Skip to main content

Microbial Xylanases: Sources, Types, and Their Applications

  • Chapter
  • First Online:
Microbial Enzymes in Bioconversions of Biomass

Part of the book series: Biofuel and Biorefinery Technologies ((BBT,volume 3))

Abstract

Biomass conversion to an utilizable energy sources such as monomer sugars using enzymatic hydrolysis has been emerged as the current technology which promises the future energy. In nature, bioconversion process of biomass is mediated by a group of biofunctional hydrolytic enzymes. These enzymes generally work in cooperative synergetic action to facilitate enhanced effective degradation of biomass. Xylanase is one of the crucial hydrolytic enzymes involved in hydrolysis of xylan, the hemicellulose which constitutes 15–30 % of the plant biomass. This chapter discusses in detail about the enzymatic hydrolysis of xylan by the xylolytic enzyme endo-1,4-β-xylanase, its occurrence in nature and mode of action, structure and classifications, current methods for its production, purification, and characterization. In addition, the major and recent industrial applications of this enzyme were highlighted as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou Hachem M, Karlsson EN, Bartonek-Roxa E, Raghothama S, Simpson PJ, Gilbert HJ, Williamson MP, Holst O (2000) Carbohydrate-binding modules from a thermostable Rhodothermus marinus xylanase: cloning, expression and binding studies. Biochem J 345:53–60

    Article  Google Scholar 

  • Alejandro SH, Jesús VE, del María CMH, María EHL (2007) Purifcation and characterization of two sugarcane bagasse-absorbable thermophilic xylanases from the mesophilic Cellulomonas Xavigena. Microbiol Biotechnol 34:331–338

    Article  Google Scholar 

  • Akila G, Chandra TS (2002) A novel cold-tolerant Clostridium strain PXYL1 isolated from a psychrophilic cattle manure digester that secretes thermolabile xylanase and cellulase. FEMS Microbiol Lett 219:63–67

    Article  Google Scholar 

  • Andrade SV, Polizeli MLTM, Terenzi HF, Jorge JA (2004) Effect of carbon source on the biochemical properties of β-xylosidases produced by Aspergillus versicolor. Process Biochem 39:931–938

    Article  Google Scholar 

  • Andre-Leroux G, Berrin JG, Georis J, Arnaut V, Juge V (2008) Structure-based mutagenesis of Penicillium griseofulvum xylanase using computational design. Proteins 72(4):1298–1307

    Article  Google Scholar 

  • Andrews SR, Charnock SJ, Lakey JH, Davies GJ, Claeyssens M, Nerinckx V, Underwood M, Sinnott ML, Warren RA, Gilbert HJ (2000) Substrate specificity in glycoside hydrolase family 10. Tyrosine 87 and leucine 314 play a pivotal role in discriminating between glucose and xylose binding in the proximal active site of Pseudomonas cellulosa xylanase 10A. J Biol Chem 275(30):23027–23033

    Article  Google Scholar 

  • Anuradha P, Vijayalakshmi K, Prasanna ND, Sridevi K (2007) Production and properties of alkaline xylanases from Bacillus sp. isolated from sugarcane fields. Curr Sci 92(9):1283–1286

    Google Scholar 

  • Arase A, Yomo T, Urabe I, Hata Y, Katsube Y, Okada H (1993) Stabilization of xylanase by random mutagenesis. FEBS Lett 316(2):123–127

    Article  Google Scholar 

  • Archana A, Satyanarayana T (1998) Cellulase-free xylanase production by thermophilic Bacillus licheniformis A99. Indian J Microbiol 38:135–139

    Google Scholar 

  • Atkins EDT (1992) Three-dimensional structure, interactions and properties of xylans. Xylanas Xylanases 7:39–50

    Google Scholar 

  • Avalos OP, Noyola TP, Plaza IM, Torre M (1996) Induction of xylanase and β-xylosidase in Cellulomonas flavigena growing on different carbon sources. Appl Microbiol Biotchnol 46:405–409

    Google Scholar 

  • Bai Y, Wang J, Zhang Z, Yang P, Shi P, Luo H, Meng K, Huang H, Yao B (2010) A new xylanase from thermoacidophilic Alicyclobacillus sp. A4 with broad-range pH activity and pH stability. J Ind Microbiol Biotechnol 37(2):187–194

    Article  Google Scholar 

  • Bajpai P, Bajpai PK (2001) Development of a process for the production of dissolving kraft pulp using xylanase enzyme. Appita J 54(4):381–384

    Google Scholar 

  • Bajaj BK, Singh NP (2010) Production of xylanase from an alkali tolerant Streptomyces sp. 7b under solid-state fermentation, its purification, and characterization. Appl Biochem Biotechnol 162(6):1804–1818

    Article  Google Scholar 

  • Balakrishnan H, Srinivasan MC, Rele MV, Chaudhari K, Chandwadkar AJ (2000) Effect of synthetic zeolites on xylanase production from an alkalophilic Bacillus sp. Curr Sci 79:95–97

    Google Scholar 

  • Basar B, Shamzi MM, Rosfarizan M, Puspaningsih NNT, Ariff AB (2010) Enhanced production of thermophilic xylanase by recombinant Escherichia coli DH5α through optimization of medium and dissolved oxygen level. Int J Agric Biotechnol 12:321–328

    Google Scholar 

  • Basaran P, Hang YD, Basaran N, Worobo RW (2001) Cloning and heterologous expression of xylanase from Pichia stipitis in Escherichia coli. J Appl Microbiol 90(2):248–255

    Article  Google Scholar 

  • Battan B, Dhiman SS, Ahlawat S, Mahajan R, Sharma J (2012) Application of thermostable xylanase of Bacillus pumilus in textile processing. Indian J Microbiol 52(2):222–229

    Article  Google Scholar 

  • Beaugrand J, Paës G, Reis D, Takahashi M, Debeire P, O’Donohue MJ, Chabbert B (2005) Probing the cell wall heterogeneity of micro-dissected wheat caryopsis using both active and inactive forms of a GH11 xylanase. Planta 222:246–257

    Article  Google Scholar 

  • Bedford MR, Classen HL (1992) Reduction of intestinal viscosity through manipulation of dietary rye and pentosanase concentration is effected through changes in the carbohydrate composition of the intestinal aqueous phase and results in improved growth rate and food conversion efficiency of broiler chicks. J Nutr 122:560–569

    Google Scholar 

  • Beg QK, Bhushan B, Kappor M, Hoondal G (2000) Production and characterization of thermostable xylanase and pectinase from Streptomyces sp. QG-11-3. J Ind Microbiol Biotechnol 24:396–402

    Article  Google Scholar 

  • Beg QK, Kapoor M, Mahajan L, Hoondal GS (2001) Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol 56(3–4):326–338

    Article  Google Scholar 

  • Bergquist P, Te’o V, Gibbs M, Cziferszky A, de Faria FP, Azevedo M, Nevalainen H (2002) Expression of xylanase enzymes from thermophilic microorganisms in fungal hosts. Extremophiles 6(3):177–184

    Article  Google Scholar 

  • Berrin JG, Juge N (2008) Factors affecting xylanase functionality in the degradation of arabinoxylans. Biotechnol Lett 30(7):1139–1150

    Article  Google Scholar 

  • Berrin JG, Williamson G, Puigserver A, Chaix JC, McLauchlan WR, Juge N (2000) High-level production of recombinant fungal endo-beta-1,4-xylanase in the methylotrophic yeast Pichia pastoris. Protein Expr Purif 19(1):179–187

    Article  Google Scholar 

  • Bhalerao J, Patki AH, Bhave V, Khurana I, Deobagkar DN (1990) Molecular-cloning and expression of a xylanase gene from Cellulomonas sp. into Escherichia coli. Appl Microbiol Biotechnol 34(1):71–76

    Article  Google Scholar 

  • Bhardwaj A, Leelavathi S, Mazumdar-Leighton S, Ghosh A, Ramakumar S, Reddy VS (2010) The critical role of N- and C-terminal contact in protein stability and folding of a family 10 xylanase under extreme conditions. PLoS ONE 5(6):e11347

    Article  Google Scholar 

  • Biely P, Vrsanska M, Kluepfel M, Tenkanen D (1997) Endo-beta-1,4-xylanase families: differences in catalytic properties. J Biotechnol 57(1–3):151–166

    Article  Google Scholar 

  • Biely P, Leathers TD, Cziszarova M, Vrsanska M, Cotta MA (2008) Endo-beta-1,4-xylanase inhibitors in leaves and roots of germinated maize. J Cereal Sci 48(1):27–32

    Article  Google Scholar 

  • Biswas R, Sahai V, Mishra S, Bisaria VS (2010) Bioprocess strategies for enhanced production of xylanase by Melanocarpus albomyces IITD3A on agro-residual extract. J Biosci Bioeng 110:702–708

    Article  Google Scholar 

  • Blum DL, Li XL, Chen H, Ljungdahl LG (1999) Characterization of an acetyl xylan esterase from the anaerobic fungus Orpinomyces sp. strain PC-2. Appl Environ Microbiol 65(9):3990–3995

    Google Scholar 

  • Bocchini DA, Alves-Prado HF, Baida LC, Roberto IC, Gomes E, Da-Silva R (2002) Optimization of xylanase production by Bacillus circulans D1 in submerged fermentation using response surface methodology. Process Biochem 38:727–731

    Article  Google Scholar 

  • Bolam DN, Xie HF, White P, Simpson PJ, Hancock SM, Williamson MP, Gilbert HJ (2001) Evidence for synergy between family 2b carbohydrate binding modules in Cellulomonas fimi xylanase 11A. Biochemistry 40(8):2468–2477

    Article  Google Scholar 

  • Boraston AB, Tomme P, Amandoron EA, Kilburn DG (2000) A novel mechanism of xylan binding by a lectin-like module from Streptomyces lividans xylanase 10A. Biochem J 350(Pt 3):933–941

    Article  Google Scholar 

  • Boraston AB, McLean BW, Chen V, Li A, Warren RA, Kilburn DG (2002) Co-operative binding of triplicate carbohydrate-binding modules from a thermophilic xylanase. Mol Microbiol 43(1):187–194

    Article  Google Scholar 

  • Borralho T, Chang Y, Jain P, Lalani M, Parghi K (2002) Lactose induction of the lac operon in Escherichia coli B23 and its effect on the o-nitrophenyl β-galactoside assay. J Exp Microbiol Immunol 2:117–123

    Google Scholar 

  • Bridgeman TG, Jones JM, Shield I, Williams PT (2008) Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel 87(6):844–856

    Article  Google Scholar 

  • Brijs K, Ingelbrecht JA, Courtin CM, Schlichting L, Marchylo BA, Delcour JA (2004) Combined effects of endoxylanases and reduced water levels in pasta production. Cereal Chem 81:361–368

    Article  Google Scholar 

  • Brutus A, Villard C, Durand A, Tahir T, Furniss C, Puigserver A, Juge N, Giardina T (2004) The inhibition specificity of recombinant Penicillium funiculosum xylanase B towards wheat proteinaceous inhibitors. Biochim Biophys Acta 1701(1–2):121–128

    Article  Google Scholar 

  • Brutus A, Reca IB, Herga S, Mattei B, Puigserver A, Chaix JC, Juge V, Bellincampi D, Giardina T (2005) A family 11 xylanase from the pathogen Botrytis cinerea is inhibited by plant endoxylanase inhibitors XIP-I and TAXI-I. Biochem Biophys Res Commun 337(1):160–166

    Article  Google Scholar 

  • Buchert J, Teleman A, Harjunpa V, Tenkanen M, Viikari L, Vuorinen T (1995) Effect of cooking and bleaching on the structure of xylan in conventional pine kraft pulp. Tappi J 78(11):125–130

    Google Scholar 

  • Butt MS, Nadeem MT, Ahmad Z, Sultan MT (2008) Xylanases and their applications in baking industry. Food Technol Biotechnol 46(1):22–31

    Google Scholar 

  • Cannio R, Di Prizito N, Rossi M, Morana A (2004) A xylan-degrading strain of Sulfolobus solfataricus: isolation and characterization of the xylanase activity. Extremophiles 8(2):117–124

    Article  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238

    Article  Google Scholar 

  • Cao Y, Qiao J, Li Y, Lu W (2007) De novo synthesis, constitutive expression of Aspergillus sulphureus beta-xylanase gene in Pichia pastoris and partial enzymic characterization. Appl Microbiol Biotechnol 76(3):579–585

    Article  Google Scholar 

  • Carmona EC, Brochetto-braga MR, Pizzirani-kleiner AA, Jorge JA (1998) Purification and biochemical characterization of an endoxylanase from Aspergillus versicolor. FEMS Microbiol Lett 166:311–315

    Article  Google Scholar 

  • Carmona EC, Fialho MB, Buchgnani EB, Coelho GD, Brocheto-Braga MR, Jorge JA (2005) Production, purification and characterization of a minor form of xylanase from Aspergillus versicolor. Process Biochem 40(1):359–364

    Article  Google Scholar 

  • Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 24(1):45–66

    Article  Google Scholar 

  • Cervera-Tison MC, Andre-Leroux G, Lafond M, Georis J, Juge N, Berrin J-G (2009) Molecular determinants of substrate and inhibitor specificities of the Penicillium griseofulvum family 11 xylanases. Biochim Biophys Acta 1794:438–445

    Article  Google Scholar 

  • Charnock SJ, Lakey JH, Virden R, Hughes N, Sinnott ML, Hazlewood GP, Pickersgill R, Gilbert HJ (1997) Key residues in subsite F play a critical role in the activity of Pseudomonas fluorescens subspecies cellulosa xylanase A against xylooligosaccharides but not against highly polymeric substrates such as xylan. J Biol Chem 272(5):2942–2951

    Article  Google Scholar 

  • Chauhan K, Trivedi U, Patel KC (2007) Statistical screening of medium components by Plackett–Burman design for lactic acid production by Lactobacillus sp. KCP01 using date juice. Bioresour Technol 98:98–103

    Article  Google Scholar 

  • Chauthaiwale VM, Deshpande VV (1992) Molecular cloning and expression of the xylanase gene from Chainia in Escherichia coli. FEMS Microbiol Lett 99(2–3):265–270

    Article  Google Scholar 

  • Chavez R, Schachter K, Navarro C, Peirano A, Bull P, Eyzaguirre J (2004) The acetyl xylan esterase II gene from Penicillium purpurogenum is differentially expressed in several carbon sources, and tightly regulated by pH. Biol Res 37(1):107–113

    Article  Google Scholar 

  • Chutani P and Sharma KK (2015) Biochemical evaluation of xylanases from various filamentous fungi and their application for the deinking of ozone treated newspaper pulp. Carbohydrate Polymers 127:54–63

    Google Scholar 

  • Cheng YF, Yang CH, Liu WH (2005) Cloning and expression of Thermobifida xylanase gene in the methylotrophic yeast Pichia pastoris. Enz Microb Technol 37(5):541–546

    Article  Google Scholar 

  • Chiku K, Uzawa J, Seki H, Amachi S, Fujii T, Shinoyama H (2008) Characterization of a novel polyphenol-specific oligoxyloside transfer reaction by a family 11 xylanase from Bacillus sp. KT12. Biosci Biotechnol Biochem 72(9):2285–2293

    Article  Google Scholar 

  • Chipeta ZA, Du-Preez JC, Christopher L (2008) Effect of cultivation pH and agitation rate on growth and xylanase production by Aspergillus oryzae in spent sulphite liquor. J Ind Microbiol Biotechnol 35:587–594

    Article  Google Scholar 

  • Chithra M, Muralikrishna G (2008) Characterization of purified xylanase from finger millet (Eleusine coracana-Indaf 15) malt. Eur Food Res Technol 227(2):587–597

    Article  Google Scholar 

  • Claassen PAM, van Lier JB, Lopez Contreras AM, van Niel EJW, Sijtsma L, Stams AJM, de Vries SS, Weusthuis RA (1999) Utilisation of biomass for the supply of energy carriers. Appl Microbiol Biotechnol 52(1999):741–755

    Article  Google Scholar 

  • Clarkson K, Siika-aho M, Tenkanen M, Bower BS, Penttilä ME, Saloheimo MLA (2001) Trichoderma reesei xylanase. Patent WO 0149859

    Google Scholar 

  • Cleemput G, Hessing M, van Oort M, Deconynck M, Delcour JA (1997) Purification and characterization of a [beta]-d-xylosidase and an endo-xylanase from wheat flour. Plant Physiol 113(2):377–386

    Article  Google Scholar 

  • Collins T, Gerday C, Feller G (2005a) Xylanases, xylanases families and extremophilic xylanases. FEMS Microbiol Rev 29:3–23

    Article  Google Scholar 

  • Collins T, De Vos D, Hoyoux A, Savvides SN, Gerday C, Van Beeumen J, Feller G (2005b) Study of the active site residues of a glycoside hydrolase family 8 xylanase. J Mol Biol 354(2):425–435

    Article  Google Scholar 

  • Connerton I, Cummings N, Harris GW, Debeire P, Breton C (1999) A single domain thermophilic xylanase can bind insoluble xylan: evidence for surface aromatic clusters. Biochim Biophys Acta 1433:110–121

    Article  Google Scholar 

  • Copa-Patino JL, Broda YG, Broda P (1993) Production and initial characterization of the xylan-degrading system of Phanerochaete chrysosporium. Appl Microbiol Biotechnol 40:69–76

    Article  Google Scholar 

  • Coughlan MP, Hazlewood GP (1993) Beta-1,4-d-xylan-degrading enzyme-systems-biochemistry, molecular-biology and applications. Biotechnol Appl Biochem 4:259–289

    Google Scholar 

  • Couturier M, Haon M, Coutinho PM, Henrissat B, Lesage-Meessen L, Berrin JG (2010) Podospora anserina hemicellulases potentiate the Trichoderma reesei secretome for saccharification of lignocellulosic biomass. Appl Environ Microbiol 77:237–246

    Article  Google Scholar 

  • Crepin VF, Faulds CB, Connerton IF (2004) Functional classification of the microbial feruloyl esterases. Appl Microbiol Biotechnol 63:647–652

    Article  Google Scholar 

  • Croes E, Gebruers K, Carpentier S, Swennen R, Robben J, Laukens K, Witters E, Delcour JA, Courtin CM (2009) A quantitative portrait of three xylanase inhibiting protein families in different wheat cultivars using 2D-DIGE and multivariate statistical tools. J Proteomics 72(3):484–500

    Article  Google Scholar 

  • Csiszár E, Urbánszki K, Szakás G (2001) Biotreatment of desized cotton fabric by commercial cellulase and xylanase enzymes. J Mol Catal B Enzym 11:1065–1072

    Article  Google Scholar 

  • Damiano VB, Bocchini DA, Gomes E, Silva RD (2003) Application of crude xylanase from Bacillus licheniformis 77-2 to the bleaching of Eucalyptus kraft pulp. World J Microbiol Biotechnol 19:139–144

    Article  Google Scholar 

  • Dautova M, Roze E, Overmars H, de Graaff L, Schots A, Helder J, Goverse A, Bakker J, Smant G (2006) A symbiont-independent endo-1,4-beta-xylanase from the plant-parasitic nematode Meloidogyne incognita. Mol Plant Microbe Interact 19(5):521–529

    Google Scholar 

  • De Lemos Esteves F, Gouders T, Lamotte-Brasseur J, Rigali S, Frere JM (2005) Improving the alkalophilic performances of the Xyl1 xylanase from Streptomyces sp. S38: structural comparison and mutational analysis. Protein Sci 14(2):292–302

    Article  Google Scholar 

  • De Vos D, Collins T, Nerinckx W, Savvides SN, Claeyssens M, Gerday C, Feller G, Van Beeumen J (2006) Oligosaccharide binding in family 8 glycosidases: crystal structures of active-site mutants of the beta-1,4-xylanase pXyl from Pseudoaltermonas haloplanktis TAH3a in complex with substrate and product. Biochemistry 45(15):4797–4807

    Article  Google Scholar 

  • De Vries RP, Visser J, de Graaff LH (1999) CreA modulates the XlnR-induced expression on xylose of Aspergillus niger genes involved in xylan degradation. Res Microbiol 150(4):281–285

    Article  Google Scholar 

  • De Vries RP, Kester HC, Poulsen CH, Benen JA, Visser J (2000) Synergy between enzymes from Aspergillus involved in the degradation of plant cell wall polysaccharides. Carbohydr Res 327(4):401–410

    Article  Google Scholar 

  • Dean JFD, Gross KC, Anderson JD (1991) Ethylene biosynthesis-inducing xylanase. 3. Product characterization. Plant Physiol 96(2):571–576

    Article  Google Scholar 

  • Debyser W, Peumans WJ, Van Damme EJM, Delcour JA (1999) Triticum aestivum xylanase inhibitor (TAXI), a new class of enzyme inhibitor affecting breadmaking performance. J Cereal Sci 30(1):39–43

    Article  Google Scholar 

  • Debyser W, Derdelinckx G, Delcour JA (1997) Arabinoxylan solubilization and inhibition of the barley malt xylanolytic system by wheat during mashing with wheat whole meal adjunct: evidence for a new class of enzyme inhibitors in wheat. Am Soc Brew Chem 55:153–156

    Google Scholar 

  • Degefu Y, Lohtander K, Paulin L (2004) Expression patterns and phylogenetic analysis of two xylanase genes (htxyl1 and htxyl2) from Helminthosporium turcicum, the cause of northern leaf blight of maize. Biochimie 86(2):83–90

    Article  Google Scholar 

  • Dey D, Hinge J, Shendye A, Rao M (1992) Purification and properties of extracellular endoxylanases from alkalophilic thermophilic Bacillus sp. Can J Microbiol 38:436–442

    Article  Google Scholar 

  • Dheeran P, Nandhagopal N, Kumar S, Jaiswal YK, Adhikari DK (2012) A novel thermostable xylanase of Paenibacillus macerans IIPSP3 isolated from the termite gut. J Ind Microbiol Biotechnol 39(6):851–860

    Article  Google Scholar 

  • Dhillon A, Gupta JK, Khanna S (2000) Enhanced production, purification and characterisation of a novel cellulase-poor thermostable, alkalitolerant xylanase from Bacillus circulans AB 16. Process Biochem 35(8):849–856

    Article  Google Scholar 

  • Dhiman SS, Sharma J, Battan B (2008) Industrial applications and future prospects of microbial xylanases: a review. BioResources 3(4):1377–1402

    Google Scholar 

  • Dijkerman R, Ledeboer J, Op den Camp HJM, Prins RA, van der Drift C (1997) The anaerobic fungus Neocallimastix sp. strain L2: growth and production of (Hemi) cellulolytic enzymes on a range of carbohydrate substrates. Curr Microbiol 34(2):91–96

    Article  Google Scholar 

  • Dornez E, Croes E, Gebruers K, De Coninck B, Cammue BPA, Delcour JA, Courtin CM (2010a) Accumulated evidence substantiates a role for three classes of wheat xylanase inhibitors in plant defense. Crit Rev Plant Sci 29(4):244–264

    Article  Google Scholar 

  • Dornez E, Croes E, Gebruers K, Carpentier S, Swennen R, Laukens K, Witters E, Urban M, Delcour JA, Courtin CM (2010b) 2-D DIGE reveals changes in wheat xylanase inhibitor protein families due to Fusarium graminearum DeltaTri5 infection and grain development. Proteomics 10(12):2303–2319

    Article  Google Scholar 

  • Durand A, Hughes R, Roussel A, Flatman R, Henrissat B, Juge N (2005) Emergence of a subfamily of xylanase inhibitors within glycoside hydrolase family 18. FEBS J 272(7):1745–1755

    Article  Google Scholar 

  • Ebanks R, Dupont M, Shareck F, Morosoli R, Kluepfel D, Dupont C (2000) Development of an Escherichia coli expression system and thermostability screening assay for libraries of mutant xylanase. J Ind Microbiol Biotechnol 25(6):310–314

    Article  Google Scholar 

  • El Enshasy H, Hellmuth K, Rinas U (1999) Fungal morphology in submerged cultures and its relation to glucose oxidase excretion by recombinant Aspergillus niger. Appl Biochem Biotechnol 81:1–11

    Article  Google Scholar 

  • El Enshasy H, Kleine J, Rinas U (2006) Agitation effects on morphology and protein productive fractions of filamentous and pelleted growth forms of recombinant Aspergillus niger. Process Biochem 41:2103–2112

    Article  Google Scholar 

  • El Enshasy H (2007) Filamentous fungal culture—process characteristics, products, and applications. In: Yang ST (ed) Bioprocessing for value-added products from renewable resources. Elsevier Press, Amsterdam. ISBN-10: 0-444-52114-3

    Google Scholar 

  • Emami K, Hack E (2001) Characterisation of a xylanase gene from Cochliobolus sativus and its expression. Mycol Res 105:352–359

    Article  Google Scholar 

  • Esteban R, Villanueva JR, Villa TG (1982) β- d-xylanases of Bacillus circulans WL-12. Can J Microbiol 28:733–739

    Article  Google Scholar 

  • Fang HY, Chang SM, Lan CH, Fang TJ (2008) Purification and characterization of a xylanase from Aspergillus carneus M34 and its potential use in photoprotectant preparation. Process Biochem 43(1):49–55

    Article  Google Scholar 

  • Farliahati MR, Mohamad R, Puspaningsih NNT, Ariff AB (2009) Kinetics of xylanase fermentation by recombinant Escherichia coli DH5α in shake flask culture. Am J Biochem Biotechnol 5(3):110–118

    Article  Google Scholar 

  • Farliahati MR, Ramanan RN, Mohamad R, Puspaningsih NNTM, Ariff AB (2010) Enhanced production of xylanase by recombinant Escherichia coli DH5 alpha through optimization of medium composition using response surface methodology. Ann Microbiol 60(2):279–285

    Article  Google Scholar 

  • Fernández-Espinar M, Pinaga F, Degraaff L, Visser J, Ramon D, Valles S (1994) Purification, characterization and regulation of the synthesis of an Aspergillus nidulans acidic xylanase. Appl Microbiol Biotechnol 42(4):555–562

    Article  Google Scholar 

  • Fierens E, Gebruers K, Voet AR, De Maeyer M, Courtin CM, Delcour JA (2009) Biochemical and structural characterization of TLXI, the Triticum aestivum L. thaumatin-like xylanase inhibitor. J Enzyme Inhib Med Chem 24(3):646–654

    Article  Google Scholar 

  • Fierens E, Rombouts S, Gebruers K, Goesaert H, Brijs K, Beaugrand J, Volckaert G, Van Campenhout S, Proost P, Courtin CM, Delcour JA (2007) TLXI, a novel type of xylanase inhibitor from wheat (Triticum aestivum) belonging to the thaumatin family. Biochem J 403(3):583–591

    Article  Google Scholar 

  • Fierens K, Geudens N, Brijs K, Courtin CM, Gebruers K, Robben J, Van Campenhout S, Volckaert G, Delcour JA (2004) High-level expression, purification, and characterization of recombinant wheat xylanase inhibitor TAXI-I secreted by the yeast Pichia pastoris. Protein Expr Purif 37(1):39–46

    Article  Google Scholar 

  • Flatman R, McLauchlan WR, Juge N, Furniss C, Berrin JG, Hughes RK, Manzanares P, Ladbury JE, O’Brien R, Williamson G (2002) Interactions defining the specificity between fungal xylanases and the xylanase-inhibiting protein XIP-I from wheat. Biochem J 365(Pt 3):773–781

    Article  Google Scholar 

  • Frederix SA, Courtin CM, Delcour JA (2004) Substrate selectivity and inhibitor sensitivity affect xylanase functionality in wheat flour gluten–starch separation. J Cer Sci 40:41–49

    Article  Google Scholar 

  • Fushinobu S, Ito K, Konno M, Wakagi T, Matsuzawa H (1998) Crystallographic and mutational analyses of an extremely acidophilic and acid-stable xylanase: biased distribution of acidic residues and importance of Asp37 for catalysis at low pH. Protein Eng 11(12):1121–1128

    Article  Google Scholar 

  • Gao J, Zhang HJ, Yu SH, Wu SG, Yoon I, Quigley J, Gao YP, Qi GH (2008) Effects of yeast culture in broiler diets on performance and immunomodulatory functions. Poult Sci 87:1377–1384

    Article  Google Scholar 

  • Garai D, Kumar V (2012) Response surface optimization for xylanase with high volumetric productivity by indigenous alkali tolerant Aspergillus candidus under submerged cultivation. Biotechnology 3:127–136

    Google Scholar 

  • Garg AP, Roberts JC, McCarthy AJ (1998) Bleach boosting effect of cellulase-free xylanase of Streptomyces thermoviolaceus and its comparison with two commercial enzyme preparations on Birchwood kraft pulp. Enzyme Microb Technol 22:594–598

    Article  Google Scholar 

  • Gebruers K, Brijs K, Courtin CM, Fierens K, Goesaert H, Raedschelders G, Robben J, Sorensen JF, Van Campenhout S, Delcour JA (2004) Properties of TAXI-type endoxylanase inhibitors. Biochim Biophys Acta 1696:213–221

    Article  Google Scholar 

  • Gebruers K, Beaugrand J, Croes E, Dornez E, Courtin CM, Delcour JA (2008) Quantification of wheat TAXI and XIP type xylanase inhibitors: a comparison of analytical techniques. Cer Chem 85(5):586–590

    Article  Google Scholar 

  • Georlette D, Blaise V, Collins T, D’Amico S (2004) Some like it cold: biocatalysis at low temperatures. FEMS Microbiol Rev 28:25–42

    Article  Google Scholar 

  • Gessesse A, Mamo G (1998) Purification and characterization of an alkaline xylanase from alkaliphilic Micrococcus sp AR-135. J Ind Microbiol Biotechnol 20(3–4):210–214

    Article  Google Scholar 

  • Ghosh M, Nanda G (1994) Purification and some properties of a xylanase from Aspergillus sydowii MG49. Appl Environ Microbiol 60(12):4620–4623

    Google Scholar 

  • Goesaert H, Gebruers K, Courtin CM, Delcour JA (2005) Purification and characterization of a XIP-type endoxylanase inhibitor from rice (Oryza sativa). J Enz Inhib 20:95–101

    Article  Google Scholar 

  • Georis J, Giannotta F, De Buyl E, Granier B, Frère J (2000) Purification and properties of three endo-β-1,4-xylanases produced by Streptomyces sp. strain S38 which differ in their ability to enhance the bleaching of kraft pulps. Enzyme Microb Technol 26:178–186

    Article  Google Scholar 

  • Gomes DJ, Gomes J, Steiner W (1994) Factors influencing the induction of endo-xylanase by Thermoascus aurantiacus. J Biotechnol 33(1):87–94

    Article  Google Scholar 

  • Gomez LD, Steele-King CG, McQueen-Mason SJ (2008) Sustainable liquid biofuels from biomass: the writing’s on the walls. New Phytol 178(3):473–485

    Article  Google Scholar 

  • Gruber K, Klintschar G, Hayn M, Schlacher V, Steiner W, Kratky C (1998) Thermophilic xylanase from Thermomyces lanuginosus: high-resolution X-ray structure and modeling studies. Biochemistry 37(39):13475–13485

    Article  Google Scholar 

  • Guo B, Chen XL, Sun CY, Zhou BC, Zhang YZ (2009) Gene cloning, expression and characterization of a new cold-active and salt-tolerant endo-beta-1,4-xylanase from marine Glaciecola mesophila KMM 241. Appl Microbiol Biotechnol 84(6):1107–1115

    Article  Google Scholar 

  • Gupta S, Bhushan B, Hoondal GS (2000) Isolation, purification and characterization of xylanase from Staphylococcus sp. SG-13 and its application in biobleaching of kraft pulp. J Appl Microbiol 88:325–334

    Article  Google Scholar 

  • Gupta U, Kar R (2009) Xylanase production by a thermos-tolerant Bacillus species under solid-state and submerged fermentation. Braz Arch Biol Technol 52:1363–1371

    Article  Google Scholar 

  • Hakulinen N, Tenkanen M, Rouvinen J (1998) Crystallization and preliminary X-ray diffraction studies of the catalytic core of acetyl xylan esterase from Trichoderma reesei. Acta Crystallogr D Biol Crystallogr 54(Pt 3):430–443

    Article  Google Scholar 

  • Henrissat B, Bairoch A (1993) New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 293(3):781–788

    Article  Google Scholar 

  • Hessing JGM, van Rotterdam C, Verbakel JMA, Roza M, Maat J, van Gorcom RFM, van den Hondel CAMJJ (1994) Isolation and characterization of a 1,4-b-endoxylanase gene of A. awamori. Curr Genet 26:228–232

    Article  Google Scholar 

  • Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813):804–807

    Article  Google Scholar 

  • Honda Y and Kitaoka M (2004) A family 8 glycoside hydrolase from Bacillus halodurans C-125 (BH2105) is a reducing end xylose-releasing exo-oligoxylanase. J Biol Chem 279:55097–55103

    Google Scholar 

  • Hu YJ, Smith DC, Cheng KJ, Foresberg CW (1991) Cloning of a xylanase gene from Fibrobacter succinogenes 135 and its expression in Escherichia coli. Can J Microbiol 37(7):554–561

    Article  Google Scholar 

  • Huang J, Wang G, Xiao L (2006) Cloning, sequencing and expression of the xylanase gene from a Bacillus subtilis strain B10 in Escherichia coli, Bioresour Technol 97:802–808

    Google Scholar 

  • Humphry DR, GeorgeA Black GW, Cummings SP (2001) Flavobacterium frigidarium sp. an aerobic, psychrophilic, xylanolytic and laminarinolytic bacterium from Antarctica. Int J Syst Evol Microbiol 51:1235–1243

    Article  Google Scholar 

  • Hung KS, Liu SM, Fang TY, Tzou WS, Lin FP, Sun KH, Tang SJ (2011) Characterization of a salt-tolerant xylanase from Thermoanaerobacterium saccharolyticum NTOU1. Biotechnol Lett 33(7):1441–1447

    Article  Google Scholar 

  • Igawa T, Tokai T, Kudo T, Yamaguchi I, Kimura M (2005) A wheat xylanase inhibitor gene, Xip-I, but not Taxi-I, is significantly induced by biotic and abiotic signals that trigger plant defense. Biosci Biotechnol Biochem 69(5):1058–1063

    Article  Google Scholar 

  • Ingelbrecht JA, Moers K, Abecassis J, Rouau X, Delcour JA (2001) Influence of arabinoxylans and endoxylanases on pasta processing and quality. Production of high-quality pasta with increased levels of soluble fiber. Cereal Chem 78:721–729

    Article  Google Scholar 

  • Ito K, Ikemasu T, Ishikawa T (1992) Cloning and sequencing of the xynA gene encoding xylanase A of Aspergillus kawachii. Biosci Biotechnol Biochem 56(6):906–912

    Article  Google Scholar 

  • Jeong MY, Kim S, Yun CW, Choi YJ, Cho SG (2007) Engineering a de novo internal disulfide bridge to improve the thermal stability of xylanase from Bacillus stearothermophilus No. 236. J Biotechnol 127(2):300–309

    Article  Google Scholar 

  • Joo JC, Pack SP, Kim YH, Yoo YJ (2011) Thermostabilization of Bacillus circulans xylanase: computational optimization of unstable residues based on thermal fluctuation analysis. J Biotechnol 151(1):56–65

    Article  Google Scholar 

  • Joshi MD, Hedberg A, McIntosh LP (1997) Complete measurement of the pKa values of the carboxyl and imidazole groups in Bacillus circulans xylanase. Protein Sci 6(12):2667–2670

    Article  Google Scholar 

  • Jun H, Bing Y, Zhang K, Ding X, Daiwen C (2008) Expression of a Trichoderma reesei Β-xylanase gene in Escherichia coli and activity of the enzyme on fiber-bound substrates. Protein Expr Purif 67:1–6

    Article  Google Scholar 

  • Kapoor M, Nair LM, Kuhad RC (2008) Cost-effective xylanase production from free and immobilized Bacillus pumilus strain MK001 and its application in saccharification of Prosopis juliflora. Biochem Eng J 38:88–97

    Article  Google Scholar 

  • Karlsson EN, BartonekRoxa E, Holst O (1997) Cloning and sequence of a thermostable multidomain xylanase from the bacterium Rhodothermus marinus. Biophys Acta Gene Struct Expr 1353(2):118–124

    Article  Google Scholar 

  • Karlsson EN, Bartonek Roxa E, Holst O (1998) Evidence for substrate binding of a recombinant thermostable xylanase originating from Rhodothermus marinus. FEMS Microbiol Lett 168(1):1–7

    Article  Google Scholar 

  • Karlsson EN, Holst O, Tocaj A (1999) Efficient production of truncated thermostable xylanases from Rhodothermus marinus in Escherichia coli fed-batch cultures. J Biosci Bioeng 87:598–606

    Google Scholar 

  • Katapodis P, Christakopoulos P (2008) Enzymatic production of feruloyl xylo-oligosaccharides from corn cobs by a family 10 xylanase from Thermoascus aurantiacus. LWT Food Sci Technol 41(7):1239–1243

    Article  Google Scholar 

  • Khandeparkar R, Bhosle NB (2006) Purification and characterization of thermoalkalophilic xylanase isolated from the Enterobacter sp. MTCC 5112. Res Microbiol 157(4):315–325

    Article  Google Scholar 

  • Khasin A, Alchanati I, Shoham Y (1993) Purification and characterization of a thermostable xylanase from Bacillus stearothermophilus T-6. Appl Environ Microbiol 59(6):1725–1730

    Google Scholar 

  • Kimura T, Kitamoto N, Kito Y, Karita S, Sakka K, Ohmiya K (1998) Molecular cloning of xylanase gene xynG1 from Aspergillus oryzae KBN 616, a shoyu koji mold, and analysis of its expression. J Ferm Bioeng 85(1):10–16

    Article  Google Scholar 

  • Kimura T, Ito J, Kawano A, Makino T, Kondo H, Karita S, Sakka K, Ohmiya K (2000) Purification, characterization, and molecular cloning of acidophilic xylanase from Penicillium sp. 40. Biosci Biotechnol Biochem 64(6):1230–1237

    Article  Google Scholar 

  • Kitamoto N, Yoshino S, Ohmiya K, Tsukagoshi N (1999) Purification and characterization of the over expressed Aspergillus oryzae xylanase, XynF1. Biosci Biotechnol Biochem 63(10):1791–1794

    Article  Google Scholar 

  • Ko EP, Akatsuka H, Moriyama H, Shinmyo A, Hata Y, Katsube Y, Urabe I, Okada H (1992) Site-directed mutagenesis at aspartate and glutamate residues of xylanase from Bacillus pumilus. Biochem J 288(Pt 1):117–121

    Article  Google Scholar 

  • Ko CH, Tsai CH, Tu J, Yang BY, Hsieh DL, Jane WN, Shih TL (2011) Identification of Paenibacillus sp. 2S-6 and application of its xylanase on biobleaching. Int Biodeterior Biodegrad 65:334–339

    Article  Google Scholar 

  • Kohli U, Nigam P, Singh D, Chaudhary K (2001) Thermostable, alkalophilic and cellulase free xylanase production by Thermoactinomyces thalophilus subgroup C. Enzyme Microb Technol 28(7–8):606–610

    Article  Google Scholar 

  • Kolenova K, Vrsanska M, Biely P (2006) Mode of action of endo-beta-1,4-xylanases of families 10 and 11 on acidic xylooligosaccharides. J Biotechnol 121:338–345

    Article  Google Scholar 

  • Kormelink FJ, Gruppen H, Vietor RJ, Voragen AG (1993) Mode of action of the xylan-degrading enzymes from Aspergillus awamori on alkali-extractable cereal arabinoxylans. Carbohydr Res 249(2):355–367

    Article  Google Scholar 

  • Krengel U, Dijkstra BW (1996) Three-dimensional structure of Endo-1,4-beta-xylanase I from Aspergillus niger: molecular basis for its low pH optimum. J Mol Biol 263(1):70–78

    Article  Google Scholar 

  • Kudo T, Ohkoshi A, Horikoshi K (1985) Molecular cloning and expression of a xylanase gene of alkalophilic Aeromonas sp. no. 212 in Escherichia coli. J Gen Microbiol 131(10):2825–2830

    Google Scholar 

  • Kui H, Luo H, Shi P, Bai Y, Yuan T, Wang Y, Yang P, Dong S, Yao B (2010) Gene cloning, expression, and characterization of a thermostable xylanase from Nesterenkonia xinjiangensis CCTCC AA001025. Appl Biochem Biotechnol 162(4):953–965

    Article  Google Scholar 

  • Kulkarni N, Lakshmikumaran M, Rao M (1999) Xylanase II from an alkaliphilic thermophilic Bacillus with a distinctly different structure from other xylanases: evolutionary relationship to alkaliphilic xylanases. Biochem Biophys Res Commun 263(3):640–645

    Article  Google Scholar 

  • Kumar KS, Manimaran A, Permaul K, Singh S (2009) Production of β-xylanase by a Thermomyces lanuginosus MC 134 mutant on corn cobs and its application in biobleaching of bagasse pulp. J Biosci Bioeng 107(5):494–498

    Article  Google Scholar 

  • Kumar PR, Eswaramoorthy S, Vithayathil PJ, Viswamitra MA (2000) The tertiary structure at 1.59 Å resolution and the proposed amino acid sequence of a family-11 xylanase from the thermophilic fungus Paecilomyces varioti Bainier. J Mol Biol 295(3):581–593

    Article  Google Scholar 

  • Kumar V, Satyanarayana T (2011) Applicability of thermo-alkali-stable and cellulase-free xylanase from a novel thermo-halo-alkaliphilic Bacillus haloduransin producing xylooligosaccharides. Biotechnol Lett 33:2279–2285

    Article  Google Scholar 

  • La Grange DC, Claeyssens M, Pretorius IS, Van Zyl WH (2000) Coexpression of the Bacillus pumilus beta-xylosidase (xynB) gene with the Trichoderma reesei beta xylanase 2 (xyn2) gene in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 54(2):195–200

    Article  Google Scholar 

  • Lagaert S, Van Campenhout S, Pollet A, Bourgois TM, Delcour JA, Courtin CM, Volckaert G (2007) Recombinant expression and characterization of a reducing-end xylose-releasing exo-oligoxylanase from Bifidobacterium adolescentis. Appl Environ Microbiol 73:5374–5377

    Article  Google Scholar 

  • Lama L, Calandrelli V, Gambacorta A, Nicolaus B (2004) Purification and characterization of thermostable xylanase and beta-xylosidase by the thermophilic bacterium Bacillus thermantarcticus. Res Microbiol 155(4):283–289

    Article  Google Scholar 

  • Lamed R, Setter E, Bayer EA (1983) Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum. J Bacteriol 156(2):828–836

    Google Scholar 

  • Lappalainen A, Siika-aho M, Kalkkinen N, Fagerstrom R, Tenkanen M (2000) Endoxylanase II from Trichoderma reesei has several isoforms with different isoelectric points. Biotechnol Appl Biochem 31:61e68

    Google Scholar 

  • Larson SB, Day J, Barba de la Rosa AP, Keen NT, McPherson A (2003) First crystallographic structure of a xylanase from glycoside hydrolase family 5: implications for catalysis. Biochemistry 42(28):8411–8422

    Article  Google Scholar 

  • Lee J (1997) Biological conversion of lignocellulosic biomass to ethanol. J Biotechnol 56(1):1–24

    Article  Google Scholar 

  • Lee JM, Hu Y, Zhu H, Cheng KJ, Krell PJ, Forsberg CW (1993) Cloning of a xylanase gene from the ruminal fungus Neocallimastix patriciarum 27 and its expression in Escherichia coli. Can J Microbiol 39(1):134–139

    Article  Google Scholar 

  • Lee TH, Lim PO, Lee YE (2007) Cloning, characterization, and expression of xylanase A gene from Paenibacillus sp. DG-22 in Escherichia coli. J Microbiol Biotechnol 17(1):29–36

    MathSciNet  Google Scholar 

  • Levasseur A, Asther M, Record E (2005) Overproduction and characterization of xylanase B from Aspergillus niger. Can J Microbiol 51(2):177–183

    Article  Google Scholar 

  • Li XL, Ljungdahl LG (1996) Expression of Aureobasidium pullulans xynA in, and secretion of the xylanase from Saccharomyces cerevisiae. Appl Environ Microbiol 62(1):209–213

    Article  Google Scholar 

  • Li JH, Wang LS (2011) Why substituting the asparagine at position 35 in Bacillus circulans xylanase with an aspartic acid remarkably improves the enzymatic catalytic activity? A quantum chemistry-based calculation study. Polym Degrad Stab 96(5):1009–1014

    Article  Google Scholar 

  • Li C, Knierim B, Manisseri C, Arora R, Scheller HV, Auer M, Vogel KP, Simmons BA, Singh S (2010) Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresour Technol 101(13):4900–4906

    Article  Google Scholar 

  • Li XL, Skory CD, Ximenes EA, Jordan DB, Dien BS, Hughes SR, Cotta MA (2007) Expression of an AT-rich xylanase gene from the anaerobic fungus Orpinomyces sp. strain PC-2 in and secretion of the heterologous enzyme by Hypocrea jecorina. Appl Microbiol Biotechnol 74:1264–1275

    Google Scholar 

  • Liu JR, Duan CH, Zhao X, Tzen JT, Cheng KJ, Pai CK (2008) Cloning of a rumen fungal xylanase gene and purification of the recombinant enzyme via artificial oil bodies. Appl Microbiol Biotechnol 79(2):225–233

    Article  Google Scholar 

  • Liu MQ, Weng XY, Sun JY (2006) Expression of recombinant Aspergillus niger xylanase A in Pichia pastoris and its action on xylan. Protein Expr Purif 48(2):292–299

    Article  Google Scholar 

  • Lo YC, Lu WC, Chen CY, Chen WM, Chang JS (2010) Characterization and high-level production of xylanase from an indigenous cellulolytic bacterium Acinetobacter junii F6-02 from southern Taiwan soil. Biochem Eng J 53(1):77–84

    Article  Google Scholar 

  • Lundgren KR, Bergkvist L, Hogman S, Joves H, Eriksson G, Bartfai T, Vanderlaan J, Rosenberg E, Shoham Y (1994) TCF mill trial on softwood pulp with korsnas thermostable and alkaline stable xylanase T6. Fems Microbiology Reviews 13(2–3):365–368

    Google Scholar 

  • Luthi E, Love DR, McAnulty J, Wallace C, Caughey PA, Saul D, Bergquist PL (1990) Cloning, sequence analysis, and expression of genes encoding xylan-degrading enzymes from the thermophile Caldocellum saccharolyticum. Appl Environ Microbiol 56(4):1017–1024

    Google Scholar 

  • Lynd LR, Cushman JH, Nichols RJ, Wyman CE (1991) Fuel ethanol from cellulosic biomass. Science 251(4999):1318–1323

    Article  Google Scholar 

  • Mach-Aigner A, Pucher ME, Mach RL (2010) d-Xylose as a repressor or inducer of xylanase expression in Hypocrea jecorina (Trichoderma reesei). Appl Environ Microbiol 76:1770–1776

    Article  Google Scholar 

  • Mamo G, Hatti-Kaul R, Mattiasson B (2006) A thermostable alkaline active endo-b-1-4-xylanase from Bacillus halodurans S7: Purification and characterization. Enzyme Microb Technol 39:1492–1498

    Article  Google Scholar 

  • Mamo G, Hatti-Kaul R, Mattiasson B (2007) Fusion of carbohydrate binding modules from Thermotoga neapolitana with a family 10 xylanase from Bacillus halodurans S7. Extremophiles 11:169–177

    Article  Google Scholar 

  • Mannarelli BM, Evans S, Lee D (1990) Cloning, sequencing, and expression of a xylanase gene from the anaerobic ruminal bacterium Butyrivibrio fibrisolvens. J Bacteriol 172(8):4247–4254

    Google Scholar 

  • Margeot A, Hahn-Hagerdal B, Edlund M, Slade R, Monot F (2009) New improvements for lignocellulosic ethanol. Curr Opin Biotechnol 20:372–380

    Article  Google Scholar 

  • Marrone L, McAllister KA, Clarke AJ (2000) Characterization of function and activity of domains A, B and C of xylanase C from Fibrobacter succinogenes S85. Protein Eng 13(8):593–601

    Article  Google Scholar 

  • McCarthy AA, Morris DD, Bergquist PL, Baker EN (2000) Structure of XynB, a highly thermostable beta 1,4-xylanase from Dictyoglomus thermophilum Rt46B.1, at 1.8 Å resolution. Acta Crystallogr D56:1367–1375

    Google Scholar 

  • Mirande C, Mosoni P, Bera-Maillet C, Bernalier-Donadille A, Forano E (2010) Characterization of Xyn10A, a highly active xylanase from the human gut bacterium Bacteroides xylanisolvens XB1A. Appl Microbiol Biotechnol 87(6):2097–2105

    Article  Google Scholar 

  • Moreau A, Durand S, Morosoli R (1992) Secretion of a Cryptococcus albidus xylanase in Saccharomyces cerevisiae. Gene 116(1):109–113

    Article  Google Scholar 

  • Morris DD, Gibbs MD, Bergquist PL (1996) Cloning of a family G xylanase gene (XYNB) from the extremely thermophilic bacterium Dictyoglomus thermophilum and action of the gene product on kraft pulp. Am Chem Soc 211:234

    Google Scholar 

  • Muilu J, Torronen A, Perakyla M, Rouvinen J (1998) Functional conformational changes of endo-1,4-xylanase II from Trichoderma reesei: a molecular dynamics study. Proteins 31:434–444

    Article  Google Scholar 

  • Mullai P, Fathima NSA, Rene ER (2010) Statistical analysis of main and interaction effects to optimize xylanase production under submerged cultivation conditions. J Agric Sci 2(1):144–153

    Google Scholar 

  • Nakamura S, Wakabayashi K, Nakai R, Aono R, Horikoshi K (1993) Production of alkaline xylanase by a newly isolated alkaliphilic Bacillus sp strain 41 m-1. World J Microbiol Biotechnol 9(2):221–224

    Article  Google Scholar 

  • Narang S, Satyanarayana T (2001) Thermostable alpha-amylase production by an extreme thermophile Bacillus thermooleovorans. Lett Appl Microbiol 32:31–35

    Article  Google Scholar 

  • Nascimento RP, Coelho RRR, Marques S, Alves L, Girio FM, Bon EPS, Amaral-Collaco MT (2002) Production and partial characterisation of xylanase from Streptomyces sp strain AMT-3 isolated from Brazilian cerrado soil. Enzyme Microb Technol 31(4):549–555

    Article  Google Scholar 

  • Natesh R, Bhanumoorthy P, Vithayathil PJ, Sekar K, Ramakumar S, Viswamitra MA (1999) Crystal structure at 1.8 angstrom resolution and proposed amino acid sequence of a thermostable xylanase from Thermoascus aurantiacus. J Mol Biol 288(5):999–1012

    Article  Google Scholar 

  • Ogasawara W, Shida Y, Furukawa T, Shimada R, Nakagawa S, Kawamura M, Yagyu T, Kosuge A, Xu J, Nogawa M, Okada H, Morikawa Y (2006) Cloning, functional expression and promoter analysis of xylanase III gene from Trichoderma reesei. Appl Microbiol Biotechnol 72(5):995–1003

    Article  Google Scholar 

  • Ohta K, Moriyama S, Tanaka H, Shige T, Akimoto H (2001) Purification and characterization of an acidophilic xylanase from Aureobasidium pullulans var. melanigenum and sequence analysis of the encoding gene. J Biosci Bioeng 92(3):262–270

    Article  Google Scholar 

  • Okeke BC, Obi SKC (1994) Lignocellulose and sugar compositions of some agro-waste materials. Bioresour Technol 47(3):283–284

    Article  Google Scholar 

  • Olfa E, Mondher M, Issam S, Ferid L, Nejib NM (2007) Induction, properties and application of xylanase activity from Sclerotinia sclerotiorum S2 fungus. J Food Chem 31:96–107

    Google Scholar 

  • Paës G, Berrin J-G, Beaugrand J (2012) GH11 xylanases: structure/function/properties relationships and applications. Biotechnol Adv 30:564–592

    Article  Google Scholar 

  • Paës G, O’Donohue MJJ (2006) Engineering increased thermostability in the thermostable GH-11 xylanase from Thermobacillus xylanilyticus. J Biotechnol 125:338–350

    Article  Google Scholar 

  • Payan F, Leone P, Porciero S, Furniss C, Tahir T, Williamson G, Durand A, Manzanares P, Gilbert HJ, Juge N, Roussel A (2004) The dual nature of the wheat xylanase protein inhibitor XIP-I: structural basis for the inhibition of family 10 and family 11 xylanases. J Biol Chem 279(34):36029–36037

    Article  Google Scholar 

  • Payan F, Flatman R, Porciero S, Williamson G, Juge N, Roussel A (2003) Structural analysis of xylanase inhibitor protein I (XIP-I), a proteinaceous xylanase inhibitor from wheat (Triticum aestivum var soisson). Biochem J 372(Pt 2):399–405

    Article  Google Scholar 

  • Petrescu I, Lamotte-Brasseur J, Chessa JP, Ntarima P, Claeyssens M, Devreese B, Marino G, Gerday C (2000) Xylanase from the psychrophilic yeast Cryptococcus adeliae. Extremophiles 4(3):137–144

    Article  Google Scholar 

  • Pokhrel S, Joo JC, Yoo YJ (2013) Shifting the optimum pH of Bacillus circuulans xylanase towards acidic side by introducing arginine. Biotechnol Bioprocess Eng 18:35–42

    Article  Google Scholar 

  • Polizeli MLTM, Rizzatti ACS, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67:577–591

    Article  Google Scholar 

  • Pollet A, Schoepe J, Dornez E, Strelkov SV, Delcour JA, Courtin CM (2010) Functional analysis of glycosidehydrolase family 8 xylanases shows narrow but distinct substrate specificities and biotechnological potential. Appl Microbiol Biotechnol 87:2125–2135

    Article  Google Scholar 

  • Prade RA (1996) Xylanases: from biology to biotechnology. Biotechnol Genet Eng Rev 13(1):101–132

    Article  Google Scholar 

  • Puchkaev AV, Koo LS, Ortiz de Montellano PR (2003) Aromatic stacking as a determinant of the thermal stability of CYP119 from Sulfolobus solfataricus. Arch Biochem Biophys 409:52–58

    Article  Google Scholar 

  • Puls J, Tenkanen M, Korte HE, Poutanen K (1991) Products of hydrolysis of beechwood acetyl-4-O-methylglucuronoxylan by a xylanase and an acetyl xylan esterase. Enzyme Microb Technol 13(6):483–486

    Article  Google Scholar 

  • Qureshy AF, Khan LA, Khanna S (2002) Cloning, regulation and purification of cellulase-free xylanase from Bacillus circulans Teri-42. Ind J Microbiol 42:35–41

    Google Scholar 

  • Raedschelders G, Debefve C, Goesaert H, Delcour JA, Volckaert G, Van Campenhout S (2004) Molecular identification and chromosomal localization of genes encoding Triticum aestivum xylanase inhibitor I-like proteins in cereals. Theor Appl Genet 109(1):112–121

    Article  Google Scholar 

  • Ratto M, Poutanen K, Viikari L (1992) Production of xylanolytic enzymes by an alkalitolernt Bacillus circulans stain. Appl Microbiol Biotechnol 37:470–473

    Article  Google Scholar 

  • Rizzatti ACS, Jorge JA, Terenzi HF, Rechia CGV, Polizeli MLTM (2001) Purification and properties of a thermostable extracellular β-xylosidase produced by a thermotolerant Aspergillus phoenicis. J Ind Microbiol Biotechnol 26:156–160

    Article  Google Scholar 

  • Rose SH, van Zyl WH (2002) Constitutive expression of the Trichoderma reesei beta-1,4-xylanase gene (xyn2) and the beta-1,4-endoglucanase gene (egl) in Aspergillus niger in molasses and defined glucose media. Appl Microbiol Biotechnol 58(4):461–468

    Article  Google Scholar 

  • Rouau X (1993) Investigations into the effects of an enzyme preparation for baking on what flour dough pentosans. J Cereal Sic 18:145–157

    Article  Google Scholar 

  • Rouau X, Daviet S, Tahir T, Cherel B, Saulnier L (2006) Effect of the proteinaceous wheat xylanase inhibitor XIP-I on the performances of an Aspergillus niger xylanase in bread making. J Sci Food Agric 86(11):1604–1609

    Article  Google Scholar 

  • Ruanglek V, Sriprang R, Ratanaphan N, Tirawongsaroj P, Chantasigh D, Tanapongpipat S, Pootanakit K, Eurwilaichitr L (2007) Cloning, expression, characterization, and high cell-density production of recombinant endo-1,4-beta-xylanase from Aspergillus niger in Pichia pastoris. Enzyme Microb Technol 41(1–2):19–25

    Article  Google Scholar 

  • Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30(5):279–291

    Article  Google Scholar 

  • Sakka K, Maeda Y, Hakamada Y, Takahashi N, Shimada K (1991) Purification and some properties of xylanase from Clostridium stercorarium strain Hx-1. Agric Biol Chem 55(1):247–248

    Google Scholar 

  • Salles BC, Cunha RB, Fontes W, Sousa MV, Filho EXF (2000) Purification and characterization of a new xylanase from Acrophialophora nainiana. J Biotechnol 81(2–3):199–204

    Article  Google Scholar 

  • Salles BC, Te’o VS, Gibbs MD, Bergquist PL, Filho EX, Ximenes EA, Nevalainen KM (2007) Identification of two novel xylanase-encoding genes (xyn5 and xyn6) from Acrophialophora nainiana and heterologous expression of xyn6 in Trichoderma reesei. Biotechnol Lett 29(8):1195–1201

    Article  Google Scholar 

  • Sanghi A, Garg N, Kuhar K, Kuhad RC, Gupta VK (2009) Enhanced production of cellulase-free xylanase by alkalophilic Bacillus subtilis ASH and its application in biobleaching of kraft pulp. BioResources 4:1109–1129

    Google Scholar 

  • Sandhu JS, Kennedy JF (1984) Molecular cloning of Bacillus polymyxa (1–4)-P-D-xylanase gene in Escherichia coli. Enzyme Microb Technol 6:271–274

    Google Scholar 

  • Sapre MP, Jha H, Patil MB (2005) Purification and characterization of a thermoalkalophilic xylanase from Bacillus sp. World J Microbiol Biotechnol 21(5):649–654

    Article  Google Scholar 

  • Schlacher A, Holzmann K, Hayn M, Steiner W, Schwab H (1996) Cloning and characterization of the gene for the thermostable xylanase XynA from Thermomyces lanuginosus. J Biotechnol 49(1–3):211–218

    Article  Google Scholar 

  • Schulze E (1891) Amphibia Europaea, annual report and treatises society of natural scientists in Magdeburg 1890:163–178

    Google Scholar 

  • Shallom D, Shoham Y (2003) Microbial hemicellulases. Curr Opin Microbiol 6(3):219–228

    Article  Google Scholar 

  • Shao W, Wiegel J (1995) Purification and characterization of two thermostable acetyl xylan esterases from Thermoanaerobacterium sp. strain JW/SL-YS485. Appl Environ Microbiol 61(2):729–733

    Google Scholar 

  • Sharma A, Adahikari S, Styanarayana T (2007) Alkali-thermostable and cellulase-free xylanase production by an extreme thermophile Geobacillus thermoleovorans. World J Microbiol Biotechnol 23:483–490

    Article  Google Scholar 

  • Shatalov AA, Pereira AA (2007) Xylanase pre-treatment of giant reed organosolv pulps: direct bleaching effect and bleach boosting. Ind Crops Prod 25:248–256

    Article  Google Scholar 

  • Shibuya H, Kaneko S, Hayanshi K (2000) Enhancement of thermostability and hydrolytic activity of xylananse by random gene shuffling. Biochem J 349:651–656

    Article  Google Scholar 

  • Shrinivas D, Savitha G, Raviranjan K, Naik GR (2010) A highly thermostable alkaline cellulase-free xylanase from thermoalkalophilic Bacillus sp. JB 99 suitable for paper and pulp industry: purification and characterization. Appl Biochem Biotechnol 162(7):2049–2057

    Article  Google Scholar 

  • Sidhu G, Withers SG, Nguyen NT, McIntosh LP, Ziser L, Brayer GD (1999) Sugar ring distortion in the glycosyl-enzyme intermediate of a family G/11 xylanase. Biochemistry 38(17):5346–5354

    Article  Google Scholar 

  • Silva CHC, Puls J, de Sousa MV, Ferreira EX (1999) Purification and characterization of a low molecular weight xylanase from solid-state cultures of Aspergillus fumigatus Fresenius. Rev Microbiol 30(2):114–119

    Article  Google Scholar 

  • Simpson HD, Haufler UR, Daniel RM (1991) An extremely thermostable xylanase from the thermophilic bacterium Thermotoga. Biochem J 277(2):413–417

    Google Scholar 

  • Simpson PJ, Bolam DN, Cooper A, Ciruela A, Hazlewood GP, Gilbert HJ, Williamson MP (1999) A family IIb xylan-binding domain has a similar secondary structure to a homologous family IIa cellulose-binding domain but different ligand specificity. Structure 7(1999):853–864

    Article  Google Scholar 

  • Singh S, Pillay B, Dilsook V, Prior BA (2000) Production and properties of hemicellulases by a Thermomyces lanuginosus strain. J Appl Microbiol 88:975–982

    Article  Google Scholar 

  • Sorensen JF, Sibbesen O (2006) Mapping of residues involved in the interaction between the Bacillus subtilis xylanase A and proteinaceous wheat xylanase inhibitors. Protein Eng Des Sel 19(5):205–210

    Article  Google Scholar 

  • Sriprang R, Asano K, Gobsuk J, Tanapongpipat S, Champreda V, Eurwilaichitr L (2006) Improvement of thermostability of fungal xylanase by using site-directed mutagenesis. J Biotechnol 126(4):454–462

    Article  Google Scholar 

  • Srivastava R, Srivastava AK (1993) Characterization of a bacterial xylanase resistant to repression by glucose and xylose. Biotechnol Lett 15(8):847–852

    Article  Google Scholar 

  • Sriyapai T, Somyoonsap P, Matsui K, Kawai F, Chansiri K (2011) Cloning of a thermostable xylanase from Actinomadura sp. S14 and its expression in Escherichia coli and Pichia pastoris. J Biosci Bioeng 111(5):528–536

    Article  Google Scholar 

  • St John FJ, Godwin DK, Preston JF, Pozharski E, Hurlbert JC (2009) Crystallization and crystallographic analysis of Bacillus subtilis xylanase C. Acta Crystallogr Sect F Struct Biol Crystallogr Commun 65(Pt 5):499–503

    Article  Google Scholar 

  • Strauss J, Mach RL, Zeilinger S, Hartler G, Stoffler G, Wolschek M, Kubicek CP (1995) Cre1, the carbon catabolite repressor protein from Trichoderma reesei. FEBS Lett 376:103–107

    Article  Google Scholar 

  • Stephens DE, Singh S, Permaul K (2009) Error-prone PCR of a fungal xylanase for improvement of its alkaline and thermal stability. FEMS Microbiol Lett 293(1):42–47

    Article  Google Scholar 

  • Subramaniyan S (2000) Studies on the production of bacterial xylanases. Ph.D. Thesis, Cochin University of Science and Technology, India

    Google Scholar 

  • Subramaniyan S, Prema P (2002) Biotechnology of microbial xylanases: enzymology, molecular biology and application. Crit Rev Biotechnol 22:33–46

    Article  Google Scholar 

  • Sun JY, Liu MQ, Weng XY, Qian LC, Gu SH (2007) Expression of recombinant Thermomonospora fusca xylanase A in Pichia pastoris and xylooligosaccharides released from xylans by it. Food Chem 104(3):1055–1064

    Article  Google Scholar 

  • Sunna A, Prowe SG, Stoffregen T, Antranikian G (1997) Characterization of the xylanases from the new isolated thermophilic xylan-degrading Bacillus thermoleovorans strain K-3d and Bacillus flavothermus strain LB3A. FEMS Microbiol Lett 148(2):209–216

    Article  Google Scholar 

  • Suzuki T, Ibata K, Hatsu M, Takamizawa K, Kawai K (1997) Cloning and expression of a 58-kDa xylanase VI gene (xynD) of Aeromonas caviae ME-1 in Escherichia coli which is not categorized as a family F or family G xylanase. J Ferm Bioeng 84(1):86–89

    Article  Google Scholar 

  • Takahashi-Ando N, Inaba M, Ohsato S, Igawa T, Usami R, Kimura M (2007) Identification of multiple highly similar XIP-type xylanase inhibitor genes in hexaploid wheat. Biochem Biophys Res Commun 360(4):880–884

    Article  Google Scholar 

  • Tanaka H, Okuno T, Moriyama S, Muguruma M, Ohta K (2004) Acidophilic xylanase from Aureobasidium pullulans: efficient expression and secretion in Pichia pastoris and mutational analysis. J Biosci Bioeng 98(5):338–343

    Article  Google Scholar 

  • Taneja K, Gupta S, Kuhad RC (2002) Properties and application of a partially purified alkaline xylanase from an alkalophilic fungus Aspergillus nidulans KK-99. Bioresour Technol 85(1):39–42

    Article  Google Scholar 

  • Teng C, Jia H, Yan Q, Zhou P, Jiang Z (2011) High-level expression of extracellular secretion of a β-Xylosidase gene from Paecilomyces thermophila in Escherichia coli. Bioresour Technol 102:1822–1830

    Google Scholar 

  • Tomme P, Gilkes NR, Miller RC, Warren AJ, Kilburn DG (1994) An internal cellulose-binding domain mediates adsorption of an engineered bifunctional xylanase/cellulase. Protein Eng 7(1):117–123

    Article  Google Scholar 

  • Torronen A, Harkki A, Rouvinen J (1994) 3-Dimensional structure of endo-1,4-beta-xylanase-II from Trichoderma reesei-2 conformational states in the active-site. EMBO J 13(11):2493–2501

    Google Scholar 

  • Torronen A and Rouvinen J (1997) Structural and functional properties of low molecular weight endo-1,4-beta-xylanases. J Biotechnol 57:137–149

    Google Scholar 

  • Trudel J, Grenier J, Potvin C, Asselin A (1998) Several thaumatin-like proteins bind to beta-1,3-glucans. Plant Physiology 118:1431–1438

    Google Scholar 

  • Tsai CT, Huang CT (2008) Overexpression of the Neocallimastix frontalis xylanase gene in the methylotrophic yeasts Pichia pastoris and Pichia methanolica. Enzyme Microb Technol 42(6):459–465

    Article  Google Scholar 

  • Turunen O, Etuaho K, Fenel F, Vehmaanpera J, Wu XY, Rouvinen J, Leisola M (2001) A combination of weakly stabilizing mutations with a disulfide bridge in the alpha-helix region of Trichoderma reesei endo-1,4-beta-xylanase II increases the thermal stability through synergism. J Biotechnol 88(1):37–46

    Article  Google Scholar 

  • Valenzuela SV, Diaz P, Javier Pastor FI (2010) Recombinant expression of an alkali stable GH10 xylanase from Paenibacillus barcinonensis. J Agric Food Chem 58(8):4814–4818

    Article  Google Scholar 

  • Van Campenhout S, Pollet A, Bourgois TM, Rombouts S, Beaugrand J, Gebruers K, De Backer E, Courtin CM, Delcour JA, Volckaert G (2007) Unprocessed barley aleurone endo-beta-1,4-xylanase X-I is an active enzyme. Biochem Biophys Res Commun 356(3):799–804

    Article  Google Scholar 

  • Van Der Borght A, Goesaert H, Veraverbeke WS, Delcour JA (2005) Fractionation of wheat and wheat flour into starch and gluten: overview of the main processes and the factors involved. J Cereal Sci 41:221–237

    Article  Google Scholar 

  • Van Peij NN, Brinkmann J, Vrsanska M, Visser J, de Graaff LH (1997) Beta-xylosidase activity, encoded by xlnD, is essential for complete hydrolysis of xylan by Aspergillus niger but not for induction of the xylanolytic enzyme spectrum. Eur J Biochem 245(1):164–173

    Article  Google Scholar 

  • Van Petegem F, Collins T, Meuwis MA, Gerday C, Feller G, Van Beeumen J (2003) The structure of a cold-adapted family 8 xylanase at 1.3 Å resolution. Structural adaptations to cold and investigation of the active site. J Biol Chem 278(9):7531–7539

    Article  Google Scholar 

  • Vandeplas S, Dauphin RD, Thonart P, Thewis A, Beckers Y (2010) Effect of the bacterial or fungal origin of exogenous xylanases supplemented to a wheat-based diet on performance of broiler chickens and nutrient digestibility of the diet. Can J Anim Sci 90:221–228

    Article  Google Scholar 

  • Vardakou M, Flint J, Christakopoulos P, Lewis RJ, Gilbert HJ, Murray JW (2005) A family 10 Thermoascus aurantiacus xylanase utilizes arabinose decorations of xylan as significant substrate specificity determinants. J Mol Biol 352:1060–1067

    Article  Google Scholar 

  • Verjans P, Dornez E, Delcour JA, Courtin CM (2010) Selectivity for water-unextractable arabinoxylan and inhibition sensitivity govern the strong bread improving potential of an acidophilic GH11 Aureobasidium pullulans xylanase. Food Chem 123:331–337

    Article  Google Scholar 

  • Verma D, Satyanarayana T (2012) Cloning, expression and applicability of thermo-alkali-stable xylanase of Geobacillus thermoleovorans in generating xylooligosaccharides from agro-residues. Bioresour Technol 107:333–338

    Article  Google Scholar 

  • Wang JS, Bai YG, Yang PL, Shi PJ, Luo HY, Meng K, Huang HQ, Yin J, Yao B (2010) A new xylanase from thermoalkaline Anoxybacillus sp E2 with high activity and stability over a broad pH range. World J Microbiol Biotechnol 26(5):917–924

    Article  Google Scholar 

  • Wang Q, Xia T (2008) Enhancement of the activity and alkaline pH stability of Thermobifida fusca xylanase A by directed evolution. Biotechnol Lett 30(5):937–944

    Article  Google Scholar 

  • Whitehead TR, Hespell RB (1989) Cloning and expression in Escherichia coli of a xylanase gene from Bacteroides ruminicola 23. Appl Environ Microbiol 55(4):893–896

    Google Scholar 

  • Winterhalter C, Liebl W (1995) Two extremely thermostable xylanases of the hyperthermophilic bacterium Thermotoga maritima MSB8. Appl Environ Microbiol 61:1810–1815

    Google Scholar 

  • Wong KK, Tan LU, Saddler JN (1988) Multiplicity of beta-1,4-xylanase in microorganisms: functions and applications. Microbiol Rev 52(3):305–317

    Google Scholar 

  • Wu SJ, Liu B, Zhang XB (2006) Characterization of a recombinant thermostable xylanase from deep-sea thermophilic Geobacillus sp MT-1 in East Pacific. Appl Microbiol Biotechnol 72(6):1210–1216

    Article  Google Scholar 

  • Xiong H, Turunen O, Pastinen O, Leisola M, von Weymarn N (2004) Improved xylanase production by Trichoderma reesei grown on L-arabinose and lactose or d-glucose mixtures. Appl Microbiol Biotechnol 64:353–358

    Article  Google Scholar 

  • Xiong H, Weymarn N, Turunen O, Leisola M, Pastinen O (2005) Xylanase production by Trichoderma reesei Rut C-30 grown on L-arabinose-rich plant hydrolysates. Bioresour Technol 96:753–759

    Article  Google Scholar 

  • Xue GP, Gobius KS, Orpin CG (1992) A novel polysaccharide hydrolase cDNA (celD) from Neocallimastix patriciarum encoding three multi-functional catalytic domains with high endoglucanase, cellobiohydrolase and xylanase activities. J Gen Microbiol 138(11):2397–2403

    Article  Google Scholar 

  • Yang HJ, Xie CY (2010) Assessment of fibrolytic activities of 18 commercial enzyme products and their abilities to degrade the cell wall fraction of corn stalks in in vitro enzymatic and ruminal batch cultures. Anim Feed Scie Technol 159:110–121

    Article  Google Scholar 

  • Yang JH, Park JY, Kim SH, Yoo YJ (2008) Shifting pH optimum of Bacillus circulans xylanase based on molecular modeling. J Biotechnol 133(3):294–300

    Article  Google Scholar 

  • Yang RC, MacKenzie CR, Narang SA (1988) Nucleotide sequence of a Bacillus circulans xylanase gene. Nucleic Acids Res 16(14B):7187

    Article  Google Scholar 

  • Yamura I, Koga T, Matsumoto T, Kato T (1997) Purification and some properties of endo-1,4-[5-d-xylanase from a fresh water mollusc, Pomacea insularus (de Ordigny). Biosci Biotechol Biochem 61(4):615–620

    Article  Google Scholar 

  • Yin LJ, Lin HH, Chiang YI, Jiang ST (2010) Bioproperties and purification of xylanase from Bacillus sp. YJ6. J Agric Food Chem 58(1):557–562

    Article  Google Scholar 

  • You C, Yuan H, Huang Q, Lu H (2010) Substrate molecule enhances the thermostability of a mutant of a family 11 xylanase from Neocallimastix patriciarum. African J Biotechnol 9:1288–1294

    Google Scholar 

  • Yuan Q, Wang J, Zhang H, Qian Z (2005) Effect of temperature shift on production of xylanase by Aspergillus niger. Process Biochem 40:3255–3257

    Article  Google Scholar 

  • Zhao Y, Chany CJ, Sims PF, Sinnott ML (1997) Definition of the substrate specificity of the ‘sensing’ xylanase of Streptomyces cyaneus using xylooligosaccharide and cellooligosaccharide glycosides of 3,4-dinitrophenol. J Biotechnol 57(1–3):181–190

    Article  Google Scholar 

  • Zhou CY, Bai JY, Deng SS, Wang J, Zhu J, Wu MC, Wang W (2008a) Cloning of a xylanase gene from Aspergillus usamii and its expression in Escherichia coli. Bioresour Technol 99:831–838

    Article  Google Scholar 

  • Zhou CY, Li DF, Wu MC, Wang W (2008b) Optimized expression of an acid xylanase from Aspergillus usamii in Pichia pastoris and its biochemical characterization. World J Microbiol Biotechnol 24(8):1393–1401

    Article  Google Scholar 

  • Zhu H, Paradis FW, Krell PJ, Phillips JP, Forsberg CW (1994) Enzymatic specificities and modes of action of the two catalytic domains of the XynC xylanase from Fibrobacter succinogenes S85. J Bacteriol 176(13):3885–3894

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hesham Ali El Enshasy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

El Enshasy, H.A., Kandiyil, S.K., Malek, R., Othman, N.Z. (2016). Microbial Xylanases: Sources, Types, and Their Applications. In: Gupta, V. (eds) Microbial Enzymes in Bioconversions of Biomass. Biofuel and Biorefinery Technologies, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-43679-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43679-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43677-7

  • Online ISBN: 978-3-319-43679-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics