Skip to main content

Cellobiohydrolases: Role, Mechanism, and Recent Developments

  • Chapter
  • First Online:

Part of the book series: Biofuel and Biorefinery Technologies ((BBT,volume 3))

Abstract

Cellobiohydrolases or exoglucanases are produced by various bacteria and fungi with catalytic modules belonging to families 5, 6, 7, 9, 48, and 74 glycoside hydrolases, which act at the chains end of cellulose resulting in release of glucose as well as cellobiose. The CBH I and II works processively from reducing and nonreducing ends of the cellulose chain, respectively. The catalytic module of CBHs is the tunnel structure formed by two surface loops that may covers entirety or part of active site evidenced that the mode of action proceeds in a processive manner as cellobiohydrolase progresses along the cellulose chain. CBHs are able to work actively in the crystalline region of cellulose, probably peeling them from the microcrystalline structure of Avicel. Although several assays have been proposed, no specific substrate as well as assay method to measure exoglucanases has been described till date. In recent days, several new approaches such as δ-sequence mediated integration, SCHEMA, and FoldX and a ‘consensus’ sequence have been developed to improve activity and stability of CBHs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdel-Shakour EH, Roushdy MM (2009) An investigation for cellulase activity of a novel antibiotic producing Streptomyces sp. isolate H-1 from Egyptian mangrove sediment. Acad Arena 1(5):89–98

    Google Scholar 

  • Bhat MK (2000) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18:355–383

    Article  Google Scholar 

  • Boer H, Teeri TT, Koivula A (2000) Characterization of Trichoderma reesei cellobiohydrolase Cel7A secreted from Pichia pastoris using two different promoters. Biotechnol Bioeng 5:486–494

    Article  Google Scholar 

  • Boisset C, Armand S, Drouillard S, Chanzy H, Driguez H, Henrissat B (1998) Structure–function relationships in cellulases: the enzymatic degradation of insoluble cellulose. In: Claeyssens M, Nerinckx W, Piens KM (eds) Carbohydrases from Trichoderma reesei and other microorganisms. Royal Society of Chemistry, London, pp 124–132

    Google Scholar 

  • Boisset C, Fraschini C, Schulein M, Henrissat B, Chanzy H (2000) Imaging the enzymatic digestion of bacterial cellulose ribbons reveals the endo character of the cellobiohydrolase Cel6A from Humicola insolens and its mode of synergy with cellobiohydrolase Cel7A. Appl Environ Microbiol 66:1444–1452

    Article  Google Scholar 

  • Claeyssens S, Lavoinne A, Freselragot M, Bois-Joyeux B, Chanez M, Peret J (1990) Metabolic changes in rats fed a low protein-diet during post-weaning growth. Metabol Clin Exp 39:676–681

    Article  Google Scholar 

  • Dashtban M, Schraft H, Qin W (2009) Fungal bioconversion of lignocellulosic residues: opportunities and perspectives. Int J Biol Sci 5:578–595

    Article  Google Scholar 

  • Deshpande MV, Eriksson KE, Pettersson LG (1984) An assay for selective determination of exo-1,4-beta-glucanases in a mixture of cellulolytic enzymes. Anal Biochem 138:481–487

    Article  Google Scholar 

  • Divne C, Stahlberg J, Reinikainen T, Ruohonen L, Petterson G, Knowles JK, Teeri TT, Jones TA (1994) The 3-dimensional crystal-structure of the catalytic core of cellobiohydrolase-I from Trichoderma reesei. Science 265:524–528

    Article  Google Scholar 

  • Divne C, Stahlberg J, Teeri TT, Alwyn JT (1998) High-resolution crystal structures reveal how a cellulose chain is bound in the 50 angstrom long tunnel of cellobiohydrolase I from Trichoderma reesei. J Mol Biol 275:309–325

    Article  Google Scholar 

  • Gum EK Jr, Brown RD Jr (1976) Structural characteristics of a glycoprotein cellulase, 1,4-β-d-glucan cellobiohydrolase from Trichoderma viride. Biochim Biophys Acta 446:371–376

    Article  Google Scholar 

  • Heinzelman P, Komor R, Kanaan A, Romero P, Yu X, Mohler S, Snow C, Arnold F (2010) Efficient screening of fungal cellobiohydrolase class I enzymes for thermostabilizing sequence blocks by SCHEMA structure-guided recombination. Protein Eng Des Sel 23(11):871–880

    Article  Google Scholar 

  • Henrissat B (1998) Enzymatic cellulose degradation. Cellul Commun 5:84–90

    Google Scholar 

  • Hong J, Yang H, Zhang K, Liu C, Zou S, Zhang M (2014) Development of a cellulolytic Saccharomyces cerevisiae strain with enhanced cellobiohydrolase activity. World J Microbiol Biotechnol 30:2985–2993

    Article  Google Scholar 

  • Irwin DC, Spezio M, Walker LP, Wilson DB (1993) Activity studies of eight purified cellulases: specificity, synergism and binding domain effects. Biotechnol Bioeng 42:1002–1013

    Article  Google Scholar 

  • Kelleher TJ, Montenecourt BS, Eveleigh DE (1987) Cellobiose-quinone oxidoreductase—application in monitoring cellobiohydrolase purification. Appl Microbiol Biotechnol 27:299–305

    Article  Google Scholar 

  • Koivula A, Ruohonen L, Wohlfahrt G, Reinikainen T, Teeri TT, Piens K, Claeyssens M, Weber M, Vasella A, Becker D, Sinnott ML, Zou J-Y, Kleywegt GJ, Szardenings M, Stahlberg J, Jones TA (2002) The active site of cellobiohydrolase Cel6A from Trichoderma reesei: the roles of aspartic acids D221 and D175. J Am Chem Soc 124:10015–10024

    Article  Google Scholar 

  • Komor RS, Romero PA, Xie CB, Arnold FH (2012) Highly thermostable fungal cellobioh ydrolase I (Cel7A) engineered using predictive methods. Protein Eng Des Sel 25(12):827–833

    Article  Google Scholar 

  • Takahashi M, Takahashi H, Nakano Y, Konishi T, Terauchi R, Takeda T (2010) Characterization of a cellobiohydrolase (MoCel6A) Produced by Magnaporthe oryzae. Appl Environ Miccrobiol 76(19):6583–6590

    Article  Google Scholar 

  • Maki M, Leung KT, Qin W (2009) The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. Int J Biol Sci 5(5):500–516

    Article  Google Scholar 

  • Mazzoli M, Lamberti C, Pessione E (2012) Engineering new metabolic capabilities in bacteria: lessons from recombinant cellulolytic strategies. Trends Biotechnol 30(2):111–119

    Article  Google Scholar 

  • Medve J, Karlsson J, Lee D, Tjerneld F (1998) Hydrolysis of microcrystalline cellulose by cellobiohydrolase I and endoglucanase II from Trichoderma reesei: adsorption, sugar production pattern, and synergism of the enzymes. Biotechnol Bioeng 59(5):621–634

    Article  Google Scholar 

  • Nidetzky B, Steiner W, Hayn M, Claeyssens M (1994) Cellulose hydrolysis by the cellulases from Trichoderma reesei: a new model for synergistic interaction. Biochem J 298:705–710

    Article  Google Scholar 

  • Reverbel-Leroy C, Page S, Belaich A, Belaich JP, Tardif C (1997) The processive endocellulase CelF, a major component of the Clostridium cellulolyticum cellulosome: purification and characterization of the recombinant form. J Bacteriol 179:46–52

    Google Scholar 

  • Riske FJ, Eveleigh DE, Macmillan JD (1990) Double-antibody sandwich enzyme-linked immunosorbent assay for cellobiohydrolase I. Appl Environ Microbiol 56(11):3261–3265

    Google Scholar 

  • Rouvinen J, Bergfors T, Teeri TT, Knowles JKC, Jones TA (1990) Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei. Science 249:380–386

    Article  Google Scholar 

  • Stahlberg J, Divne C, Koivula A, Piens K, Claeyssens M, Teeri TT (1996) Activity studies and crystal structures of catalytically deficient mutants of cellobiohydrolase I from Trichoderma reesei. J Mol Biol 264:337–349

    Article  Google Scholar 

  • Suominen PL, Mantyla AL, Karhunen T, Hakola S, Nevalainen H (1993) High frequency one-step gene replacement in Trichoderma reesei. II. Effects of deletions of individual cellulase genes. Mol Gen Genet 241(5–6):523–530

    Article  Google Scholar 

  • Teeri TT (1997) Crystalline cellulose degradation: new insights into the function of cellobiohydrolases. Trends Biotechnol 15:160–167

    Article  Google Scholar 

  • van Tilbeurgh H, Pettersson G, Bhikabhai R, De Boeck H, Claeyssens M (1985) Studies of the cellulolytic system of Trichoderma reesei QM 9414. Reaction specificity and thermodynamics of interactions of small substrates and ligands with the 1,4-beta-glucan cellobiohydrolase II. Eur J Biochem 148:329–334

    Article  Google Scholar 

  • Varrot A, Frandsen TP, Driguez H, Davies GJ (2002) Structure of the Humicola insolens cellobiohydrolase Cel6A D416A mutant in complex with a non-hydrolysable substrate analogue, methyl cellobiosyl-4-thio-β-cellobioside at 1.9 Å. Acta Crystallogr D Biol Crystallogr 58:2201–2204

    Article  Google Scholar 

  • Vocadlo DJ, Davies GJ (2008) Mechanistic insights into glycosidase chemistry. Curr Opin Chem Biol 12:539–555

    Article  Google Scholar 

  • Wood TM, Bhat KM (1988) Methods for measuring cellulase activities. Methods Enzymol 160:87–117

    Article  Google Scholar 

  • Wood TM (1992) Fungal cellulases. Biochem Soc Trans 20:46–53

    Article  Google Scholar 

  • Zhang XZ, Zhang YHP (2013) Cellulases: characteristics, sources, production, and applications. In: Yang S-T, El-Enshasy HA, Thongchul N (eds) Bioprocessing technologies in biorefinery for sustainable production of fuels, chemicals, and polymers. Wiley, New York, pp 131–146

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neelamegam Annamalai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Annamalai, N., Rajeswari, M.V., Sivakumar, N. (2016). Cellobiohydrolases: Role, Mechanism, and Recent Developments. In: Gupta, V. (eds) Microbial Enzymes in Bioconversions of Biomass. Biofuel and Biorefinery Technologies, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-43679-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43679-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43677-7

  • Online ISBN: 978-3-319-43679-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics