Skip to main content

Fungal Aryl-Alcohol Oxidase in Lignocellulose Degradation and Bioconversion

  • Chapter
  • First Online:
Microbial Enzymes in Bioconversions of Biomass

Part of the book series: Biofuel and Biorefinery Technologies ((BBT,volume 3))

Abstract

Bioconversion of lignocellulosic materials draws much interest as they are regarded as a renewable source of energy and platform chemicals. The enzyme aryl-alcohol oxidase (AAO) has been extensively studied, revealing its involvement in biodegradation of lignocellulose by several well-known white-rot fungi. Its physiological role is to supply hydrogen peroxide from the oxidation of aromatic substrates derived from fungal secondary metabolism or lignin degradation, which can: (i) be used by peroxidases to oxidise lignin; or (ii) give rise, through Fenton reaction, to hydroxyl radical that is able (itself) to depolymerise cellulose and oxidise lignin. Several features make this enzyme an appealing biocatalyst that has shown its potential for industrial applications: AAO has a broad range of substrates that it oxidises by stereoselective hydride transfer reaction mechanism, and reduces atmospheric molecular oxygen as a co-substrate producing hydrogen peroxide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAO:

Aryl-alcohol oxidase

DFF:

2,5-Diformylfuran

FDCA:

2,5-Furandicarboxylic acid

FFCA:

5-Formylfurancarboxylic acid

GMC:

Glucose-methanol-choline oxidase/dehydrogenase superfamily

HMF:

5-Hydroxymethylfurfural

HMFCA:

5-Hydroxymethylfurancarboxylic acid

LiP:

Lignin peroxidase

MnP:

Manganese peroxidase

PEF:

Poly(ethylene furandicarbolylate)

UPO:

Unspecific peroxygenase

VP:

Versatile peroxidase

References

  • Akhtar M, Blanchette RA, Kirk TK (1997) Fungal delignification and biomechanical pulping of wood. In: Scheper T (ed) Advances in biochemical engineering/biotechnology. Springer, Berlin, pp 160–195

    Google Scholar 

  • Arantes V, Jellison J, Goodell B (2012) Peculiarities of brown-rot fungi and biochemical Fenton reaction with regard to their potential as a model for bioprocessing biomass. Appl Microbiol Biotechnol 94:323–338

    Article  Google Scholar 

  • Ayers AR, Ayers SB, Eriksson K-E (1978) Cellobiose oxidase, purification and partial characterization of a hemoprotein from Sporotrichum pulverulentum. Eur J Biochem 90:171–181

    Article  Google Scholar 

  • Baldrian P, Valaskova V (2008) Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol Rev 32:501–521

    Article  Google Scholar 

  • Bao WJ, Usha SN, Renganathan V (1993) Purification and characterization of cellobiose dehydrogenase, a novel extracellular hemoflavoenzyme from the white-rot fungus Phanerochaete chrysosporium. Arch Biochem Biophys 300:705–713

    Article  Google Scholar 

  • Bao WL, Fukushima Y, Jensen KA, Moen MA, Hammel KE (1994) Oxidative degradation of non-phenolic lignin during lipid peroxidation by fungal manganese peroxidase. FEBS Lett 354:297–300

    Article  Google Scholar 

  • Barrasa JM, Gutiérrez A, Escaso V, Guillén F, Martínez MJ, Martínez AT (1998) Electron and fluorescence microscopy of extracellular glucan and aryl-alcohol oxidase during wheat-straw degradation by Pleurotus eryngii. Appl Environ Microbiol 64:325–332

    Google Scholar 

  • Bes B, Ranjeva R, Boudet AM (1983) Evidence for the involvement of activated oxygen in fungal degradation of lignocellulose. Biochimie 65:283–289

    Article  Google Scholar 

  • Blanchette RA, Burnes TA, Eerdmans MM, Akhtar M (1992) Evaluating isolates of Phanerochaete chrysosporium and Ceriporiopsis subvermispora for use in biological pulping processes. Holzforschung 46:109–115

    Article  Google Scholar 

  • Bourbonnais R, Paice MG (1988) Veratryl alcohol oxidases from the lignin degrading basidiomycete Pleurotus sajor-caju. Biochem J 255:445–450

    Article  Google Scholar 

  • Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chem 12:539–554

    Article  Google Scholar 

  • Breen A, Singleton FL (1999) Fungi in lignocellulose breakdown and biopulping. Curr Opin Biotechnol 10:252–258

    Article  Google Scholar 

  • Camarero S, Barrasa JM, Pelayo M, Martínez AT (1998) Evaluation of Pleurotus species for wheat-straw biopulping. J Pulp Pap Sci 24:197–203

    Google Scholar 

  • Camarero S, Böckle B, Martínez MJ, Martínez AT (1996) Manganese-mediated lignin degradation by Pleurotus pulmonarius. Appl Environ Microbiol 62:1070–1072

    Google Scholar 

  • Carey JS, Laffan D, Thomson C, Williams MT (2006) Analysis of the reactions used for the preparation of drug candidate molecules. Org Biomol Chem 4:2337–2347

    Article  Google Scholar 

  • Carro J, Ferreira P, Rodríguez L, Prieto A, Serrano A, Balcells B, Ardá A, Jiménez-Barbero J, Gutiérrez A, Ullrich R, Hofrichter M, Martínez AT (2015) 5-Hydroxymethylfurfural conversion by fungal aryl-alcohol oxidase and unspecific peroxygenase. FEBS J 282(16):3218–3229

    Google Scholar 

  • Cavener DR (1992) GMC oxidoreductases. A newly defined family of homologous proteins with diverse catalytic activities. J Mol Biol 223:811–814

    Article  Google Scholar 

  • Daniel G, Volc J, Filonova L, Plihal O, Kubátová E, Halada P (2007) Characteristics of Gloeophyllum trabeum alcohol oxidase, an extracellular source of H2O2 in brown rot decay of wood. Appl Environ Microbiol 73:6241–6253

    Article  Google Scholar 

  • Daniel G, Volc J, Kubátová E (1994) Pyranose oxidase, a major source of H2O2 during wood degradation by Phanerochaete chrysosporium, Trametes versicolor, and Oudemansiella mucida. Appl Environ Microbiol 60:2524–2532

    Google Scholar 

  • de Albuquerque NCP, de Gaitani CM, de Oliveira ARM (2015) A new and fast DLLME-CE method for the enantioselective analysis of zopiclone and its active metabolite after fungal biotransformation. J Pharm Biomed Anal 109:192–201

    Article  Google Scholar 

  • de Jong E, Cazemier AE, Field JA, de Bont JAM (1994) Physiological role of chlorinated aryl alcohols biosynthesized de novo by the white rot fungus Bjerkandera sp. strain BOS55. Appl Environ Microbiol 60:271–277

    Google Scholar 

  • de Jong E, Field JA, Dings JAFM, Wijnberg JBPA, de Bont JAM (1992) De novo biosynthesis of chlorinated aromatics by the white-rot fungus Bjerkandera sp. BOS55. Formation of 3-chloro-anisaldehyde from glucose. FEBS Lett 305:220–224

    Article  Google Scholar 

  • Dijkman WP, Fraaije MW (2014) Discovery and characterization of a 5-hydroxymethylfurfural oxidase from Methylovorus sp strain MP688. Appl Environ Microbiol 80:1082–1090

    Article  Google Scholar 

  • Dijkman WP, Groothuis DE, Fraaije MW (2014) Enzyme-catalyzed oxidation of 5-hydroxymethylfurfural to furan-2,5-dicarboxylic acid. Angew Chem 126:6633–6636

    Article  Google Scholar 

  • Dijkman WP, Binda C, Fraaije MW, Mattevi A (2015) Structure-based enzyme tailoring of 5-hydroxymethylfurfural oxidase. ACS Catal 5:1833–1839

    Article  Google Scholar 

  • Eriksson K-E, Pettersson B, Volc J, Musílek V (1986) Formation and partial characterization of glucose-2-oxidase, a H2O2 producing enzyme in Phanerochaete chrysosporium. Appl Microbiol Biotechnol 23:257–262

    Article  Google Scholar 

  • Escalettes F, Turner NJ (2008) Directed evolution of galactose oxidase: generation of enantioselective secondary alcohol oxidases. ChemBioChem 9:857–860

    Article  Google Scholar 

  • Evans CS, Dutton MV, Guillén F, Veness RG (1994) Enzymes and small molecular mass agents involved with lignocellulose degradation. FEMS Microbiol Rev 13:235–240

    Article  Google Scholar 

  • Faison BD, Kirk TK (1983) Relationship between lignin degradation and production of reduced oxygen species by Phanerochaete chrysosporium. Appl Environ Microbiol 46:1140–1145

    Google Scholar 

  • Farmer VC, Henderson MEK, Russell JD (1960) Aromatic-alcohol-oxidase activity in the growth medium of Polystictus versicolor. Biochem J 74:257–262

    Article  Google Scholar 

  • Fernández IS, Ruiz-Dueñas FJ, Santillana E, Ferreira P, Martínez MJ, Martínez AT, Romero A (2009) Novel structural features in the GMC family of oxidoreductases revealed by the crystal structure of fungal aryl-alcohol oxidase. Acta Crystallogr D Biol Crystallogr 65:1196–1205

    Article  Google Scholar 

  • Fernández-Fueyo E, Ruiz-Dueñas FJ, Ferreira P, Floudas D, Hibbett DS, Canessa P, Larrondo L, James TY, Seelenfreund D, Lobos S, Polanco R, Tello M, Honda Y, Watanabe T, Watanabe T, Ryu JS, Kubicek CP, Schmoll M, Gaskell J, Hammel KE, St. John FJ, Vanden Wymelenberg A, Sabat G, Bondurant SS, Syed K, Yadav J, Doddapaneni H, Subramanian V, Lavín JL, Oguiza JA, Perez G, Pisabarro AG, Ramírez L, Santoyo F, Master E, Coutinho PM, Henrissat B, Lombard V, Magnuson JK, Kües U, Hori C, Igarashi K, Samejima M, Held BW, Barry K, LaButti K, Lapidus A, Lindquist E, Lucas S, Riley R, Salamov A, Hoffmeister D, Schwenk D, Hadar Y, Yarden O, de Vries RP, Wiebenga A, Stenlid J, Eastwood DC, Grigoriev IV, Berka R, Blanchette RA, Kersten P, Martínez AT, Vicuña R, Cullen D (2012) Comparative genomics of Ceriporiopisis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis. Proc Natl Acad Sci USA 109:5458–5463

    Article  Google Scholar 

  • Ferraz A, Guerra A, Mendonça R, Masarin F, Vicentim MP, Aguiar A, Pavan PC (2008) Technological advances and mechanistic basis for fungal biopulping. Enzyme Microb Technol 43:178–185

    Article  Google Scholar 

  • Ferreira P, Carro J, Serrano A, Martínez AT (2015) A survey of genes encoding H2O2-producing GMC oxidoreductases in 10 Polyporales genomes. Mycologia 107:1105–1119

    Google Scholar 

  • Ferreira P, Hernández-Ortega A, Herguedas B, Rencoret J, Gutiérrez A, Martínez MJ, Jiménez-Barbero J, Medina M, Martínez AT (2010) Kinetic and chemical characterization of aldehyde oxidation by fungal aryl-alcohol oxidase. Biochem J 425:585–593

    Article  Google Scholar 

  • Ferreira P, Medina M, Guillén F, Martínez MJ, van Berkel WJH, Martínez AT (2005) Spectral and catalytic properties of aryl-alcohol oxidase, a fungal flavoenzyme acting on polyunsaturated alcohols. Biochem J 389:731–738

    Article  Google Scholar 

  • Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B, Martínez AT, Otillar R, Spatafora JW, Yadav JS, Aerts A, Benoit I, Boyd A, Carlson A, Copeland A, Coutinho PM, de Vries RP, Ferreira P, Findley K, Foster B, Gaskell J, Glotzer D, Górecki P, Heitman J, Hesse C, Hori C, Igarashi K, Jurgens JA, Kallen N, Kersten P, Kohler A, Kües U, Kumar TKA, Kuo A, LaButti K, Larrondo LF, Lindquist E, Ling A, Lombard V, Lucas S, Lundell T, Martin R, McLaughlin DJ, Morgenstern I, Morin E, Murat C, Nolan M, Ohm RA, Patyshakuliyeva A, Rokas A, Ruiz-Dueñas FJ, Sabat G, Salamov A, Samejima M, Schmutz J, Slot JC, St. John F, Stenlid J, Sun H, Sun S, Syed K, Tsang A, Wiebenga A, Young D, Pisabarro A, Eastwood DC, Martin F, Cullen D, Grigoriev IV, Hibbett DS (2012) The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336:1715–1719

    Article  Google Scholar 

  • Forney LJ, Reddy CA, Tien M, Aust SD (1982) The involvement of hydroxyl radical derived from hydrogen peroxide in lignin degradation by the white rot fungus Phanerochaete chrysosporium. J Biol Chem 257:11455–11462

    Google Scholar 

  • Fraatz MA, Zorn H (2011) Fungal flavours. In: Hofrichter M (ed) The mycota. X industrial applications. Springer, Berlin, pp 249–268

    Chapter  Google Scholar 

  • Gallagher IM, Fraser MA, Evans CS, Atkey PT (1989) Ultrastructural localization of lignocellulose-degrading enzymes. In: Lewis NG, Paice MG (eds) ACS symposium “plant cell-wall polymers: biogenesis and biodegradation”, vol 399, American Chemical Society, pp 426–442

    Google Scholar 

  • Gellerstedt G, Henriksson G (2008) Lignins: major sources, structure and properties. In: Belgacem M, Gandini A (eds) Monomers, polymers and composites from renewable resources. Elsevier, Amsterdam, pp 201–224

    Chapter  Google Scholar 

  • Giles RL, Galloway ER, Zackeru JC, Naithani V, Parrow MW (2014) Two stage fungal biopulping solubilizes lignocellulosic carbohydrates without supplemental enzymatic hydrolysis. Int Biodeterior Biodegradation 86:265–271

    Article  Google Scholar 

  • Goetghebeur M, Brun S, Galzy P, Nicolas M (1993) Benzyl alcohol oxidase and laccase synthesis in Botrytis cinerea. Biosci Biotechnol Biochem 57:1380–1381

    Article  Google Scholar 

  • Gómez-Toribio V, García-Martín AB, Martínez MJ, Martínez AT, Guillén F (2009) Induction of extracellular hydroxyl radical production by white-rot fungi through quinone redox cycling. Appl Environ Microbiol 75:3944–3953

    Article  Google Scholar 

  • Goodell B, Jellison J, Liu J, Daniel G, Paszczynski A, Fekete F, Krishnamurthy S, Jun L, Xu G (1997) Low molecular weight chelators and phenolic compounds isolated from wood decay fungi and their role in the fungal biodegradation of wood. J Biotechnol 53:133–162

    Article  Google Scholar 

  • Green F III, Clausen CA, Larsen MJ, Highley TL (1992) Immuno-scanning electron microscopic localization of extracellular wood-degrading enzymes within the fibrillar sheath of the brown-rot fungus Postia placenta. Can J Microbiol 38:898–904

    Article  Google Scholar 

  • Guillén F, Evans CS (1994) Anisaldehyde and veratraldehyde acting as redox cycling agents for H2O2 production by Pleurotus eryngii. Appl Environ Microbiol 60:2811–2817

    Google Scholar 

  • Guillén F, Martínez AT, Martínez MJ (1990) Production of hydrogen peroxide by aryl-alcohol oxidase from the ligninolytic fungus Pleurotus eryngii. Appl Microbiol Biotechnol 32:465–469

    Article  Google Scholar 

  • Guillén F, Martínez AT, Martínez MJ (1992) Substrate specificity and properties of the aryl-alcohol oxidase from the ligninolytic fungus Pleurotus eryngii. Eur J Biochem 209:603–611

    Article  Google Scholar 

  • Guillén F, Martínez AT, Martínez MJ, Evans CS (1994) Hydrogen peroxide-producing system of Pleurotus eryngii involving the extracellular enzyme aryl-alcohol oxidase. Appl Microbiol Biotechnol 41:465–470

    Google Scholar 

  • Gutiérrez A, Caramelo L, Prieto A, Martínez MJ, Martínez AT (1994) Anisaldehyde production and aryl-alcohol oxidase and dehydrogenase activities in ligninolytic fungi from the genus Pleurotus. Appl Environ Microbiol 60:1783–1788

    Google Scholar 

  • Halliwell G (1965) Catalytic decomposition of cellulose under biological conditions. Biochem J 95:35–40

    Article  Google Scholar 

  • Hanke PD (2012) Enzymatic oxidation of hydroxymethylfurfural. Patent (USA) 8,183,020 B2

    Google Scholar 

  • Hernández-Ortega A, Ferreira P, Martínez AT (2012a) Fungal aryl-alcohol oxidase: a peroxide-producing flavoenzyme involved in lignin degradation. Appl Microbiol Biotechnol 93:1395–1410

    Article  Google Scholar 

  • Hernández-Ortega A, Ferreira P, Merino P, Medina M, Guallar V, Martínez AT (2012b) Stereoselective hydride transfer by aryl-alcohol oxidase, a member of the GMC superfamily. ChemBioChem 13:427–435

    Article  Google Scholar 

  • Higuchi T (1997) Biochemistry and molecular biology of wood. Springer, London

    Book  Google Scholar 

  • Iwahara S, Nishihira T, Jomori T, Kuwahara M, Higuchi T (1980) Enzymic oxidation of α, β-unsaturated alcohols in the side chains of lignin-related aromatic compounds. J Ferment Technol 58:183–188

    Google Scholar 

  • Jensen KA Jr, Evans KMC, Kirk TK, Hammel KE (1994) Biosynthetic pathway for veratryl alcohol in the ligninolytic fungus Phanerochaete chrysosporium. Appl Environ Microbiol 60:709–714

    Google Scholar 

  • Karinen R, Vilonen K, Niemelä M (2011) Biorefining: heterogeneously catalyzed reactions of carbohydrates for the production of furfural and hydroxymethylfurfural. Chemsuschem 4:1002–1016

    Article  Google Scholar 

  • Kersten P, Cullen D (2014) Copper radical oxidases and related extracellular oxidoreductases of wood-decay Agaricomycetes. Fungal Genet Biol 72:124–130

    Article  Google Scholar 

  • Kersten PJ, Kirk TK (1987) Involvement of a new enzyme, glyoxal oxidase, in extracellular H2O2 production by Phanerochaete chrysosporium. J Bacteriol 169:2195–2201

    Google Scholar 

  • Kimura Y, Asada Y, Kuwahara M (1990) Screening of basidiomycetes for lignin peroxidase genes using a DNA probe. Appl Microbiol Biotechnol 32:436–442

    Article  Google Scholar 

  • Kirk TK, Farrell RL (1987) Enzymatic “combustion”: the microbial degradation of lignin. Annu Rev Microbiol 41:465–505

    Article  Google Scholar 

  • Koopman F, Wierckx N, de Winde JH, Ruijssenaars HJ (2010) Efficient whole-cell biotransformation of 5-(hydroxymethyl)furfural into FDCA, 2,5-furandicarboxylic acid. Bioresour Technol 101:6291–6296

    Article  Google Scholar 

  • Krings U, Berger RG (1998) Biotechnological production of flavours and fragrances. Appl Microbiol Biotechnol 49:1–8

    Article  Google Scholar 

  • Lapadatescu C, Bonnarme P (1999) Production of aryl metabolites in solid-state fermentations of the white-rot fungus Bjerkandera adusta. Biotechnol Lett 21:763–769

    Article  Google Scholar 

  • Lapadatescu C, Giniès C, Le Quéré J-L, Bonnarme P (2000) Novel scheme for biosynthesis of aryl metabolites from l-phenylalanine in the fungus Bjerkandera adusta. Appl Environ Microbiol 66:1517–1522

    Article  Google Scholar 

  • Lomascolo A, Uzan-Boukhris E, Herpoel-Gimbert I, Sigoillot JC, Lesage-Meessen L (2011) Peculiarities of Pycnoporus species for applications in biotechnology. Appl Microbiol Biotechnol 92:1129–1149

    Article  Google Scholar 

  • Martínez AT, Rencoret J, Nieto L, Jiménez-Barbero J, Gutiérrez A, del Río JC (2011) Selective lignin and polysaccharide removal in natural fungal decay of wood as evidenced by in situ structural analyses. Environ Microbiol 13:96–107

    Article  Google Scholar 

  • Martínez AT, Speranza M, Ruiz-Dueñas FJ, Ferreira P, Camarero S, Guillén F, Martínez MJ, Gutiérrez A, del Río JC (2005) Biodegradation of lignocellulosics: microbiological, chemical and enzymatic aspects of fungal attack to lignin. Int Microbiol 8:195–204

    Google Scholar 

  • Martinez D, Challacombe J, Morgenstern I, Hibbett DS, Schmoll M, Kubicek CP, Ferreira P, Ruiz-Dueñas FJ, Martínez AT, Kersten P, Hammel KE, Vanden Wymelenberg A, Gaskell J, Lindquist E, Sabat G, Bondurant SS, Larrondo LF, Canessa P, Vicuña R, Yadav J, Doddapaneni H, Subramanian V, Pisabarro AG, Lavín JL, Oguiza JA, Master E, Henrissat B, Coutinho PM, Harris P, Magnuson JK, Baker SE, Bruno K, Kenealy W, Hoegger PJ, Kues U, Ramaiya P, Lucas S, Salamov A, Shapiro H, Tu H, Chee CL, Misra M, Xie G, Teter S, Yaver D, James T, Mokrejs M, Pospisek M, Grigoriev IV, Brettin T, Rokhsar D, Berka R, Cullen D (2009) Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proc Natl Acad Sci USA 106:1954–1959

    Article  Google Scholar 

  • Masarin F, Pavan PC, Vicentim MP, Souza-Cruz PB, Loguercio-Leite C, Ferraz A (2009) Laboratory and mill scale evaluation of biopulping of Eucalyptus grandis Hill ex Maiden with Phanerochaete chrysosporium RP-78 under non-aseptic conditions. Holzforschung 63:259–263

    Article  Google Scholar 

  • Matsuda T, Yamanaka R, Nakamura K (2009) Recent progress in biocatalysis for asymmetric oxidation and reduction. Tetrahedron-Asymmetry 20:513–557

    Article  Google Scholar 

  • Moreau C, Belgacem MN, Gandini A (2004) Recent catalytic advances in the chemistry of substituted furans from carbohydrates and in the ensuing polymers. Top Catal 27:11–30

    Article  Google Scholar 

  • Muheim A, Leisola MSA, Schoemaker HE (1990a) Aryl-alcohol oxidase and lignin peroxidase from the white-rot fungus Bjerkandera adusta. J Biotechnol 13:159–167

    Article  Google Scholar 

  • Muheim A, Waldner R, Leisola MSA, Fiechter A (1990b) An extracellular aryl-alcohol oxidase from the white-rot fungus Bjerkandera adusta. Enzyme Microb Technol 12:204–209

    Article  Google Scholar 

  • Niemenmaa O, Uusi-Rauva A, Hatakka A (2008) Demethoxylation of [O14CH3]-labelled lignin model compounds by the brown-rot fungi Gloeophyllum trabeum and Poria (Postia) placenta. Biodegradation 19:555–565

    Article  Google Scholar 

  • Nishida A, Eriksson K-E (1987) Formation, purification, and partial characterization of methanol oxidase, a H2O2-producing enzyme in Phanerochaete chrysosporium. Biotechnol Appl Biochem 9:325–338

    Google Scholar 

  • Okamoto K, Narayama S, Katsuo A, Shigematsu I, Yanase H (2002) Biosynthesis of p-anisaldehyde by the white-rot basidiomycete Pleurotus ostreatus. J Biosci Bioeng 93:207–210

    Article  Google Scholar 

  • Otjen L, Blanchette RA (1986) A discussion of microstructural changes in wood during decomposition by white rot basidiomycetes. Can J Bot 64:905–911

    Article  Google Scholar 

  • Overhage J, Steinbüchel A, Priefert H (2003) Highly efficient biotransformation of eugenol to ferulic acid and further conversion to vanillin in recombinant strains of Escherichia coli. Appl Environ Microbiol 69:6569–6576

    Article  Google Scholar 

  • Papageorgiou GZ, Tsanaktsis V, Bikiaris DN (2014) Synthesis of poly(ethylene furandicarboxylate) polyester using monomers derived from renewable resources: thermal behavior comparison with PET and PEN. Phys Chem Chem Phys 16:7946–7958

    Article  Google Scholar 

  • Patel RN (2013) Biocatalytic synthesis of chiral alcohols and amino acids for development of pharmaceuticals. Biomolecules 3:741–777

    Article  Google Scholar 

  • Priefert H, Rabenhorst J, Steinbüchel A (2001) Biotechnological production of vanillin. Appl Microbiol Biotechnol 56:296–314

    Article  Google Scholar 

  • Rasmussen ML, Shrestha P, Khanal SK, Pometto AL, van Leeuwen J (2010) Sequential saccharification of corn fiber and ethanol production by the brown rot fungus Gloeophyllum trabeum. Bioresour Technol 101:3526–3533

    Article  Google Scholar 

  • Romero E, Ferreira P, Martínez AT, Martínez MJ (2009) New oxidase from Bjerkandera arthroconidial anamorph that oxidizes both phenolic and nonphenolic benzyl alcohols. Biochim Biophys Acta 1794:689–697

    Article  Google Scholar 

  • Romero E, Martínez AT, Martínez MJ (2010) Manganese peroxidase and aryl-alcohol oxidase: a ligninolytic tandem in Bjerkandera arthroconidial anamorph. In: Proc OxiZymes in Leipzig, 14–16 June

    Google Scholar 

  • Rosatella AA, Simeonov SP, Frade RFM, Afonso CAM (2011) 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications. Green Chem 13:754–793

    Article  Google Scholar 

  • Ruiz-Dueñas FJ, Lundell T, Floudas D, Nagy LG, Barrasa JM, Hibbett DS, Martínez AT (2013) Lignin-degrading peroxidases in Polyporales: an evolutionary survey based on ten sequenced genomes. Mycologia 105:1428–1444

    Article  Google Scholar 

  • Ruiz-Dueñas FJ, Martínez AT (2009) Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this. Microb Biotechnol 2:164–177

    Article  Google Scholar 

  • Sannia G, Limongi P, Cocca E, Buonocore F, Nitti G, Giardina P (1991) Purification and characterization of a veratryl alcohol oxidase enzyme from the lignin degrading basidiomycete Pleurotus ostreatus. Biochim Biophys Acta 1073:114–119

    Article  Google Scholar 

  • Schwarze FWMR, Baum S, Fink S (2000) Dual modes of degradation by Fistulina hepatica in xylem cell walls of Quercus robur. Mycol Res 104:846–852

    Article  Google Scholar 

  • Scott GM, Swaney R (1998) New technologies for papermaking: biopulping economics. Tappi J 81:153–157

    Google Scholar 

  • Serra S, Fuganti C, Brenna E (2005) Biocatalytic preparation of natural flavours and fragrances. Trends Biotechnol 23:193–198

    Article  Google Scholar 

  • Shimada M, Higuchi T (1991) Microbial, enzymatic and biomimetic degradation of lignin. In: Hon DNS, Shiraishi N (eds) Wood and cellulosic chemistry. Marcel Dekker, New York, pp 557–619

    Google Scholar 

  • Sigoillot C, Camarero S, Vidal T, Record E, Asther M, Pérez-Boada M, Martínez MJ, Sigoillot J-C, Asther M, Colom J, Martínez AT (2005) Comparison of different fungal enzymes for bleaching high-quality paper pulps. J Biotechnol 115:333–343

    Article  Google Scholar 

  • Turner WB, Aldridge DC (1983) Fungal metabolites II. Academic Press, London

    Google Scholar 

  • Ullrich R, Nuske J, Scheibner K, Spantzel J, Hofrichter M (2004) Novel haloperoxidase from the agaric basidiomycete Agrocybe aegerita oxidizes aryl alcohols and aldehydes. Appl Environ Microbiol 70:4575–4581

    Article  Google Scholar 

  • van Deurzen MPJ, van Rantwijk F, Sheldon RA (1997) Chloroperoxidase-catalyzed oxidation of 5-hydroxymethylfurfural. J Carbohydr Chem 16:299–309

    Article  Google Scholar 

  • Vicentim MP, Faria RD, Ferraz A (2009) High-yield kraft pulping of Eucalyptus grandis Hill ex Maiden biotreated by Ceriporiopsis subvermispora under two different culture conditions. Holzforschung 63:408–413

    Article  Google Scholar 

  • Waldner R, Leisola MSA, Fiechter A (1988) Comparison of ligninolytic activities of selected white-rot fungi. Appl Microbiol Biotechnol 29:400–407

    Article  Google Scholar 

  • Yelle DJ, Ralph J, Lu F, Hammel KE (2008) Evidence for cleavage of lignin by a brown rot basidiomycete. Environ Microbiol 10:1844–1849

    Article  Google Scholar 

  • Zabel R, Morrell J (1992) Wood microbiology: decay and its prevention. Academic Press, London

    Google Scholar 

  • Zhao H, Holladay JE, Brown H, Zhang ZC (2007) Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science 316:1597–1600

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the HIPOP (BIO2011-26694) and the NOESIS (BIO2014-56388-R) projects of the Spanish Ministry of Economy and Competitiveness, and the INDOX (KBBE-2013-7-613549) and EnzOx2 (H2020-BBI-PPP-2015-RIA-720297) European projects. J.C. acknowledges a FPU fellowship of the Spanish Ministry of Education, Culture and Sport.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angel T. Martínez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Carro, J., Serrano, A., Ferreira, P., Martínez, A.T. (2016). Fungal Aryl-Alcohol Oxidase in Lignocellulose Degradation and Bioconversion. In: Gupta, V. (eds) Microbial Enzymes in Bioconversions of Biomass. Biofuel and Biorefinery Technologies, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-43679-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43679-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43677-7

  • Online ISBN: 978-3-319-43679-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics