Skip to main content

The Role and Applications of Xyloglucan Hydrolase in Biomass Degradation/Bioconversion

  • Chapter
  • First Online:
Book cover Microbial Enzymes in Bioconversions of Biomass

Abstract

Lignocellulosic biomass is currently the most promising alternative energy source for realizing sustainable demands of agrarian economies. Its natural recalcitrance to degradation necessitates a detailed study on the complex biochemistry involved in bioconversion of this lignin–carbohydrate complex. A comprehension of the enzymology and role of principal and accessory glycosyl hydrolases involved in biomass degradation are, hence, noteworthy in this context and the xyloglucan-active hydrolases warrant special mention. These are enzymes which carry out hydrolysis and transglucosylation of xyloglucan, the major hemicellulosic polysaccharide in plant biomass. The structurally complex xyloglucans cover and cross-link the cellulosic microfibrils in plant cell walls and make cellulose inaccessible to saccharification by cellulases. Solubilisation of biomass polysaccharides and release of sugars are central to the biomass-to-bioethanol process. Complete conversion of biomass carbohydrates requires a suite of hydrolytic enzymes, which may be designed specifically to accommodate the predominant and subsidiary biomass-cleaving enzymes. Xyloglucan hydrolases which are known to act synergistically with cellulases and xylanases in loosening the plant cell wall are vital enzymes to be deployed for successful bioconversion processes. This chapter is an insight into the capacity of these accessory, but indispensable, hydrolytic enzymes in unlocking the inaccessible biomass polysaccharides for increased sugar recovery and thereby, in drafting the fuels of future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Annual Energy Outlook (AEO) (2015) U.S. Energy Information Administration, U.S. Department of Energy, Washington, DC. http://www.eia.gov/forecasts/aeo

  • Bai S, Dong C, Zhu J, Zhang Y, Dai H (2015) Identification of a xyloglucan-specific endo-(1-4)-beta-d-glucanase inhibitor protein from apple (Malus × domestica Borkh.) as a potential defense gene against Botryosphaeria dothidea. Plant Sci 231:11–19

    Article  Google Scholar 

  • Baumann MJ (2007a) Structural evidence for the evolution of xyloglucanase activity from xyloglucanendo-transglycosylases: biological implications for cell wall metabolism. Plant Cell 19:1947–1963

    Article  Google Scholar 

  • Baumann MJ (2007b) Xyloglucan-active enzymes: properties, structures and applications. Doctoral thesis submitted to School of Biotechnology, Royal Institute of Technology, Stockholm, pp 10–32

    Google Scholar 

  • Benko Z, Siika-aho M, Viikari L, Reczey K (2008) Evaluation of the role of xyloglucanase in the enzymatic hydrolysis of lignocellulosic substrates. Enzyme Microb Technol 43:109–114

    Article  Google Scholar 

  • Bon EPS, Ferrara MA (2007) Bioethanol production via enzymatic hydrolysis of cellulosic biomass. In: The role of agricultural biotechnologies for production of bioenergy in developing countries. FAO. http://www.fao.org/biotech/seminaroct2007.html

  • Carpita NC, McCann M (2000) The cell wall. In: Buchanan B, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 52–108

    Google Scholar 

  • Chanliaud E, de Silva J, Strongitharm B, Jeronimidis G, Gidley M (2004) Mechanical effects of plant cell wall enzymes on cellulose/xyloglucan composites RID A-7266-2011. Plant J 38:27–37

    Article  Google Scholar 

  • Choudhary J, Saritha M, Nain L, Arora A (2014) Enhanced saccharification of steam-pretreated rice straw by commercial cellulases supplemented with xylanase. J Bioprocess Biotech 4(7):188–194

    Article  Google Scholar 

  • Claassen PAM, van Lier JB, Contreras LAM, van Niel EWJ, Sijtsma L, Stams AJM, de Vries SS, Weusthuis RA (1999) Utilisation of biomass for the supply of energy carriers. Appl Microbiol Biotechnol 52:741–755

    Article  Google Scholar 

  • Damásio ARL, Ribeiro LFC, Ribeiro LF, Furtado GP, Segato F, Almeida FBR, Crivellari AC, Buckeridge MS, Souza TACB, Murakamie MT, Ward RJ, Prade RA, Polizeli MLTM (2012) Functional characterization and oligomerization of a recombinant xyloglucan-specific endo-β-1,4-glucanase (GH12) from Aspergillus niveus. Biochim Biophys Acta 1824:461–467

    Article  Google Scholar 

  • Edwards M, Dea ICM, Bulpin PV, Reid JSG (1985) Xyloglucan (amyloid) mobilization in the cotyledons of Tropaeolum majus L seeds following germination. Planta 163:133–140

    Article  Google Scholar 

  • Enkhbaatar B, Temuujin U, Lim J-H, Chi W-J, Chang Y-K, Hong S-K (2012) Identification and characterization of a xyloglucan-specific family 74 glycosyl hydrolase from Streptomyces coelicolor A3(2). Appl Environ Microbiol 78(2):607–611

    Article  Google Scholar 

  • Ethanol Industry Outlook Report-Battling for the Barrel (2013) Renewable Fuels Association. http://www.ethanolrfa.org

  • Faik A, Price NJ, Raikhel NV, Keegstra K (2002) An Arabidopsis gene encoding an α-xylosyltransferase involved in xyloglucan biosynthesis. Proc Natl Acad Sci USA 99:7797–7802

    Article  Google Scholar 

  • Farrell AE, Plevin RJ, Turner BT, Jones AD, O’Hare M, Kammen DM (2006) Ethanol can contribute to energy and environmental goals. Science 113:506–508

    Article  Google Scholar 

  • Feng T, Yan K-P, Mikkelsen MD, Meyer AS, Schols HA, Westereng B, Mikkelsen JD (2014) Characterisation of a novelendo-xyloglucanase (XcXGHA) from Xanthomonas that accommodates a xylosyl-substituted glucose at subsite-1. Appl Microbiol Biotechnol 98:9667–9679

    Article  Google Scholar 

  • Fry SC (1989) The structure and functions of xyloglucan. J Exp Bot 40:1–11

    Article  Google Scholar 

  • Fry SC, Smith RC, Renwick KF, Martin DJ, Hodge SK, Matthews KJ (1992) Xyloglucanendotransglycosylase, a new wall-loosening enzyme activity from plants. Biochem J 282:821–828

    Article  Google Scholar 

  • Fry SC, York WS, Albersheim P, Darvill A, Hayashi T, Joseleau JP, Kato Y, Lorences EP, Maclachlan GA, McNeil M, Mort AJ, Reid JSG, Seitz HU, Selvendran RR, Voragen AGJ, White AR (1993) An unambiguous nomenclature for xyloglucan-derived oligosaccharides. Physiol Plant 89:1–3

    Article  Google Scholar 

  • Furtado GP, Santos CR, Cordeiro RL, Ribeiro LF, de Moraes LAB, Damásio ARL, Polizeli MLTM, Lourenzoni MR, Murakami MT, Ward RJ (2015) Enhanced xyloglucan-specific endo-β-1,4-glucanase efficiency in an engineered CBM44-XegA chimera. Appl Microbiol Biotechnol 99(12):5095–5107

    Article  Google Scholar 

  • Girio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Lukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101:4775–4800

    Article  Google Scholar 

  • Gloster TM, Ibatullin FM, Macauley K, Eklof JM, Roberts S, Turkenburg JP, Bjornvad K, Jorgensen PL, Danielsen S, Joha KS, Borchert TV, Wilson KS, Brumer H, Davies GJ (2007) Characterization and three-dimensional structures of two Distinct bacterial xyloglucanases from Families GH5 and GH12. J Biol Chem 282(26):19177–19189

    Article  Google Scholar 

  • Grishutin SG, Gusakov AV, Markov AV, Ustinov BB, Semenova MV, Sinitsyn AP (2004) Specific xyloglucanases as a new class of polysaccharide-degrading enzymes. Biochim Biophys Acta 1674:268–281

    Article  Google Scholar 

  • Guillen D, Sanchez S, Rodriguez-Sanoja R (2010) Carbohydrate-binding domains: multiplicity of biological roles. Appl Microbiol Biotechnol 85(5):1241–1249

    Article  Google Scholar 

  • Hayashi T (1989) Xyloglucans in the primary-cell wall. Annu Rev Plant Physiol Plant Molec Biol 40:139–168

    Article  Google Scholar 

  • Hayashi T, Kato Y, Matsuda K (1980) Biosynthesis of xyloglucan in suspension-cultured soybean cells. Plant Cell Physiol 21:1405–1418

    Article  Google Scholar 

  • Hiloidhari M, Das D, Baruah DC (2014) Bioenergy potential from crop residue biomass in India. Renew Sust Energ Rev 32:504–512

    Article  Google Scholar 

  • Hu J (2014) The role of accessory enzymes in enhancing the effective hydrolysis of the cellulosic component of pretreated biomass. Thesis submitted to The University of British Columbia, Vancouver, pp 98–106

    Google Scholar 

  • Ichinose H, Araki Y, Michikawa M, Harazono K, Yaoi K, Karita S, Kaneko S (2012) Characterization of an endo-processive-type xyloglucanase having a β-1,4-glucan-binding module and an endo-type xyloglucanase from Streptomyces avermitilis. Appl Environ Microbiol 78(22):7939–7945

    Article  Google Scholar 

  • Jabbour D, Borrusch MS, Banerjee G, Walton JD (2013) Enhancement of fermentable sugar yields by α-xylosidase supplementation of commercial cellulases. Biotechnol Biofuels 6:58–66

    Article  Google Scholar 

  • Jørgensen H, Kristensen JB, Felby C (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod Bior 1:119–134

    Article  Google Scholar 

  • Kaida R, Kaku T, Baba M, Oyadomari M, Watanabe T, Nishida K, Kanaya T, Shani Z, Shoseyov O, Hayashi T (2009) Loosening xyloglucan accelerates the enzymatic degradation of cellulose in wood. Mol Plant 2(5):904–909

    Article  Google Scholar 

  • Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3729

    Article  Google Scholar 

  • Lorences EP (2004) Cell wall xyloglucan incorporation by xyloglucanendotransglucosylase/hydrolase in pine hypocotyls. Plant Sci 166(5):1269–1274

    Article  Google Scholar 

  • Madson M, Dunand C, Li XM, Verma R, Vanzin GF, Calplan J, Shoue DA, Carpita NC, Reiter WD (2003) The MUR3 gene of Arabidopsis encodes a xyloglucan galactosyl transferase that is evolutionarily related to animal exostosins. Plant Cell 15:1662–1670

    Article  Google Scholar 

  • Maldonado-Mendoza I, Dewbre GR, Blaylock L, Harrison MJ (2005) Expression of a xyloglucanendotransglucosylase/hydrolase gene, Mt-XTH1, from Medicagotruncatula is induced systemically in mycorrhizal roots. Gene 345(2):191–197

    Article  Google Scholar 

  • Malherbe S, Cloete TE (2003) Lignocellulosic biodegradation: fundamentals and applications: a review. Rev Environ Sci Biotechnol 1:105–114

    Article  Google Scholar 

  • Martinez-Fleites C, Guerreiro CIPD, Baumann MJ, Taylor EJ, Prates JAM, Ferreira LMA, Fontes CMGA, Brumer H, Davies GJ (2006) Crystal structures of Clostridium thermocellum xyloglucanase, XGH74A, reveal the structural basis for xyloglucan recognition and degradation. J Biol Chem 281:24922–24933

    Article  Google Scholar 

  • Matsuzawa T, Saito Y, Yaoi K (2014) Key amino acid residues for the endo-processive activity of GH74 xyloglucanase. FEBS Lett 588:1731–1738

    Article  Google Scholar 

  • Michailidis G, Argiriou A, Darzentas N, Tsaftaris A (2009) Analysis of xyloglucanendotransglycosylase/hydrolase (XTH) genes from allotetraploid (Gossypium hirsutum) cotton and its diploid progenitors expressed during fiber elongation. J Plant Physiol 166(4):403–416

    Article  Google Scholar 

  • Miedes E, Lorences EP (2009) Xyloglucanendotransglucosylase/hydrolases (XTHs) during tomato fruit growth and ripening. J Plant Physiol 166(5):489–498

    Article  Google Scholar 

  • Miedes E, Zarra I, Hoson T, Herbers K, Sonnewald U, Lorences EP (2011) Xyloglucanendotransglucosylase and cell wall extensibility. J Plant Physiol 168(3):196–203

    Article  Google Scholar 

  • Mohanram S, Amat D, Choudhary J, Arora A, Nain L (2013) Novel perspectives for evolving enzyme cocktails for lignocellulose hydrolysis in biorefineries. Sustain Chem Process 1:15

    Article  Google Scholar 

  • Muñoz-Bertomeu J, Lorences EP (2014) Changes in xyloglucan endotransglucosylase/hydrolase (XTHs) expression and XET activity during apple fruit infection by Penicillium expansum Link. A. Eur J Plant Pathol 138:273–282

    Article  Google Scholar 

  • Nishitani K (1995) Endo-xyloglucan transferase, a new class of transferase involved in cell-wall construction. J Plant Res 108:137–148

    Article  Google Scholar 

  • Pauly M, Albersheim P, Darvill A, York WS (1999) Molecular domains of the cellulose/xyloglucan network in the cell walls of higher plants. Plant J 20:629–639

    Article  Google Scholar 

  • Powlowski J, Mahajan S, Schapira M, Master ER (2009) Substrate recognition and hydrolysis by a fungal xyloglucan-specific family 12 hydrolase. Carbohydr Res 344(10):1175–1179

    Article  Google Scholar 

  • Rani V, Saritha M, Tiwari R, Nain L, Arora A (2014) Beta-glucosidase: key enzyme in determining efficiency of cellulase and biomass hydrolysis. J Bioprocess Biotech 5(1):197–205

    Google Scholar 

  • Romo S, Jimenez T, Labrador E, Dopico B (2005) The gene for a xyloglucanendotransglucosylase/hydrolase from Cicer arietinum is strongly expressed in elongating tissues. Plant Physiol Biochem 43(2):169–176

    Article  Google Scholar 

  • Rose J, Catala C, Gonzalez-Carrana Z, Roberts J (2003) Cell wall disassembly. In: Rose JK (ed) The plant cell wall. Annual Plant Reviews 8. CRC Press, Boca Raton, pp 265–324

    Google Scholar 

  • Saladie M, Rose JKC, Cosgrove DJ, Catala C (2006) Characterization of a new xyloglucan endotransglucosylase/hydrolase (XTH) from ripening tomato fruit and implications for the diverse modes of enzymic action. Plant J 47:282–295

    Article  Google Scholar 

  • Shankaracharya NB (1998) Tamarind-chemistry, technology and uses—a critical appraisal. J Food Sci Technol 35:193–208

    Google Scholar 

  • Singh S, Pranaw K, Singh B, Tiwari R, Nain L (2014) Production, optimization and evaluation of multicomponent holocellulase produced by Streptomyces sp. ssr-198. J Taiwan Inst Chem E 45:2379–2386

    Article  Google Scholar 

  • Sinitsyna OA, Fedorova EA, Pravilnikov AG, Rozhkova AM, Skomarovsky AA, Matys VYu, Bubnova TM, Okunev ON, Vinetsky YuP, Sinitsyn AP (2010) Isolation and properties of xyloglucanases of Penicillium sp. Biochemistry (Moscow) 75(1):41–49

    Article  Google Scholar 

  • Sinnott ML (1990) Catalytic mechanisms of enzymic glycosyl transfer. Chem Rev 90:1171–1202

    Article  Google Scholar 

  • Song S, Tang Y, Yang S, Yan Q, Zhou P, Jiang Z (2013) Characterization of two novel family 12 xyloglucanases from the thermophilic Rhizomucor miehei. Appl Microbiol Biotechnol 97(23):10013–10024

    Article  Google Scholar 

  • Stratilova E, Ait-Mohand F, Rehulka P, Garajova S, Flodrova D, Rehulkova H, Farkas V (2010) Xyloglucanendotransglycosylases (XETs) from germinating nasturtium (Tropaeolum majus) seeds: isolation and characterization of the major form. Plant Physiol Biochem 48(4):207–215

    Article  Google Scholar 

  • Sweeney MD, Xu F (2012) Biomass converting enzymes as industrial biocatalysts for fuels and chemicals: recent developments. Catalysts 2:244–263

    Article  Google Scholar 

  • Takahashi M, Yamamoto R, Sakurai N, Nakano Y, Takeda T (2015) Fungal hemicellulose-degrading enzymes cause physical property changes concomitant with solubilization of cell wall polysaccharides. Planta 241:359–370

    Article  Google Scholar 

  • Timell TE (1967) Recent progress in the chemistry of wood hemicelluloses. Wood Sci Technol 1:45–70

    Article  Google Scholar 

  • van den Brink J, de Vries RP (2011) Fungal enzyme sets for plant polysaccharide degradation. Appl Microbiol Biotechnol 6:1477–1492

    Article  Google Scholar 

  • Vincken JP, Dekeizer A, Beldman G, Voragen AGJ (1995) Fractionation of xyloglucan fragments and their interaction with cellulose. Plant Physiol 108:1579–1585

    Article  Google Scholar 

  • Vincken J-P, York WS, Beldman C, Voragen AGJ (1997) Two general branching patterns of xyloglucan, XXXG and XXGC. Plant Physiol 114:9–13

    Article  Google Scholar 

  • Vlasenko E, SchĂĽlein M, Cherry J, Xu F (2010) Substrate specificity of family 5, 6, 7, 9, 12, and 45 endoglucanases. Bioresour Technol 101:2405–2411

    Article  Google Scholar 

  • Warner CD, Go RM, GarcĂ­a-Salinas C, Ford C, Reilly PJ (2011) Kinetic characterization of a glycoside hydrolase family 44 xyloglucanase/endoglucanase from Ruminococcus flavefaciens FD-1. Enzyme Microb Technol 48(1):27–32

    Article  Google Scholar 

  • Wyman CE (1996) Handbook on bioethanol: production and utilization. Taylor Francis, Washington, p 417

    Google Scholar 

  • Yamatoya K, Shirakawa M (2003) Xyloglucan: structure, rheological properties, biological functions and enzymatic modification. Current Trends Polym Sci 8:27–72

    Article  Google Scholar 

  • Yaoi K, Kondo H, Noro N, Suzuki M, Tsuda S, Mitsuishi Y (2004) Tandem repeat of a seven-bladed β-propeller domain in oligoxyloglucan reducing-end-specific cellobiohydrolase. Structure 12:1209–1217

    Article  Google Scholar 

  • Yaoi K, Mitsuishi Y (2004) Purification, characterization, cDNA cloning, and expression of a xyloglucan endoglucanase from Geotrichum sp. M128. FEBS Lett 560:45–50

    Article  Google Scholar 

  • Yaoi K, Miyazaki K (2012) Cloning and Expression of isoprimeverose-producing oligoxyloglucan hydrolase from actinomycetes species, Oerskovia sp. Y1. J Appl Glycosci 59(2):83–88

    Article  Google Scholar 

  • Yokoyama R, Rose JKC, Nishitani K (2004) A surprising diversity and abundance of xyloglucanendotransglucosylase/hydrolases in rice. Classification and expression analysis. Plant Physiol 134:1088–1099

    Article  Google Scholar 

  • Yuan S, Wu Y, Cosgrove DJ (2001) A Fungal endoglucanase with plant cell wall extension activity. Plant Physiol 127(1):324–333

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lata Nain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Saritha, M. et al. (2016). The Role and Applications of Xyloglucan Hydrolase in Biomass Degradation/Bioconversion. In: Gupta, V. (eds) Microbial Enzymes in Bioconversions of Biomass. Biofuel and Biorefinery Technologies, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-43679-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43679-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43677-7

  • Online ISBN: 978-3-319-43679-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics