Skip to main content

Endo-1,4-β-glucanases: Role, Applications and Recent Developments

  • Chapter
  • First Online:

Part of the book series: Biofuel and Biorefinery Technologies ((BBT,volume 3))

Abstract

The biomass conversion processes are highly dependent on the use of efficient enzymes to degrade polymeric cellulose or hemicellulose into simple saccharides, sugars which can be fermented by microorganisms for the production of valuable fuel and chemicals. The cellulose hydrolysis involves enzymes such as endo-1,4-β-glucanases (EC 3.2.1.4), cellobiohydrolases (or exo-1,4-β-glucanases) (EC 3.2.1.91) and β-glucosidases (EC 3.2.1.21). Endo-β-(1,4)-glucanases (EGs) or β-(1,4)-d-glucan-4-glucanohydrolases (EC 3.2.1.4), which act randomly on soluble and insoluble β-(1,4)-glucan substrates. EGs breakdown cellulose by attacking the amorphous regions to produce more accessible new free chain ends for the action of cellobiohydrolases. The EG-I, II, III, and V, respectively, GH7, 5, 12, and 45 are most common in natural fungal cellulase mixes. EGs play an important role in increasing yield of fruit juices, beer filtration, and oil extraction, as well as improving the nutritive quality of bakery products and animal feed. Reducing sugar assay is the most convenient and reliable method for EG estimation. However, it is very conventional and time consuming. Recently, a specific and sensitive assay methods have been developed using substrate mixture comprises of benzylidene end-blocked 2-chloro-4-nitrophenyl-β-cellotrioside (BzCNPG3) and 4,6-O-benzylidene-4-methylumbelliferyl-β-cellotrioside (BzMUG3).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adsul MG, Singhvi MS, Gaikaiwari SA, Gokhale DV (2011) Development of biocatalysts for production of commodity chemicals from lignocellulosic biomass. Bioresour Technol 102:4304–4312

    Article  Google Scholar 

  • Baldrian P, Valaskova V (2008) Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol Rev 32:501–521

    Article  Google Scholar 

  • Bauer MW, Driskill LE, Callen W, Snead MA, Mathur EJ, Kelly RM (1999) An endoglucanase, EglA, from the hyperthermophilic archaeon Pyrococcus furiosus hydrolyzes β-1, 4 bonds in mixed-linkage (1–3), (1–4)-β-d-glucans and cellulose. J Bacteriol 181:284–290

    Google Scholar 

  • Bhat KM, Hay AJ, Claeyssens M, Wood TM (1990) Study of the mode of action and site-specificity of the endo-(1-4)-beta-d-glucanases of the fungus Penicillium pinophilum with normal, 1-3H-labelled, reduced and chromogenic cello-oligosaccharides. Biochem J 266:371–378

    Article  Google Scholar 

  • Bhat MK (2000) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18:355–383

    Article  Google Scholar 

  • Bok JD, Yernool DA, Eveleigh DE (1998) Purification, characterization, and molecular analysis of thermostable cellulases CelA and CelB from Thermotoga neapolitana. Appl Environ Microbiol 64:4774–4781

    Google Scholar 

  • Celestino KRS, Cunha RB, Felix CR (2006) Characterization of a β-glucanase produced by Rhizopus microsporus var. microsporus, and its potential for application in the brewing industry. BMC Biochem 7:23

    Article  Google Scholar 

  • Cherry JR, Fidantsef AL (2003) Directed evolution of industrial enzymes: an update. Curr Opin Biotechnol 14:438–443

    Article  Google Scholar 

  • Choct M (2001) Enzyme supplementation of poultry diets based on viscous cereals. In: Bedford M, Partridge G (eds) Enzymes in farm animal nutrition. CABI Publishing, Oxon, pp 145–160

    Google Scholar 

  • Chundawat SPS, Lipton MS, Purvine SO, Uppugundla N, Gao D, Balan V, Dale BE (2011) Proteomics-based compositional analysis of complex cellulase-hemicellulase mixtures. J Proteome Res 10:4365–4372

    Article  Google Scholar 

  • Claeyssens M, Henrissat B (1992) Specificity mapping of cellulolytic enzymes: classification into families of structurally related proteins confirmed by biochemical analysis. Protein Sci 1:1293–1297

    Article  Google Scholar 

  • Du J, Shao Z, Zhao H (2011) Engineering microbial factories for synthesis of value-added products. J Ind Microbiol Biotechnol 38:873–890

    Article  Google Scholar 

  • Foreman PK, Brown D, Dankmeyer L, Dean R, Diener S, Dunn-Coleman NS, Goedegebuur F, Houfek TD, England GJ, Kelley AS, Meerman HJ, Mitchell T, Mitchinson C, Olivares HA, Teunissen PJ, Yao J, Ward M (2003) Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei. J Biol Chem 278:31988–31997

    Article  Google Scholar 

  • Gomes I, Gomes J, Gomes DJ, Steiner W (2000) Simultaneous production of high activities of thermostable endoglucanase and β-glucosidase by the wild thermophilic fungus Thermoascus aurantiacus. Appl Microbiol Biotechnol 53:461–468

    Article  Google Scholar 

  • Grassick A, Murray PG, Thompson R, Collins CM, Byrnes L, Birrane G, Higgins TM, Tuohy MG (2004) Three-dimensional structure of a thermostable native cellobiohydrolase, CBH IB, and molecular characterization of the cel7 gene from the filamentous fungus, Talaromyces emersonii. Eur J Biochem 271:4495–4506

    Article  Google Scholar 

  • Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309–316

    Article  Google Scholar 

  • Himmel ME, Xu Q, Luo Y, Ding SY, Lamed R, Bayer EA (2010) Microbial enzyme systems for biomass conversion: emerging paradigms. Biofuels 1(2):323–341

    Article  Google Scholar 

  • Kanauchi M, Bamforth CW (2008) The relevance of different enzymes for the hydrolysis of β-glucans in malting and mashing. J Inst Brew 114(3):224–229

    Article  Google Scholar 

  • Lange JP (2007) Lignocellulose conversion: an introduction to chemistry, process and economics. Biofuel Bioprod Biorefin 1:39–48

    Article  Google Scholar 

  • Levy I, Shani Z, Shoseyov O (2002) Modification of polysaccharides and plant cell wall by endo-1,4-beta-glucanase and cellulose-binding domains. Biomol Eng 19:17–30

    Article  Google Scholar 

  • Li Y, Irwin DC, Wilson DB (2010) Increased crystalline cellulose activity via combinations of amino acid changes in the family 9 catalytic domain and family 3c cellulose binding module of Thermobifida fusca Cel9A. Appl Environ Microbiol 76:2582–2588

    Article  Google Scholar 

  • Libertini E, Li Y, McQueen-Mason SJ (2004) Phylogenetic analysis of the plant endo-beta-1,4-glucanase gene family. J Mol Evol 58:506–515

    Article  Google Scholar 

  • Mangan D, McCleary BV, Liadova A, Ivory R, McCormack N (2014) Quantitative fluorometric assay for the measurement of endo-1,4- β -glucanase. Carbohydr Res 395:47–51

    Article  Google Scholar 

  • Mathlouthi N, Mallet S, Saulinier L, Quemener B, Larbier M (2002) Effects of xylanase and beta-glucanase addition on performance, nutrient digestibility and physic-chemical conditions in the small intestine contents and caecal microflora of broiler chickens fed a wheat and barley-based diet. Anim Res 51:395–406

    Article  Google Scholar 

  • McCleary BV, McKie V, Draga A (2012) Measurement of endo-1,4-β-glucanase. Methods Enzymol 510:1–17

    Article  Google Scholar 

  • McCleary BV, Mangan D, Daly R, Fort S, Ivory R, McCormack N (2014) Novel substrates for the measurement of endo-1,4-β-glucanase (endo-cellulase). Carbohydr Res 385:9–17

    Article  Google Scholar 

  • Miettinen-Oinonen A, Londesborough J, Joutsjoki V, Lantto R, Vehmaanpera J (2004) Three cellulases from Melanocarpus albomyces for textile treatment at neutral pH. Enzyme Microb Technol 34:332–341

    Article  Google Scholar 

  • Ohmiya K, Sakka K, Karita S, Kimura T (1997) Structure of cellulases and their applications. Biotechnol Genet Eng Rev 14:365–414

    Article  Google Scholar 

  • Rahman M, Bhuiyan SH, Nirasawa S, Kitaoka M, Hayashi KJ (2002) Characterization of an endo-β-1,4-glucanase of Thermotoga maritima expressed in Escherichia coli. Appl Glycosci 49:487–495

    Article  Google Scholar 

  • Sandgren M, Stahlberg J, Mitchinson C (2005) Structural and biochemical studies of GH family 12 cellulases: improved thermal stability and ligand complexes. Prog Biophys Mol Biol 89:246–291

    Article  Google Scholar 

  • Sarria-Alfonso V, Sierra JS, Morales MA, Rojas IG, Sarmiento NM, Pinales P (2013) Culture media statistical optimization for bio-mass production of a ligninolytic fungus for future rice straw degradation. Indian J Microbiol 53(2):199–207

    Article  Google Scholar 

  • Sateesh L, Rodhe A, Naseeruddin S, Yadav K, Prasad Y, Rao L (2012) Simultaneous cellulase production, saccharification and detoxification using dilute acid hydrolysate of S. spontaneum with Trichoderma reesei NCIM 992 and Aspergillus niger. Indian J Microbiol 52:258–262

    Article  Google Scholar 

  • Sathitsuksanoh N, Zhu Z, Ho T-J, Bai M-D, Zhang Y-HP (2010) Bamboo saccharification through cellulose solvent based biomass pretreatment followed by enzymatic hydrolysis at ultra-low cellulase loadings. Bioresour Technol 101:4926–4929

    Article  Google Scholar 

  • Sipos B, Benko Z, Dienes D, Reczey K, Viikari L, Siika-aho M (2010) Characterisation of specific activities and hydrolytic properties of cell-wall-degrading enzymes produced by Trichoderma reesei Rut C30 on different carbon sources. Appl Biochem Biotechnol 161:347–364

    Article  Google Scholar 

  • Somerville C, Youngs H, Taylor C, Davis SC, Long SP (2010) Feedstocks for lignocellulosic biofuels. Science 13:790–792

    Article  Google Scholar 

  • Somogyi MJ (1952) Notes on sugar determination. Biol Chem 195:19–23

    Google Scholar 

  • Sweeney MD, Xu F (2012) Biomass converting enzymes as industrial biocatalysts for fuels and chemicals: recent developments. Catalysts 2:244–263

    Article  Google Scholar 

  • Urbanowicz BR, Bennett AB, Del Campillo E, Catala C, Hayashi T, Henrissat B, Hofte H, McQueen-Mason SJ, Patterson SE, Shoseyov O, Teeri TT, Rose JKC (2007) Structural organization and a standardized nomenclature for plant endo-1,4-beta-glucanases (cellulases) of glycosyl hydrolase family 9. Plant Physiol 144:1693–1696

    Article  Google Scholar 

  • Vlasenko E, Schulein M, Cherry J, Xu F (2010) Substrate specificity of family 5, 6, 7, 9, 12, and 45 endoglucanases. Bioresour Technol 101:2405–2411

    Article  Google Scholar 

  • Wang K, Luo H, Bai Y, Shi P, Huang H, Xue X, Yao B (2014) A thermophilic endo-1,4-β-glucanase from Talaromyces emersonii CBS394.64 with broad substrate specificity and great application potentials. Appl Microbiol Biotechnol 98:7051–7060

    Article  Google Scholar 

  • Wilson DB (2008) Three microbial strategies for plant cell wall degradation. Ann N Y Acad Sci 1125:289–297

    Article  Google Scholar 

  • Wilson DB (2009) Cellulases and biofuels. Curr Opin Biotechnol 20(3):295–299

    Article  Google Scholar 

  • Yeoman CJ, Han Y, Dodd D, Schroeder CM, Mackie RI, Cann IK (2010) Thermostable enzymes as biocatalysts in the biofuel industry. Adv Appl Microbiol 70:1–55

    Article  Google Scholar 

  • Yu L, Sun J, Li L (2013) PtrCel9A6, an endo-1,4-β-glucanase, is required for cell wall formation during xylem differentiation in populous. Mol Plant 6(6):1904–1917

    Article  Google Scholar 

  • Zhang Y-HP (2008) Reviving the carbohydrate economy via multi-product biorefineries. J Ind Microbiol Biotechnol 35:367–375

    Article  Google Scholar 

  • Zhang XZ, Zhang Y-HP (2013) Cellulases: characteristics, sources, production, and applications. In: Yang ST, El-Enshasy HA, Thongchul N (eds) Bioprocessing technologies in biorefinery for sustainable production of fuels, chemicals and polymers. Wiley, New York, pp 131–146

    Chapter  Google Scholar 

  • Zhu Z, Sathitsuksanoh N, Zhang P (2009) Direct quantitative determination of adsorbed cellulase on lignocellulosic biomass with its application to study cellulase desorption for potential recycling. Analyst 134:2267–2272

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neelamegam Annamalai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Annamalai, N., Rajeswari, M.V., Balasubramanian, T. (2016). Endo-1,4-β-glucanases: Role, Applications and Recent Developments. In: Gupta, V. (eds) Microbial Enzymes in Bioconversions of Biomass. Biofuel and Biorefinery Technologies, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-43679-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43679-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43677-7

  • Online ISBN: 978-3-319-43679-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics