Skip to main content

Isometric Gene Tree Reconciliation Revisited

  • Conference paper
  • First Online:
Algorithms in Bioinformatics (WABI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9838))

Included in the following conference series:

  • 1397 Accesses

Abstract

Isometric gene tree reconciliation is a gene tree/species tree reconciliation problem where both the gene tree and the species tree include branch lengths, and these branch lengths must be respected by the reconciliation. The problem was introduced by Ma et al. (2008a) in the context of reconstructing evolutionary histories of genomes in the infinite sites model. In this paper, we show that the original algorithm by Ma et al. (2008a) is incorrect, and we propose a modified algorithm that addresses the problems that we discovered. Moreover, by adapting a data structure by Amir et al. (2007), we were able to improve the running time from O(mn) to \(O(n+m\log m)\), where n is the size of the species tree, and m is the size of the gene tree.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amir, A., Landau, G.M., Lewenstein, M., Sokol, D.: Dynamic text and static pattern matching. ACM Trans. Algorithms 3(2), 19 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Bansal, M.S., Alm, E.J., Kellis, M.: Efficient algorithms for the reconciliation problem with gene duplication, horizontal transfer and loss. Bioinformatics 28(12), i283–i291 (2012)

    Article  Google Scholar 

  • Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Gonnet, Gaston H., Viola, Alfredo (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  • Berkman, O., Vishkin, U.: Finding level-ancestors in trees. J. Comput. Syst. Sci. 48(2), 214–230 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Doyon, J.-P., Hamel, S., Chauve, C.: An efficient method for exploring the space of gene tree/species tree reconciliations in a probabilistic framework. IEEE/ACM Trans. Comput. Biol. Bioinform. 9(1), 26–39 (2012)

    Article  Google Scholar 

  • Doyon, J.-P., Scornavacca, C., Gorbunov, K.Y., Szöllősi, G.J., Ranwez, V., Berry, V.: An efficient algorithm for gene/species trees parsimonious reconciliation with losses, duplications and transfers. In: Tannier, E. (ed.) RECOMB-CG 2010. LNCS, vol. 6398, pp. 93–108. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  • Eulenstein, O.: A linear time algorithm for tree mapping. GMD-Forschungszentrum Informationstechnik (1997)

    Google Scholar 

  • Felsenstein, J.: Inferring Phylogenies. Sinauer Associates, Sunderland (2004)

    Google Scholar 

  • Fertin, G., Labarre, A., Rusu, I., Tannier, E., Vialette, S.: Combinatorics of Genome Rearrangements. MIT Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  • Goodman, M., Czelusniak, J., Moore, G.W., Romero-Herrera, A., Matsuda, G.: Fitting the gene lineage into its species lineage, a parsimony strategy illustrated by cladograms constructed from globin sequences. Syst. Biol. 28(2), 132–163 (1979)

    Article  Google Scholar 

  • Górecki, P., Burleigh, G.J., Eulenstein, O.: Maximum likelihood models and algorithms for gene tree evolution with duplications and losses. BMC Bioinform. 12(1), 1 (2011)

    Article  Google Scholar 

  • Guigo, R., Muchnik, I., Smith, T.F.: Reconstruction of ancient molecular phylogeny. Mol. Phylogenet. Evol. 6(2), 189–213 (1996)

    Article  Google Scholar 

  • Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors. SIAM J. Comput. 13(2), 338–355 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  • Ma, J., Ratan, A., Raney, B.J., Suh, B.B., Miller, W., Haussler, D.: The infinite sites model of genome evolution. Proc. Nat. Acad. Sci. 105(38), 14254–14261 (2008a)

    Article  Google Scholar 

  • Ma, J., Ratan, A., Raney, B.J., Suh, B.B., Zhang, L., Miller, W., Haussler, D.: DUPCAR: reconstructing contiguous ancestral regions with duplications. J. Comput. Biol. 15(8), 1007–1027 (2008b)

    Article  MathSciNet  Google Scholar 

  • Sennblad, B., Lagergren, J.: Probabilistic orthology analysis. Syst. Biol. 58(4), 411–424 (2009)

    Article  Google Scholar 

  • Zhang, L.: On a Mirkin-Muchnik-Smith conjecture for comparing molecular phylogenies. J. Comput. Biol. 4(2), 177–187 (1997)

    Article  Google Scholar 

  • Zmasek, C.M., Eddy, S.R.: A simple algorithm to infer gene duplication and speciation events on a gene tree. Bioinformatics 17(9), 821–828 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by a grant from the Slovak Research and Development Agency APVV-14-0253 and by VEGA grants 1/0684/16, 1/0719/14, and 2/0165/16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Broňa Brejová .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Brejová, B., Gafurov, A., Pardubská, D., Sabo, M., Vinař, T. (2016). Isometric Gene Tree Reconciliation Revisited. In: Frith, M., Storm Pedersen, C. (eds) Algorithms in Bioinformatics. WABI 2016. Lecture Notes in Computer Science(), vol 9838. Springer, Cham. https://doi.org/10.1007/978-3-319-43681-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43681-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43680-7

  • Online ISBN: 978-3-319-43681-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics