Skip to main content

Solving Generalized Maximum-Weight Connected Subgraph Problem for Network Enrichment Analysis

  • Conference paper
  • First Online:
Algorithms in Bioinformatics (WABI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9838))

Included in the following conference series:

Abstract

Network enrichment analysis methods allow to identify active modules without being biased towards a priori defined pathways. One of mathematical formulations of such analysis is a reduction to a maximum-weight connected subgraph problem. In particular, in analysis of metabolic networks a generalized maximum-weight connected subgraph (GMWCS) problem, where both nodes and edges are scored, naturally arises. Here we present the first to our knowledge practical exact GMWCS solver. We have tested it on real-world instances and compared to similar solvers. First, the results show that on node-weighted instances GMWCS solver has a similar performance to the best solver for that problem. Second, GMWCS solver is faster compared to the closest analogue when run on GMWCS instances with edge weights.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alcaraz, N., Pauling, J., Batra, R., Barbosa, E., Junge, A., Christensen, A.G.L., Azevedo, V., Ditzel, H.J., Baumbach, J.: KeyPathwayMiner 4.0: condition-specific pathway analysis by combining multiple omics studies and networks with cytoscape. BMC Syst. Biol. 8(1), 99 (2014)

    Article  Google Scholar 

  2. Álvarez-Miranda, E., Ljubić, I., Mutzel, P.: The maximum weight connected subgraph problem. In: Jünger, M., Reinelt, G. (eds.) Festschrift for Martin Grötschel, pp. 245–270. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  3. Beisser, D., Brunkhorst, S., Dandekar, T., Klau, G.W., Dittrich, M.T., Müller, T.: Robustness and accuracy of functional modules in integrated network analysis. Bioinformatics 28(14), 1887–1894 (2012). (Oxford, England)

    Article  Google Scholar 

  4. Beisser, D., et al.: Integrated pathway modules using time-course metabolic profiles and EST data from Milnesium tardigradum. BMC Syst. Biol. 6, 72 (2012)

    Article  Google Scholar 

  5. Cairns, R.A., Harris, I.S., Mak, T.W.: Regulation of cancer cell metabolism. Nat. Rev. Cancer 11(2), 85–95 (2011)

    Article  Google Scholar 

  6. Dittrich, M.T., Klau, G.W., Rosenwald, A., Dandekar, T., Müller, T.: Identifying functional modules in protein-protein interaction networks: an integrated exact approach. Bioinformatics 24(13), i223–i231 (2008). (Oxford, England)

    Article  Google Scholar 

  7. El-Kebir, M., Klau, G.W.: Solving the maximum-weight connected subgraph problem to optimality (2014). arXiv:1409.5308

  8. Haouari, M., Maculan, N., Mrad, M.: Enhanced compact models for the connected subgraph problem and for the shortest path problem in digraphs with negative cycles. Comput. Oper. Res. 40(10), 2485–2492 (2013)

    Article  MathSciNet  Google Scholar 

  9. Ideker, T., Ozier, O., Schwikowski, B., Siegel, A.F.: Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 18(Suppl 1), S233–S240 (2002). (Oxford, England)

    Article  Google Scholar 

  10. Mathis, D., Shoelson, S.E.: Immunometabolism: an emerging frontier. Nat. Rev. Immunol. 11(2), 81 (2011)

    Article  Google Scholar 

  11. Sergushichev, A., Loboda, A., Jha, A., Vincent, E., Driggers, E., Jones, R., Pearce, E., Artyomov, M.: GAM: a web-service for integrated transcriptional and metabolic network analysis. Nucleic Acids Res. (2016). http://nar.oxfordjournals.org/citmgr?type=bibtex&gca=nar%3Bgkw266v1

  12. Ulyantsev, V., Zakirzyanov, I., Shalyto, A.: BFS-based symmetry breaking predicates for DFA identification. In: Dediu, A.-H., Formenti, E., Martín-Vide, C., Truthe, B. (eds.) LATA 2015. LNCS, vol. 8977, pp. 611–622. Springer, Heidelberg (2015)

    Google Scholar 

  13. Vincent, E.E., et al.: Mitochondrial phosphoenolpyruvate carboxykinase regulates metabolic adaptation and enables glucose-independent tumor growth. Mol. Cell 60(2), 195–207 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by Government of Russian Federation [Grant 074-U01 to A.A.S., A.A.L.].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey A. Sergushichev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Loboda, A.A., Artyomov, M.N., Sergushichev, A.A. (2016). Solving Generalized Maximum-Weight Connected Subgraph Problem for Network Enrichment Analysis. In: Frith, M., Storm Pedersen, C. (eds) Algorithms in Bioinformatics. WABI 2016. Lecture Notes in Computer Science(), vol 9838. Springer, Cham. https://doi.org/10.1007/978-3-319-43681-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43681-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43680-7

  • Online ISBN: 978-3-319-43681-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics