733

    Article  CAS  Google Scholar 

  • Rousseau-Gueutin M, Morice J, Coriton O, Huteau V, Trotoux G, Nègre S, Falentin C, Deniot G, Gilet M, Eber F et al (2016) The impact of open pollination on the structural evolutionary dynamics, meiotic behavior and fertility of resynthesized allotetraploid Brassica napus L. G3: genes. Genomes Genet 7:705–717

    Google Scholar 

  • Rygulla W, Friedt W, Seyis F, Lühs W, Eynck C, Tiedemann AV, Snowdon RJ (2007a) Combination of resistance to Verticillium longisporum from zero erucic acid Brassica oleracea and oilseed Brassica rapa genotypes in resynthesized rapeseed (Brassica napus) lines. Plant Breed 126:596–602

    Article  CAS  Google Scholar 

  • Rygulla W, Snowdon RJ, Eynck C, Koopmann B, von Tiedemann A, Lühs W, Friedt W (2007b) Broadening the genetic basis of Verticillium longisporum resistance in Brassica napus by interspecific hybridization. Phytopathology 97:1391–1396

    Article  CAS  Google Scholar 

  • Schnable JC, Springer NM, Freeling M (2011) Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss. Proc Nat Acad Sci 108:4069–4074

    Article  CAS  Google Scholar 

  • Sharpe AG, Parkin IAP, Keith DJ, Lydiate DJ (1995) Frequent nonreciprocal translocations in the amphidiploid genome of oilseed rape (Brassica napus). Genome 38:1112–1121

    Article  CAS  Google Scholar 

  • Slotte T, Hazzouri KM, Ågren JA, Koenig D, Maumus F, Guo YL (2013) The Capsella rubella genome and the genomic consequences of rapid mating system evolution. Nat Genet 45:831–835

    Article  CAS  Google Scholar 

  • Snowdon RJ, Iniguez Luy FL (2012) Potential to improve oilseed rape and canola breeding in the genomics era. Plant Breed 131:351–360

    Article  CAS  Google Scholar 

  • Snowdon RJ, Abbadi A, Kox T, Schmutzer T, Leckband G (2015) Heterotic haplotype capture: precision breeding for hybrid performance. Trends Plant Sci 20:410–413

    Article  CAS  Google Scholar 

  • Soltis D, Soltis P (2003) The role of phylogenetics in comparative genetics. Plant Physiol 132:1790–1800

    Article  CAS  Google Scholar 

  • Song K, Lu P, Tang K, Osborn TC (1995) Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc Nat Acad Sci 92:7719–7723

    Article  CAS  Google Scholar 

  • Stein A, Coriton O, Rousseau-Gueutin M, Samans B, Schiessl SV, Obermeier C, Parkin IA, Chèvre AM, Snowdon RJ (2017) Mapping of homoeologous chromosome exchanges influencing quantitative trait variation in Brassica napus. Plant Biotechnol J 15:1478–1489

    Article  CAS  Google Scholar 

  • Sun F, Fan G, Hu Q, Zhou Y, Guan M, Tong C, Li J, Du D, Qi C, Jiang L et al (2017) The high-quality genome of Brassica napus cultivar ‘ZS11’ reveals the introgression history in semi-winter morphotype. Plant J 92:452–468

    Article  CAS  Google Scholar 

  • Szadkowski E, Eber F, Huteau V, Lodé M, Huneau C, Belcram H, Coriton O, Manzanares-Dauleux MJ, Delourme R, King GJ et al (2010) The first meiosis of resynthesized Brassica napus, a genome blender. New Phytol 186:102–112

    Article  CAS  Google Scholar 

  • The French-Italian Public Consortium for Grapevine Genome Characterization (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    Article  Google Scholar 

  • Trick M, Long Y, Meng J, Bancroft I (2009) Single nucleotide polymorphism (SNP) discovery in the polyploid Brassica napus using Solexa transcriptome sequencing. Plant Biotechnol J 7:334–346

    Article  CAS  Google Scholar 

  • Udall JA, Quijada PA, Osborn TC (2005) Detection of chromosomal rearrangements derived from homeologous recombination in four mapping populations of Brassica napus L. Genetics 169:967–979

    Article  CAS  Google Scholar 

  • Van de Peer Y (2011) A mystery unveiled. Genome Biol 12:113

    Article  Google Scholar 

  • Vision TJ, Brown DG, Tanksley SD (2000) The origins of genomic duplications in Arabidopsis. Science 290:2114–2117

    Article  CAS  Google Scholar 

  • Wang X, Wang H, Wang J, Sun R, Wu J, Liu S (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1039

    Article  CAS  Google Scholar 

  • Werner S, Diederichsen E, Frauen M, Schondelmaier J, Jung C (2007) Genetic mapping of clubroot resistance genes in oilseed rape. Theor Appl Genet 116:363

    Article  Google Scholar 

  • Xia S, Wang Z, Zhang H, Hu K, Zhang Z, Qin M, Dun X, Yi B, Wen J, Ma C et al (2016) Altered transcription and neofunctionalization of duplicated genes rescue the harmful effects of a chimeric gene in Brassica napus. Plant Cell 28:2060–2078

    Article  CAS  Google Scholar 

  • Xiong Z, Gaeta RT, Pires JC (2011) Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus. Proc Nat Acad Sci 108:7908–7913

    Article  CAS  Google Scholar 

  • Yang J, Liu D, Wang X, Ji C, Cheng F, Liu B, Hu Z, Chen S, Pental D, Ju Y et al (2016) The genome sequence of allopolyploid Brassica juncea and analysis of differential homoeolog gene expression influencing selection. Nat Genet 48:1225–1232

    Article  CAS  Google Scholar 

  • Yi B, Zeng F, Lei S, Chen Y, Yao X, Zhu Y, Wen J, Shen J, Ma C, Tu J et al (2010) Two duplicate CYP704B1-homologous genes BnMs1 and BnMs2 are required for pollen exine formation and tapetal development in Brassica napus. The Plant J 63:925–938

    Article  CAS  Google Scholar 

  • Zhang D, Hua Y, Wang X, Zhao H, Shi L, Xu F (2014) A high-density genetic map identifies a novel major QTL for boron efficiency in oilseed rape (Brassica napus L.). PLoS ONE 9:e112089

    Article  Google Scholar 

  • Zimin AV, Marçais G, Puiu D, Roberts M, Salzberg SL, Yorke JA (2013) The MaSuRCA genome assembler. Bioinformatics 29:2669–2677

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shengyi Liu or Rod Snowdon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, S., Snowdon, R. (2018). Future Prospects for Structural, Functional, and Evolutionary Genomics. In: Liu, S., Snowdon, R., Chalhoub, B. (eds) The Brassica napus Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-43694-4_16

Download citation

Publish with us

Policies and ethics