Skip to main content

The Role and Applications of β-Glucosidases in Biomass Degradation and Bioconversion

  • Chapter
  • First Online:
Microbial Enzymes in Bioconversions of Biomass

Part of the book series: Biofuel and Biorefinery Technologies ((BBT,volume 3))

  • 1067 Accesses

Abstract

β-Glucosidases is known as the terminal enzyme in the synergy with other cellulases for biomass degradation. It completes the final step of small oligosaccharides (including cellobiose) conversion into glucose. However, this is only a small part of the roles played by a subgroup of bacterial/fungal β-glucosidases in cellulose biodegradation. To deepen our understanding about the current challenges and limits in biomass conversion and to enlighten the future for the industry, we take one step back and look into a broader range of β-glucosidases that cross the life domains. β-Glucosidases from different subfamilies are compared systematically in their distribution, phylogenetic relationship, structure, in vivo function, mechanism of hydrolysis as well as substrate recognition, and kinetic profile. Protein engineering and application works on the enzymes are discussed based on the knowledge herein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn YO, Shimizu B, Sakata K, Gantulga D, Zhou Z, Bevan DR, Esen A (2010) Scopulin-hydrolyzing β-glucosidases in the roots of Arabidopsis. Plant Cell Physiol 51:131–143

    Article  Google Scholar 

  • Ali BR, Zhou L, Graves FM, Freedman RB, Black GW, Gilbert HJ, Hazelwood GP (1995) Cellulases and hemicellulases of the anaerobic fungus Piromyces constitute a multiprotein cellulose-binding complex and encoded by multigene families. FEMS Microbiol Lett 125:15–22

    Article  Google Scholar 

  • Arthan D, Kittakoop P, Esen A, Svasti J (2006) Furostanol glycoside 26-O-β-glucosidase from the leaves of Solanum torvum. Phytochemistry 67:27–33

    Article  Google Scholar 

  • Barleben L, Panjikar S, Ruppert M, Koepke J, Stockigt J (2007) Molecular architecture of strictosidine glucosidase: the gateway to the biosynthesis of the monoterpenoid indole alkaloid family. Plant Cell 19:2886–2897

    Article  Google Scholar 

  • Barnett CC, Berka RM, Fowler T (1991) Cloning and amplification of the gene encoding and extracellular β-glycosidase from Trichoderma reesei: evidence for improved rates of saccharification of cellulosic substrates. Nat Biotechnol 9:552–567

    Article  Google Scholar 

  • Bause E, Legler G (1980) Isolation and structure of a tryptic glycopeptide from the active site of β-glucosidase A3 from Aspergillus wentii. Biochim Biophys Acta 626:459–465

    Article  Google Scholar 

  • Bayer EA, Belaich JP, Shoham Y, Lamed R (2004) The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol 58:521–554

    Article  Google Scholar 

  • Bednarek P, Pislewska-Bednarek M, Svatos A, Schneider B, Doubsky J, Mansurova M, Humphry M, Consonni C, Panstruga R, Sanchez-Vallet A, Molina A, Schulze-Lefert P (2009) A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science 323:101–106

    Article  Google Scholar 

  • Berrin JG, McLauchlan WR, Needs P, Williamson G, Puigserver A, Kroon PA, Juge N (2002) Functional expression of human liver cytosolic β-glucosidase in Pichia pastoris. Insights into its role in the metabolism of dietary glucosides. Eur J Biochem 269:249–258

    Article  Google Scholar 

  • Bhatia Y, Mishra S, Bisaria VS (2002) Microbial β-glucosidases: cloning, properties, and applications. Crit Rev Biotechnol 22:375–407

    Article  Google Scholar 

  • Bowers EM, Ragland LO, Byers LD (2007) Salt effects on β-glucosidase: pH-profile narrowing. Biochim Biophys Acta 1774:1500–1507

    Article  Google Scholar 

  • Brzobohaty B, Moore I, Kristoffersen P, Bako L, Campos N, Schell J, Palme K (1993) Release of active cytokinin by a β-glucosidase localized to the maize root meristem. Science 262:1051–1054

    Article  Google Scholar 

  • Butters TD (2007) Gaucher disease. Curr Opin Chem Biol 11:412–418

    Article  Google Scholar 

  • Choi W, Park KM, Jun SY, Park CS, Park KH, Cha J (2008) Modulation of the regioselectivity of a Thermotoga neapolitana β-glucosidase by site-directed mutagenesis. J Microbiol Biotechnol 18:901–907

    Google Scholar 

  • Chuankhayan P, Hua Y, Svasti J, Sakdarat S, Sullivan PA, Ketudat Cairns JR (2005) Purification of an isoflavonoid 7-O-bapiosyl-glucoside β-glycosidase and its substrates from Dalbergia nigrescens Kurz. Phytochemistry 66:1880–1889

    Article  Google Scholar 

  • Chuankhayan P, Rimlumduan T, Svasti J, Ketudat Cairns JR (2007) Hydrolysis of soybean isoflavonoid glycosides by Dalbergia β-glucosidases. J Agric Food Chem 55:2407–2412

    Article  Google Scholar 

  • Chuenchor W, Pengthaisong S, Robinson RC, Yuvaniyama J, Svasti J, Ketudat Cairns JR (2011) The structural basis of oligosaccharide binding by rice BGlu1 beta-glucosidase. J Struct Biol 173:169–179

    Article  Google Scholar 

  • Chuenchor W, Pengthaisong S, Robinson RC, Yuvaniyama J, Oonanant W, Bevan DR, Esen A, Chen CJ, Opassiri R, Svasti J, Ketudat Cairns JR (2008) Structural insights into rice BGlu1 β-glucosidase oligosaccharide hydrolysis and transglycosylation. J Mol Biol 377:1200–1215

    Article  Google Scholar 

  • Cicek M, Blanchard D, Bevan DR, Esen A (2000) The aglycone specificity-determining sites are different in 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA)-glucosidase (maize beta-glucosidase) and dhurrinase (sorghum beta-glucosidase). J Biol Chem 275:20002–20011

    Article  Google Scholar 

  • Czjzek M, Cicek M, Zamboni V, Bevan DR, Henrissat B, Esen A (2000) The mechanism of substrate (aglycone) specificity in β-glucosidases is revealed by crystal structures of mutant maize β-glucosidase-DIMBOA, -DIMBOAGlc, and dhurrin complexes. Proc Natl Acad Sci USA 97:13555–13560

    Article  Google Scholar 

  • Dan S, Marton T, Dekol M, Bravdo BA, He S, Withers SG, Shoserov O (2000) Cloning, expression, characterization and nucleophile identification of family 3 Aspergillus niger β-glycosidase. J Biol Chem 275:4973–4980

    Article  Google Scholar 

  • Deog KJ, Kiyoshi H (2011) Construction and characterization of novel chimeric β-glucosidases with Cellvibrio gilvus (CG) and Thermotoga maritima (TM) by overlapping PCR. In: Carpi A (ed) Progress in molecular and environmental bioengineering—from analysis and modeling to technology applications. InTech, Rijeka, pp 633–646

    Google Scholar 

  • de Giuseppe PO, Souza Tde A, Souza FH, Zanphorlin LM, Machado CB, Ward RJ, Jorge JA, Furriel Rdos P, Murakami MT (2014) Structural basis for glucose tolerance in GH1 β-glucosidases. Acta Crystallogr D Biol Crystallogr 70:1631–1639

    Article  Google Scholar 

  • Dhamawardhana DP, Ellis BE, Carlson JE (1995) A β-glucosidase from lodgepole pine xylem specific for the lignin precursor coniferin. Plant Physiol 107:331–339

    Article  Google Scholar 

  • Dietz KJ, Sauter A, Wichert K, Messdaghi D, Hartung W (2000) Extracellular β-glucosidase activity in barley involved in the hydrolysis of ABA glucose conjugate in leaves. J Exp Bot 51:937–944

    Article  Google Scholar 

  • Dodd D, Kiyonari S, Mackie RI, Cann IK (2010) Functional diversity of four glycoside hydrolase family 3 enzymes from the rumen bacterium Prevotella bryantii B14. J Bacteriol 192:2335–2345

    Article  Google Scholar 

  • Escamilla-Trevino LL, Chen W, Card ML, Shih MC, Cheng CL, Poulton JE (2006) Arabidopsis thaliana β-glucosidases BGLU45 and BGLU46 hydrolyse monolignol glucosides. Phytochemistry 67:1651–1660

    Article  Google Scholar 

  • Esen A (1992) Purification and partial characterization of maize (Zea mays L.) β-glucosidase. Plant Physiol 98:174–182

    Article  Google Scholar 

  • Esen A (2003) β-Glucosidases. In: Whitaker JR, Voragen AGJ, Wong DWS (eds) Handbook of food enzymology. Marcel Dekker, New York, pp 791–804

    Google Scholar 

  • Esen A, Blanchard DJ (2000) A specific β-glucosidase-aggregating factor (BGAF) is responsible for the β-glucosidase null phenotype in maize. Plant Physiol 122:563–572

    Article  Google Scholar 

  • Eyzaguirre J, Hidalgo M, Leschot A (2005) β-Glucosidases from filamentous fungi: properties, structure, and applications. In: Yarema KJ (ed) Handbook of carbohydrate engineering. Taylor & Francis, Boca Raton, pp 645–685

    Chapter  Google Scholar 

  • Faure D, Desair J, Keijers V, Bekri MA, Proost P, Henrissat B, Vanderleyden J (1999) Growth of Azospirillum irakense KBC 1 on the aryl β-glycosidase salicin requires either Sal A or Sal B. J Bacteriol 181:3003–3009

    Google Scholar 

  • Feng HY, Drone J, Hoffmann L, Tran V, Tellier C, Rabiller C, Dion M (2005) Converting a β-glycosidase into a β-transglycosidase by directed evolution. J Biol Chem 280:37088–37097

    Article  Google Scholar 

  • Fernandez P, Canada FJ, Jimenez-Barbero J, Martın-Lomas M (1995) Substrate specificity of small-intestinal lactase: study of the steric effects and hydrogen bonds involved in enzyme-substrate interaction. Carbohydr Res 271:31–42

    Article  Google Scholar 

  • Ferrara MC, Cobucci-Ponzano B, Carpentieri A, Henrissat B, Rossi M, Amoresano A, Moracci M (2014) The identification and molecular characterization of the first archaeal bifunctional exo-beta-glucosidase/N-acetyl-beta-glucosaminidase demonstrate that family GH116 is made of three functionally distinct subfamilies. Biochim Biophys Acta 1840:367–377

    Article  Google Scholar 

  • Ferrieira AHP, Marana SR, Terra WR, Ferreira C (2001) Purification, molecular cloning, and properties of a β-glycosidase isolated from midgut lumen of Tenebrio molitor (Coleoptera) larvae. Insect Biochem Mol Biol 31:1065–1076

    Article  Google Scholar 

  • Frutuoso MA, Marana SR (2013) A single amino acid residue determines the ratio of hydrolysis to transglycosylation catalyzed by β-glucosidases. Protein Peptide Lett 20:102–106

    Article  Google Scholar 

  • Gabrisko M, Janecek S (2015) Novel family GH3 β-glucosidases or β-xylosidases of unknown function found in various animal groups, including birds and reptiles. Carbohydr Res 408:44–50

    Article  Google Scholar 

  • Geerlings A, Ibanez MML, Memelinks J, Heijden RVD, Verpoorte R (2000) Molecular cloning and analysis of strictosidine β-d-glycosidase, an enzyme in terpenoid indole alkaloid biosynthesis in Catharanthus roseus. J Biol Chem 275:3051–3056

    Article  Google Scholar 

  • Gilbert HJ, Stalbrand H, Brumer H (2008) How the walls come tumbling down: recent structural biochemistry of plant polysaccharide degradation. Curr Opin Plant Biol 11:338–348

    Article  Google Scholar 

  • Gloster TM, Davies GJ (2010) Glycosidase inhibition: assessing mimicry of the transition state. Org Biomol Chem 8:305–320

    Article  Google Scholar 

  • Gloster TM, Meloncelli P, Stick RV, Zechel D, Vasella A, Davies GJ (2007) Glycosidase inhibition: an assessment of the binding of 18 putative transition-state mimics. J Am Chem Soc 129:2345–2354

    Article  Google Scholar 

  • Gundllapalli SB, Pretorius IS, Cordero Otero RR (2007) Effect of the cellulose-binding domain on the catalytic activity of a β-glucosidase from Saccharomycopsis fibuligera. J Ind Microbiol Biotechnol 34:413–421

    Article  Google Scholar 

  • Hancock SM, Corbett K, Fordham-Skelton AP, Gatehouse JA, Davis BG (2005) Developing promiscuous glycosidases for glycoside synthesis: residues W433 and E432 in Sulfolobus solfataricus beta-glycosidase are important glucoside- and galactoside-specificity determinants. ChemBioChem 6:866–875

    Article  Google Scholar 

  • Harnipcharnchai P, Champreda V, Sornlake W, Eurwilaichitr L (2009) A thermotolerant β-glucosidase isolated from an endophytic fungi, Periconia sp. with a possible use for biomass conversion to sugars. Prot Express Purif 67:61–69

    Article  Google Scholar 

  • Haven MØ, Jørgensen H (2013) Adsorption of β-glucosidases in two commercial preparations onto pretreated biomass and lignin. Biotechnol Biofuels 6:165

    Article  Google Scholar 

  • Henrissat B, Callebaut I, Fabrega S, Lehn P, Mornon JP, Davies G (1995) Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. Proc Natl Acad Sci USA 92:7090–7094

    Article  Google Scholar 

  • Herpoël-Gimbert I, Margeot A, Dolla A, Jan G, Mollé D, Lignon S, Mathis H, Sigoillot JC, Monot F, Asther M (2008) Comparative secretome analyses of two Trichoderma reesei RUT-C30 and CL847 hypersecretory strains. Biotechnol Biofuels 1:18

    Article  Google Scholar 

  • Hong J, Tamaki H, Kumagai H (2006) Unusual hydrophobic linker region of β-glucosidase (BGLII) from Thermoascus aurantiacus is required for hyper-activation by organic solvents. Appl Microbiol Biotechnol 73:80–88

    Article  Google Scholar 

  • Hrmova M, MacGregor EA, Biely P, Stewart RJ, Fincher GB (1998) Substrate binding and catalytic mechanism of a barley β-d-glucosidase/(1, 4)-β-d-glucan exohydrolase. J Biol Chem 273:11134–11143

    Article  Google Scholar 

  • Hrmova M, Varghese JN, De Gori R, Smith BJ, Driguez H, Fincher GB (2001) Catalytic mechanisms and reaction intermediates along the hydrolytic pathway of a plant beta-d-glucan glucohydrolase. Structure 9:1005–1016

    Article  Google Scholar 

  • Hrmova M, De Gori R, Smith BJ, Fairweather JK, Driquez H, Varghese JN, Fincher GB (2002) Structural basis for broad substrate specificity in higher plant β-d-glucan glucohydrolases. Plant Cell 14:1033–1052

    Google Scholar 

  • Hrmova M, Burton RA, Biely P, Lahnstein J, Fincher GB (2006) Hydrolysis of (1,4)-β-d-mannans in barley (Hordeum vulgare L.) is mediated by the concerted action of (1,4)-β-d-mannans endohydrolase and β-d-mannosidase. Biochem J 399:77–90

    Google Scholar 

  • Hyeon JE, Jeon SD, Ha SO (2013) Cellulosome-based, Clostridium-derived multi-functional enzyme complexes for advanced biotechnology tool development: advances and applications. Biotechnol Adv 31:936–944

    Article  Google Scholar 

  • Igarashi K, Tani T, Kawal R, Samejima M (2003) Family 3 beta-glucosidase from cellulose-degrading culture of the white-rot fungus Phanerochaete chrysosporium. J Biosci Bioeng 95:572–576

    Article  Google Scholar 

  • Iwashita K, Nagahara T, Kimura H, Takano M, Shimoi K, Ito K (1999) The bgl gene of Aspergillus kawachii encodes both extracellular and wall bound β-glycosidases. Appl Environ Microbiol 65:5546–5553

    Google Scholar 

  • Jakubowska A, Kawalczyk S (2005) A specific enzyme hydrolyzing 6-O(4-O)-indole-3-ylacetyl-β-d-glucose in immature kernels of Zea mays. J Plant Physiol 162:207–213

    Article  Google Scholar 

  • Jeng WY, Wang NC, Lin CT, Chang WJ, Liu CI, Wang AHJ (2012) High-resolution structures of Neotermes koshunensis β-glucosidase mutants provide insights into the catalytic mechanism and the synthesis of glucoconjugates. Acta Cryst D68:829–838

    Google Scholar 

  • Jeng WY, Wang NC, Lin MH, Lin CT, Liaw YC, Chang WJ, Liu CI, Liang PH, Wang AH (2011) Structural and functional analysis of three β-glucosidases from bacterium Clostridium cellulovorans, fungus Trichoderma reesei and termite Neotermes koshunensis. J Struct Biol 173:46–56

    Article  Google Scholar 

  • Jeoh T, Baker JO, Ali MK, Himmel ME, Adney WS (2005) β-d-Glucosidase reaction kinetics from isothermal titration microcalorimetry. Anal Biochem 347:244–253

    Article  Google Scholar 

  • Jones AME, Bridges M, Bones AM, Cole R, Rossiter JT (2001) Purification and characterisation of a non-plant myrosinase from the cabbage aphid Brevicoryne brassicae. Insect Biochem Mol Biol 31:1–5

    Article  Google Scholar 

  • Karnaouri A, Topakas E, Paschos T, Taouki I, Christakopoulos P (2013) Cloning, expression and characterization of an ethanol tolerant GH3 β-glucosidase from Myceliophthora thermophile. PeerJ 1:e46

    Article  Google Scholar 

  • Kawai R, Igarashi K, Kitaoka M, Ishii T, Samejima M (2004) Kinetics of substrate transglycosylation by glycoside hydrolase family 3 glucan (1 → 3)-beta-glucosidase from the white-rot fungus Phanerochaete chrysosporium. Carbohydr Res 339:2851–2857

    Article  Google Scholar 

  • Kellermann SJ, Rentmeister A (2014) Current developments in cellulase engineering. ChemBioEng Rev 1:6–13

    Article  Google Scholar 

  • Keresztessy Z, Kiss L, Hughes MA (1994) Investigation of the active site of the cyanogenic beta-d-glucosidase (linamarase) from Manihot esculenta Crantz (cassava). II. Identification of Glu-198 as an active site carboxylate group with acid catalytic function. Arch Biochem Biophys 315:323–330

    Article  Google Scholar 

  • Ketudat Cairns JR, Esen A (2010) β-Glucosidases. Cell Mol Life Sci 67:3389–3405

    Article  Google Scholar 

  • Khan S, Pozzo T, Megyeri M, Lindahl S, Sundin A, Turner C, Karlsson EN (2011) Aglycone specificity of Thermotoga neapolitana b-glucosidase 1A modified by mutagenesis, leading to increased catalytic efficiency in quercetin-3-glucoside hydrolysis. BMC Biochem 12:11

    Article  Google Scholar 

  • Kim BJ, Singh SP, Hayashi K (2006) Characteristics of chimeric enzymes constructed between Thermotoga maritima and Agrobacterium tumefaciens beta-glucosidases: role of C-terminal domain in catalytic activity. Enzyme Microb Technol 38:952–959

    Article  Google Scholar 

  • Kittur FS, Lalgondar M, Yu HY, Bevan DR, Esen A (2007) Maize β-glucosidase-aggregating factor is a polyspecific jacalin related chimeric lectin, and its lectin domain is responsible for β-glucosidase aggregation. J Biol Chem 282:7299–7311

    Article  Google Scholar 

  • Krisch J, Takó M, Papp T, Vágvölgyi C (2010) Characteristics and potential use of β-glucosidases from Zygomycetes. In: Vilas AM (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology extremadura. Formatex Research Center, Spain, pp 891–896

    Google Scholar 

  • Kuntothom T, Luang S, Harvey AJ, Fincher GB, Opassiri R, Hrmova M, Ketudat Cairns JR (2009) Rice family GH1 glycosyl hydrolases with β-d-glucosidase and β-d-mannosidase activities. Arch Biochem Biophys 491:84–95

    Article  Google Scholar 

  • Lammirato C, Miltner A, Wick LY, Kästner M (2010) Hydrolysis of cellobiose by β-glucosidase in the presence of soil minerals—interactions at solid-liquid interfaces and effects on enzyme activity levels. Soil Biol Biochem 42:2203–2210

    Article  Google Scholar 

  • Langston J, Sheehy N, Xu F (2006) Substrate specificity of Aspergillus oryzae family 3 β-glucosidase. Biochim Biophys Acta Proteins Proteom 1764:972–978

    Article  Google Scholar 

  • Leah R, Kiegel J, Suendson IB, Mundy J (1995) Biochemical and molecular characterization of a barley seed β-glycosidase. J Biol Chem 22:15789–15796

    Article  Google Scholar 

  • Lee HL, Chang CK, Jeng WY, Wang AH, Liang PH (2012) Mutations in the substrate entrance region of β-glucosidase from Trichoderma reesei improve enzyme activity and thermostability. Protein Eng Des Sel 25:733–740

    Article  Google Scholar 

  • Lee KH, Piao HL, Kim HY, Choi SM, Jiang F, Hartung W, Hwang I, Kwak JM, Lee IJ (2006) Activation of glucosidase via stress-induced polymerization rapidly increases active pools of abscisic acid. Cell 126:1109–1120

    Article  Google Scholar 

  • Lipka V, Dittgen J, Bednarek P, Bhat R, Wiermer M, Stein M, Landtag J, Brandt W, Rosahl S, Scheel D, Llorente F, Molina A, Parker J, Somerville S, Schulze-Lefert P (2005) Pre- and postinvasion defenses both contribute to nonhost resistance in Arabidopsis. Science 310:1180–1183

    Article  Google Scholar 

  • Liu J, Zhang X, Fang Z, Fang W, Peng H, Xiao Y (2011) The 184th residue of β-glucosidase Bgl1B plays an important role in glucose tolerance. J Biosci Bioengineer 112:447–450

    Article  Google Scholar 

  • Lundemo P, Adlercreutz P, KarlssonImproved EN (2013) Transferase/hydrolase ratio through rational design of a family 1 β-glucosidase from Thermotoga neapolitana. Appl Environ Microbiol 79:3400–3405

    Article  Google Scholar 

  • Ly HD, Withers SG (1999) Mutagenesis of glycosidases. Annu Rev Biochem 68:487–522

    Article  Google Scholar 

  • Machida M, Ohtsuki I, Fukui S, Yamashita I (1988) Nucleotide sequences of Saccharomycopsis fibuligera genes for extracellular β-glycosidases as expressed in Saccharomyces cerevisiae. Appl Environ Microbiol 54:3147–3155

    Google Scholar 

  • Mackenzie LF, Wang Q, Warren RAJ, Withers SG (1998) Glycosynthases: mutant glycosidases for oligosaccharide synthesis. J Am Chem Soc 120:5583–5584

    Article  Google Scholar 

  • Marana SR (2006) Molecular basis of substrate specificity in family 1 glycoside hydrolases. IUBMB Life 58:63–73

    Article  Google Scholar 

  • Marana SR, Jacobs-Lorena M, Terra WR, Ferrieira C (2001) Amino acid residues involved in substrate binding and catalysis in an insect digestive β-glycosidase. Biochim Biophys Acta 1545:41–52

    Article  Google Scholar 

  • Marana SR, Terra WR, Ferreira C (2002) The role of amino acid residues Q39 and E451 in the determination of substrate specificity of the Spodoptera frugiperda β-glycosidase. Eur J Biochem 269:3705–3714

    Article  Google Scholar 

  • Marri L, Valentini S, Venditti D (1995) Cloning and nucleotide sequence of bglA from Erwinia herbicola and expression of β-glycosidase activity in Escherichia coli. FEMS Microbiol Lett 128:135–138

    Google Scholar 

  • Matsui I, Sakai Y, Matsui E, Kikuchi M, Kawarabayasi Y, Honda K (2000) Novel substrate specificity of a membrane-bound β-glycosidase from the hyperthermophilic archeon Pyrococcus horikoshii. FEBS Lett 467:195–200

    Article  Google Scholar 

  • Mattiacci L, Dicke M, Posthumus MA (1995) Beta-glucosidase: an elicitor of herbivore-induced plant odor that attracts hostsearching parasitic wasps. Proc Natl Acad Sci USA 92:2036–2040

    Article  Google Scholar 

  • McFarland KC, Ding H, Teter S, Vlasenko E, Xu F, Cherry J (2007) Development of improved cellulase mixtures in a single production organism. In: Eggleston G, Vercellotti JR (eds) Industrial application of enzymes on carbohydrate based materials. American Chemical Society & Oxford University Press, New York, pp 19–31

    Chapter  Google Scholar 

  • Mendonca LMF, Marana SR (2008) The role in the substrate specificity and catalysis of residues forming the substrate aglycone-binding site of a β-glycosidase. FEBS J 275:2536–2547

    Article  Google Scholar 

  • Morant AV, Bjarnholt N, Kragh ME, Kjaergaard CH, Jørgensen K, Paquette SM, Piotrowski M, Imberty A, Olsen CE, Møller BL, Bak S (2008a) The beta-glucosidases responsible for bioactivation of hydroxynitrile glucosides in Lotus japonicus. Plant Physiol 147:1072–1091

    Article  Google Scholar 

  • Morant AV, Jørgensen K, Jørgensen C, Paquette SM, Sanchez-Perez R, Møller BL, Bak S (2008b) β-Glucosidases as detonators of plant chemical defense. Phytochemistry 69:1795–1813

    Article  Google Scholar 

  • Nagano AJ, Matsushima R, Hara-Nishimura I (2005) Activation of an ER-body-localized β-glucosidase via a cytosolic binding partner in damaged tissues of Arabidopsis thaliana. Plant Cell Physiol 46:1140–1148

    Article  Google Scholar 

  • Namchuck NM, Withers SG (1995) Mechanism of Agrobacterium β-glucosidase: kinetic analysis of the role of noncovalent enzyme/substrate interactions. Biochemistry 34:16194–16202

    Article  Google Scholar 

  • Nikus J, Daniel G, Jonsson LM (2001) Subcellular localization of beta-glucosidase in rye, maize and wheat seedlings. Plant Physiol 111:466–472

    Article  Google Scholar 

  • Nisius A (1988) The stroma centre in Avena plastids: an aggregation of β-glucosidase responsible for the activation of oat-leaf saponins. Planta 173:474–481

    Article  Google Scholar 

  • Opassiri R, Hua Y, Wara-Aswapati O, Akiyama T, Svasti J, Esen A, Ketudat Cairns JR (2004) β-Glucosidase, exo-β-glucanase and pyridoxine transglucosylase activities of rice BGlu1. Biochem J 379:125–131

    Article  Google Scholar 

  • Opassiri R, Ketudat Cairns JR, Akiyama T, Wara-Aswapati O, Svasti J, Esen A (2003) Characterization of a rice β-glucosidase highly expressed in flower and germinating shoot. Plant Sci 165:627–638

    Article  Google Scholar 

  • Opassiri R, Pomthong B, Okoksoong T, Akiyama T, Esen A, Ketudat Cairns JR (2006) Analysis of rice glycosyl hydrolase family 1 and expression of Os4bglu12 b-glucosidase. BMC Plant Biol 6:33

    Article  Google Scholar 

  • Opassiri R, Pomthong B, Akiyama T, Nakphaichit M, Onkoksoong T, Ketudat Cairns M, Ketudat Cairns JR (2007) A stress-induced rice β-glucosidase represents a new subfamily of glycosyl hydrolase family 5 containing a fascin-like domain. Biochem J 408:241–249

    Article  Google Scholar 

  • Park TH, Choi KW, Park CS, Lee SB, Kang HY, Shon KJ, Park JS, Cha J (2005) Substrate specificity and transglycosylation catalyzed by a thermostable β-glucosidase from marine hyperthermophile Thermotoga neapolitana. Appl Microbiol Biotechnol 69:411–422

    Article  Google Scholar 

  • Payne CM, Knott BC, Mayes HB, Hansson H, Himmel ME, Sandgren M, Ståhlberg J, Beckham GT (2015) Fungal cellulases. Chem Rev 115:1308–1448

    Article  Google Scholar 

  • Perry JD, Morris KA, James AL, Oliver M, Gould FK (2007) Evaluation of novel chromogenic substrates for the detection of bacterial β-glucosidase. J Appl Microbiol 102:410–415

    Article  Google Scholar 

  • Poulton JE (1990) Cyanogenesis in plants. Plant Physiol 94:401–405

    Article  Google Scholar 

  • Pozzo T, Pasten JL, Karlsson EN, Logan DT (2010) Structural and functional analyses of beta-glucosidase 3B from Thermotoga neapolitana: a thermostable three-domain representative of glycoside hydrolase 3. J Mol Biol 397:724–739

    Google Scholar 

  • Qi M, Jun HS, Forsbert CW (2008) Cel9D, an atypical 1, 4-β-d-glucan glucohydrolase from Fibrobacter succinogenes: characteristics, catalytic residues, and synergistic interactions with other cellulases. J Bacteriol 109:1976–1984

    Article  Google Scholar 

  • Quinlan RJ, Teter S, Xu F (2010) Towards the development of cellulases: approaches, obstacles and outlook. In: Waldron K (ed) Bioalcohol production: biochemical conversion of lignocellulosic biomass. Woodhead Publishing, CRC Press, Boca Raton, pp 178–204

    Chapter  Google Scholar 

  • Rani V, Mohanram S, Tiwari R, Nain L, Arora A (2014) Beta-glucosidase: key enzyme in determining efficiency of cellulase and biomass hydrolysis. J Bioprocess Biotechnol 5:197

    Google Scholar 

  • Reuveni M, Sagi Z, Evnor D, Hetzroni A (1999) β-Glucosidase activity is involved in scent production in Narcissus flowers. Plant Sci 147:19–24

    Article  Google Scholar 

  • Sanz-Aparicio J, Hermoso JA, Martinez-Ripoll M, Lequerica JL, Polaina J (1998) Crystal structure of beta-glucosidase A from Bacillus polymyxa: insights into the catalytic activity in family 1 glycosyl hydrolases. J Mol Biol 275:491–502

    Article  Google Scholar 

  • Saqib AAN, Whitney PJ (2006) Esculin gel diffusion assay (EGDA): a simple and sensitive method for screening β-glucosidases. Enzyme Microb Technol 39:182–184

    Article  Google Scholar 

  • Schubot FD, Kataeva IA, Chang J, Shah AK, Ljungdahl LG, Rose JP, Wang BC (2004) Structural basis for the exocellulase activity of the cellobiohydrolase CbhA from Clostridium thermocellum. Biochemistry 43:1163–1170

    Article  Google Scholar 

  • Seidle HF, Allison SJ, George E, Huber RE (2006) Trp-49 of the family 3 beta-glucosidase from Aspergillus niger is important for its transglucosidic activity: creation of novel beta-glucosidases with low transglucosidic efficiencies. Arch Biochem Biophys 455:110–118

    Article  Google Scholar 

  • Seidle HF, Huber RE (2005) Transglucosidic reactions of the Aspergillus niger family 3 β-glucosidase: qualitative and quantitative analyses and evidence that the transglucosidic rate is independent of pH. Arch Biochem Biophys 436:254–264

    Article  Google Scholar 

  • Seidle HF, McKenzie K, Marten I, Shoseyov O, Huber RE (2005) Trp-262 is a key residue for the hydrolytic and transglucosidic reactivity of the Aspergillus niger family 3 β-glucosidase: substitution results in enzymes with mainly transglucosidic activity. Arch Biochem Biophys 444:66–75

    Article  Google Scholar 

  • Seshadri S, Akiyama T, Opassiri R, Kuaprasert B, Ketudat Cairns J (2009) Structural and enzymatic characterization of Os3BGlu6, a rice β-glucosidase hydrolyzing hydrophobic glycosides and (1 → 3)- and (1 → 2)-linked disaccharides. Plant Physiol 151:47–58

    Article  Google Scholar 

  • Sharmila T, Sreeramulu G, Nand K (1998) Purification and characterization of β-1-4,-glucosidase from Clostridium papyrosolvens. Biotechnol Appl Biochem 27:175–179

    Google Scholar 

  • Sherameti I, Venus Y, Drzewiecki C, Tripathi W, Dan VM, Nitz I, Varma A, Grundler F, Oelmuller R (2008) PYK10, a β-glucosidase located in the endoplasmatic reticulum, is crucial for the beneficial interaction between Arabidopsis thanliana and the endophytic fungus Piriformospora indica. Plant J 54:428–439

    Article  Google Scholar 

  • Shim JH, Chen HM, Rich JR, Goddard-Borger ED, Withers SG (2012) Directed evolution of a β-glycosidase from Agrobacterium sp. to enhance its glycosynthase activity toward C3-modified donor sugars. Protein Eng Des Sel 25:465–472

    Article  Google Scholar 

  • Singhania RR, Patel AK, Sukumaran RK, Larroche C, Pandey A (2013) Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresour Technol 127:500–507

    Article  Google Scholar 

  • Sørensen A, Lübeck M, Lübeck PS, Ahring BK (2013) Fungal beta-glucosidases: a bottleneck in industrial use of lignocellulosic materials. Biomolecules 3:612–631

    Article  Google Scholar 

  • Souza FHM, Nascimento CV, Rosa JC, Masui DC, Leone FA, Jorge JA, Furriel RPM (2010) Purification and biochemical characterization of a mycelial glucose- and xylose-stimulated β-glucosidase from the thermophilic fungus Humicola insolens. J Process Biochem 45:272–278

    Article  Google Scholar 

  • Srivastava KK, Verma PK, Srivastava R (1999) A recombinant cellulolytic Escherichia coli: cloning of the cellulase gene and characterization of a bifunctional cellulase. Biotechnol Lett 21:293–297

    Article  Google Scholar 

  • Sue M, Yamazaki K, Yajima S, Nomura T, Matsukawa T, Iwamura H, Miyamoto T (2006) Molecular and structural characterization of hexameric beta-d-glucosidases in wheat and rye. Plant Physiol 141:1237–1247

    Article  Google Scholar 

  • Suzuki H, Takahasi S, Watanabe R, Fukushima Y, Fujita N, Noguchi A, Yokoyama R, Nishitani K, Nishino T, Nakayama T (2006) An isoflavone conjugate-hydrolyzing β-glucosidase from the roots of soybean (Glycine max) seedlings. J Biol Chem 281:30251–30259

    Article  Google Scholar 

  • Sweeney MD, Xu F (2012) Biomass converting enzymes as industrial biocatalysts for fuels and chemicals: recent developments. Catalysts 2:244–263

    Article  Google Scholar 

  • Takano M, Moriyama R, Ohmiya K (1992) Structure of a β-glycosidase gene from Ruminococcus albus and properties of the translated product. J Ferment Bioeng 73:79–88

    Article  Google Scholar 

  • Takashima S, Nakamura A, Hidaka M, Masaki H, Uozumi T (1999) Molecular cloning and expression of the novel fungal β-glycosidase genes from Humicola grisea and Trichoderma reesei. J Biochem 125:728–736

    Article  Google Scholar 

  • Tejirian A, Xu F (2010) Inhibition of cellulase-catalyzed lignocellulosic hydrolysis by iron and oxidative metal ions and complexes. Appl Environ Microbiol 76:7673–7682

    Article  Google Scholar 

  • Tejirian A, Xu F (2011) Inhibition of enzymatic cellulolysis by phenolic compounds. Enzyme Microb Technol 48:239–247

    Article  Google Scholar 

  • Teter S, Xu F, Nedwin GE, Cherry JR (2006) Enzymes for biorefineries. In: Kamm B, Gruber PR, Kamm M (eds) Biorefineries—industrial processes and products: status quo and future directions. Wiley-VCH, Weinheim, pp 357–384

    Google Scholar 

  • Teugjas H, Väljamäe P (2013) Selecting β-glucosidases to support cellulases in cellulose saccharification. Biotechnol Biofuels 6:105

    Article  Google Scholar 

  • Thorlby G, Fourier N, Warren G (2004) The SENSITIVE TO FREEZING2 gene, required for freezing tolerance in Arabidopsis thaliana, encodes a beta-glucosidase. Plant Cell 16:2192–2203

    Article  Google Scholar 

  • Tiwari R, Singh S, Nain PK, Rana S, Sharma A, Pranaw K, Nain L (2013) Harnessing the hydrolytic potential of phytopathogenic fungus Phoma exigua ITCC 2049 for saccharification of lignocellulosic biomass. Bioresour Technol 150:228–234

    Google Scholar 

  • Tribolo S, Berrin J-G, Kroon PA, Czjzek M, Juge N (2007) The structure of human cytoplasmic β-glucosidase unravels substrate aglycone specificity of a family 1 glycoside hydrolase. J Mol Biol 370:964–975

    Article  Google Scholar 

  • Trimbur DE, Warren RAJ, Withers SG (1992) Region-directed mutagenesis of residues surroundingthe active site nucleophile in β-glucosidase from Agrobacterium faecalis. J Biol Chem 267:10248–10251

    Google Scholar 

  • Tsukada T, Igarashi K, Fushinobu S, Samejima M (2008) Role of subsite +1 residues in pH dependence and catalytic activity of the glycoside hydrolase family 1 β-glucosidase BGL1A from the Basidiomycete Phanerochaete chrysosporium. Biotechnol Bioeng 99:1295–1302

    Article  Google Scholar 

  • Tsukada T, Igarashi K, Yoshida M, Samejima M (2006) Molecular cloning and characterization of two intracellular β-glucosidases belonging to glycoside hydrolase family 1 from the basidiomycete Phanerochaete chrysosporium. Appl Microbiol Biotechnol 73:807–814

    Article  Google Scholar 

  • Uchiyama T, Miyazaki K, Yaoi K (2013) Characterization of a novel β-glucosidase from a compost microbial metagenome with strong transglycosylation activity. J Biol Chem 288:18325–18334

    Article  Google Scholar 

  • Vallmitjana M, Ferrer-Navarro M, Planell R, Abel M, Ausín C, Querol E, Planas A, Pérez-Pons JA (2001) Mechanism of the family 1 beta-glucosidase from Streptomyces sp.: catalytic residues and kinetic studies. Biochemistry 40:5975–5982

    Article  Google Scholar 

  • van den Brink J, de Vries RP (2011) Fungal enzyme sets for plant polysaccharide degradation. Appl Microbiol Biotechnol 91:1477–1492

    Article  Google Scholar 

  • van Zyl WH, Lynd LR, den Haan R, McBride JE (2007) Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae. Adv Biochem Eng Biotechnol 108:205–235

    Google Scholar 

  • Varghese JN, Hrmova M, Fincher GB (1999) Three-dimensional structure of a barley β-d-glucan exohydrolase; a family 3 glycosyl hydrolase. Structure 7:179–190

    Article  Google Scholar 

  • Verdoucq L, Moriniere J, Bevan DR, Esen A, Vasella A, Henrissat B, Czjzek M (2004) Structural determinants of substrate specificity in family 1 β-glucosidases: novel insights from the crystal structure of sorghum dhurrinase-1, a plant β-glucosidase with strict specificity, in complex with its natural substrate. J Biol Chem 279:31796–31803

    Article  Google Scholar 

  • Vroemen S, Heldens J, Boyd C, Henrissat B, Keen NT (1995) Cloning and characterization of the bgxa genefrom Erwinia chrysanthemi D1 that encodes a β-glycosidase/xylosidase enzyme. Mol Gen Genet 246:465–477

    Article  Google Scholar 

  • Wang Q, Graham RW, Trimbur D, Warren RAJ, Withers SG (1994) Changing enzymic reaction mechanisms by mutagenesis: conversion of a retaining glucosidase to an inverting enzyme. J Am Chem Soc 116:11594–11595

    Article  Google Scholar 

  • Wang Q, Trimbur D, Graham R, Warren RA, Withers SG (1995) Identification of the acid/base catalyst in Agrobacterium faecalis beta-glucosidase by kinetic analysis of mutants. Biochemistry 34:14554–14562

    Article  Google Scholar 

  • Wilson CA, Wood TM (1992) The anaerobic fungus Neocallimastix frontalis: isolation and properties of a cellulosome-type enzyme fraction with the capacity to solubilize hydrogen-bond-ordered cellulose. Appl Microbiol Biotechnol 37:125–129

    Article  Google Scholar 

  • Withers SG, Street IP, Bird P, Dolphin DH (1987) 2-Deoxy-2-fluoroglucosides: a novel class of mechanism based inhibitors. J Am Chem Soc 109:7530–7531

    Article  Google Scholar 

  • Withers SG, Street IP (1988) Identification of a covalent α-d-glucopyranosyl enzyme intermediate formed on a β-glucosidase. J Am Chem Soc 110:8551–8553

    Article  Google Scholar 

  • Withers SG, Warren RAJ, Street IP, Rupitz K, Kempton JB, Aebersold R (1990) Unequivocal demonstration of the involvement of a glutamate residue as a nucleophile in the mechanism of a retaining glycosidase. J Am Chem Soc 112:5887–5889

    Article  Google Scholar 

  • Wulff-Strobel CR, Wilson DB (1995) Cloning, sequencing, and characterization of a membrane associated Prevotella ruminicola B1 4-β-glycosidase with cellodextrinase and cyanoglycosidase activities. J Bacteriol 177:5884–5890

    Google Scholar 

  • Xie S, Syrenne R, Sun S, Yuan JS (2014) Exploration of natural biomass utilization systems (NBUS) for advanced biofuel—from systems biology to synthetic design. Curr Opin Biotechnol 27:195–203

    Article  Google Scholar 

  • Xu F (2010a) Enzymatic degradation of lignocellulosic biomass. In: Tao A, Kazlauskas R (eds) Biocatalysis for green chemistry and chemical process development. Wiley, Hoboken, pp 361–390

    Google Scholar 

  • Xu F (2010) Biomass-converting enzymes and their bioenergy applications. In: Baltz RH, Demain AL, Davies JE (ed-in-chief) Bull AT, Junker B, Katz L, Lynd LR, Masurekar P, Reeves CD, Zhao H (eds) The manual of industrial microbiology and biotechnology, 3rd edn. American Society for Microbiology Press, Washington, DC, pp 495–508

    Google Scholar 

  • Xu F (2004) Enhancing biomass conversion to fermentable sugars: a progress report of a joint government-industrial project. In: Ohmiya K, Sakka K, Karita S, Kimura T, Sakka M, Onishi Y (eds) Biotechnology of lignocellulose degradation and biomass utilization. Uni Publishers, Tokyo, pp 793–804

    Google Scholar 

  • Xu F, Ding H, Osborn D, Tejirian A, Brown K, Albano W, Sheehy N, Langston J (2007) Partition of enzymes between the solvent and insoluble substrate during the hydrolysis of lignocellulose by cellulases. J Mol Catal B Enz 51:42–48

    Article  Google Scholar 

  • Xu Z, Escamilla-Trevino LL, Zeng L, Lalgondar M, Bevan DR, Winkel BSJ, Mohamed A, Cheng C, Shih M, Poulton JE, Esen A (2004) Functional genomic analysis of Arabidopsis thaliana glycoside hydrolase family 1. Plant Mol Biol 55:343–367

    Article  Google Scholar 

  • Yamada R, Hasunuma T, Kondo A (2013) Endowing non-cellulolytic microorganisms with cellulolytic activity aiming for consolidated bioprocessing. Biotechnol Adv 31:754–763

    Article  Google Scholar 

  • Zouhar J, Vevodova J, Marek J, Damborsky J, Su X-D, Bryzobohaty B (2001) Insights into the functional architecture of the catalytic center of a maize β-glucosidase Zm-p60.1. Plant Physiol 127:973–985

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanlin Ouyang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ouyang, H., Xu, F. (2016). The Role and Applications of β-Glucosidases in Biomass Degradation and Bioconversion. In: Gupta, V. (eds) Microbial Enzymes in Bioconversions of Biomass. Biofuel and Biorefinery Technologies, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-43679-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43679-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43677-7

  • Online ISBN: 978-3-319-43679-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics