Skip to main content

Ends, Shapes, and Boundaries in Manifold Topology and Geometric Group Theory

  • Conference paper
  • First Online:
Topology and Geometric Group Theory

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 184))

Abstract

This survey/expository article covers a variety of topics related to the “topology at infinity” of noncompact manifolds and complexes. In manifold topology and geometric group theory, the most important noncompact spaces are often contractible, so distinguishing one from another requires techniques beyond the standard tools of algebraic topology. One approach uses end invariants, such as the number of ends or the fundamental group at infinity. Another approach seeks nice compactifications, then analyzes the boundaries. A thread connecting the two approaches is shape theory. In these notes we provide a careful development of several topics: homotopy and homology properties and invariants for ends of spaces, proper maps and homotopy equivalences, tameness conditions, shapes of ends, and various types of \(\mathscr {Z}\)-compactifications and \(\mathscr {Z}\)-boundaries. Classical and current research from both manifold topology and geometric group theory provide the context. Along the way, several open problems are encountered. Our primary goal is a casual but coherent introduction that is accessible to graduate students and also of interest to active mathematicians whose research might benefit from knowledge of these topics.

This project was aided by a Simons Foundation Collaboration Grant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Despite our affinity for noncompact spaces, we are not opposed to the practice of compactification, provided it is done in a (geometrically) sensitive manner.

  2. 2.

    A proper metric space is one in which every closed metric ball is compact.

  3. 3.

    No expertise in cosmology is being claimed by the author. This description of space-time is intended only to motivate discussion.

  4. 4.

    A connected space X is aspherical if \(\pi _{k}\left( X\right) =0\) for all \(k\ge 2\).

  5. 5.

    An action by \(\Gamma \) on X is proper if, for each compact \(K\subseteq X\) at most finitely many \(\Gamma \)-translates of K intersect K. The action is cocompact if there exists a compact C such that \(\Gamma C=X\).

  6. 6.

    Sometimes closed neighborhood of infinity are preferable; then we let \(U_{i}=\overline{X-K_{i}}\). In many cases the choice is just a matter of personal preference.

  7. 7.

    Yes, this is our third distinct mathematical use of the word proper!.

  8. 8.

    The prefix “pro” is derived from “projective”. Some authors refer to inverse sequences and inverse limits as projective sequences and projective limits, respectively.

  9. 9.

    We are not being entirely forthright here. In the literature, pro-Groups usually refers to a larger category consisting of “inverse systems” of groups indexed by arbitrary partially ordered sets. We have described a subcategory, Tow-Groups, made up of those objects indexed by the natural numbers—also known as “towers”.

  10. 10.

    A complete proof would do this while keeping a base point of the loop on a base ray r.

  11. 11.

    Definitions of free product with amalgamation and HNN extension can be found in [45, 85], or any text on combinatorial group theory.

  12. 12.

    By definition, \(\underleftarrow{\lim }\left\{ K_{i} ,f_{i}\right\} \) is viewed as a subspace of the infinite product space \(\prod _{i=0}^{\infty }K_{i}\) and is topologized accordingly.

  13. 13.

    The definition of derived limit can be generalized to include nonableian groups (see [45, Sect. 11.3]), but that is not needed here.

  14. 14.

    Bestvina informally introduced the definition of weak \(\mathscr {Z}\)-structure in [9], where he also commented on his decision to omit Condition (e) from the definition of \(\mathscr {Z}\)-structure. Farrell and Lafont introduced the term \(E\mathscr {Z}\)-structure in [35].

  15. 15.

    Added in proof. An affirmative answer to this question was recently obtained by Molly Moran.

  16. 16.

    All homology here is with \(\mathbb {Z}\)-coefficients. With the same strategy and an arbitrary coefficient ring, we can also define R-homology manifold and R-homology manifold with boundary.

References

  1. Ancel, F.D., Davis, M.W., Guilbault, C.R.: CAT(0) reflection manifolds. In: Geometric Topology, pp. 441–445. Athens, GA (1993). (AMS/IP Studies in Advanced Mathematics 2.1, American Mathematical Society, Providence, RI, 1997)

    Google Scholar 

  2. Ancel, F.D., Guilbault, C.R.: \(\cal {Z}\) -compactifications of open manifolds. Topology 38(6), 1265–1280 (1999)

    Google Scholar 

  3. Ancel, F.D., Siebenmann, L.C.: The construction of homogeneous homology manifolds, vol. 6, pp. 816–57–72. Abstracts American Mathematical Society, Providence (1985)

    Google Scholar 

  4. Bartels, A., Lück, W.: The Borel Conjecture for hyperbolic and CAT(0)-groups. Ann. Math. 175(2), 631–689 (2012)

    Google Scholar 

  5. Bass, H., Heller, A., Swan, R.G.: The Whitehead group of a polynomial extension. Inst. Hautes Études Sci. Publ. Math. 22, 61–79 (1964)

    Article  Google Scholar 

  6. Benakli, N.: Polyèdres hyperboliques, passage du local au global, Ph.D. Thesis, University d’Orsay (1992)

    Google Scholar 

  7. Belegradek, I.: Open aspherical manifolds not covered by the Euclidean space. arXiv:1208.5666

  8. Bestvina, M., Mess, G.: The boundary of negatively curved groups. J. Am. Math. Soc. 4(3), 469–481 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bestvina, M.: Local homology properties of boundaries of groups. Michigan Math. J. 43(1), 123–139 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  10. Borel, A., Moore, J.C.: Homology theory for locally compact spaces. Mich. Math. J. 7, 137–159 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  11. Borsuk, K.: On an irreducible 2-dimensional absolute retract. Fund. Math. 37, 137–160 (1950)

    MATH  MathSciNet  Google Scholar 

  12. Borsuk, K.: Theory of retracts. Monografie Matematyczne, Tom 44, Warsaw (1967)

    Google Scholar 

  13. Borsuk, K.: Theory of Shape. Monografie Matematyczne Tom 59, Warszawa (1975)

    Google Scholar 

  14. Bowditch, B.H.: Cut points and canonical splittings of hyperbolic groups. Acta Math. 180(2), 145–186 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  15. Browder, W., Levine, J., Livesay, G.R.: Finding a boundary for an open manifold. Am. J. Math. 87, 1017–1028 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  16. Brown, K.S.: Cohomology of groups. Corrected reprint of the 1982 original. In: Graduate Texts in Mathematics, vol. 87, pp. x+306. Springer, New York (1994)

    Google Scholar 

  17. Carlsson, G., Pedersen, E.K.: Controlled algebra and the Novikov conjectures for K-and L-theory. Topology 34, 731–758 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  18. Casson, A., Jungreis, D.: Convergence groups and Seifert fibered 3-manifolds. Invent. Math. 118(3), 441–456 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  19. Chapman, T.A.: Topological invariance of Whitehead torsion. Am. J. Math. 96, 488–497 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  20. Chapman, T.A.: Lectures on Hilbert cube manifolds. In: Expository lectures from the CBMS Regional Conference held at Guilford College, October 11-15, 1975, Regional Conference Series in Mathematics, vol. 28, pp. x+131. American Mathematical Society, Providence (1976)

    Google Scholar 

  21. Chapman, T.A., Siebenmann, L.C.: Finding a boundary for a Hilbert cube manifold. Acta Math. 137(3–4), 171–208 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  22. Cheeger, J., Kister, J.M.: Counting topological manifolds. Topology 9, 149–151 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  23. Croke, C.B., Kleiner, B.: Spaces with nonpositive curvature and their ideal boundaries. Topology 39(3), 549–556 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  24. Dahmani, F.: Classifying spaces and boundaries for relatively hyperbolic groups. Proc. Lond. Math. Soc. 86(3), 666–684 (2003)

    Google Scholar 

  25. Daverman, R.J.: Decompositions of manifolds. In: Pure and Applied Mathematics, vol. 124, pp. xii+317. Academic Press, Inc., Orlando (1986)

    Google Scholar 

  26. Daverman, R.J., Tinsley, F.C.: Controls on the plus construction. Mich. Math. J. 43(2), 389–416 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  27. Davis, M.W.: Groups generated by reflections and aspherical manifolds not covered by Euclidean space. Ann. Math. 117(2), 293–324 (1983)

    Google Scholar 

  28. Davis, M.W., Januszkiewicz, T.: Hyperbolization of polyhedra. J. Differ. Geom. 34(2), 347–388 (1991)

    MATH  MathSciNet  Google Scholar 

  29. Dranishnikov, A.N.: Boundaries of Coxeter groups and simplicial complexes with given links. J. Pure Appl. Algebr. 137(2), 139–151 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  30. Dranishnikov, A.N.: On Bestvina-Mess formula. In: Topological and Asymptotic Aspects of Group Theory, vol. 394, pp. 77–85. Contemporary Mathematics—American Mathematical Society, Providence (2006)

    Google Scholar 

  31. Dydak, J., Segal, J.: Shape Theory. An introduction, Lecture Notes in Mathematics, vol. 688 pp. vi+150. Springer, Berlin (1978)

    Google Scholar 

  32. Edwards, D.A., Hastings, H.M.: Every weak proper homotopy equivalence is weakly properly homotopic to a proper homotopy equivalence. Trans. Am. Math. Soc. 221(1), 239–248 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  33. Edwards, C.H.: Open 3-manifolds which are simply connected at infinity. Proc. Am. Math. Soc. 14, 391–395 (1963)

    MATH  MathSciNet  Google Scholar 

  34. Edwards, R.D.: Characterizing infinite-dimensional manifolds topologically (after Henryk Toruńczyk). Séminaire Bourbaki (1978/79), Exp. No. 540, Lecture Notes in Mathematics, vol. 770, pp. 278–302. Springer, Berlin (1980)

    Google Scholar 

  35. Farrell, F.T., Lafont, J.-F.: EZ-structures and topological applications. Comment. Math. Helv. 80, 103–121 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  36. Ferry, S.C.: Remarks on Steenrod homology. Novikov conjectures, index theorems and rigidity. In: London Mathematical Society Lecture Note Series 227, vol. 2, pp. 148–166. Cambridge University Press, Cambridge (1995) (Oberwolfach 1993)

    Google Scholar 

  37. Ferry, S.C.: Stable compactifications of polyhedra. Mich. Math. J. 47(2), 287–294 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  38. Ferry, S.C.: Geometric Topology Notes. Book in Progress

    Google Scholar 

  39. Fischer, H., Guilbault, C.R.: On the fundamental groups of trees of manifolds. Pac. J. Math. 221(1), 49–79 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  40. Freden, E.M.: Negatively curved groups have the convergence property. I. Ann. Acad. Sci. Fenn. Ser. A I Math. 20(2), 333–348 (1995)

    Google Scholar 

  41. Freedman, M.H.: The topology of four-dimensional manifolds. J. Differ. Geom. 17(3), 357–453 (1982)

    MATH  MathSciNet  Google Scholar 

  42. Freedman, M.H., Quinn, F.: Topology of 4-Manifolds. Princeton University Press, Princeton, New Jersey (1990)

    MATH  Google Scholar 

  43. Gabai, D.: Convergence groups are Fuchsian groups. Ann. Math. 136(3), 447–510 (1992)

    Google Scholar 

  44. Geoghegan, R.: The shape of a group—connections between shape theory and the homology of groups. In: Geometric and Algebraic Topology, vol. 18, pp. 271–280, Banach Center Publications, PWN, Warsaw (1986)

    Google Scholar 

  45. Geoghegan, R.: Topological methods in group theory. In: Graduate Texts in Mathematics, vol. 243, pp. xiv+473. Springer, New York (2008)

    Google Scholar 

  46. Geoghegan, R., Mihalik, M.L.: Free abelian cohomology of groups and ends of universal covers. J. Pure Appl. Algebr. 36(2), 123–137 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  47. Gromov, M.: Hyperbolic groups. In: Gersten, S.M. (ed.) Essays in Group Theory, vol. 8, pp. 75–263. MSRI Publications, Springer (1987)

    Google Scholar 

  48. Guilbault, C.R.: Manifolds with non-stable fundamental groups at infinity. Geom. Topol. 4, 537–579 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  49. Guilbault, C.R.: A non-Z-compactifiable polyhedron whose product with the Hilbert cube is Z-compactifiable. Fund. Math. 168(2), 165–197 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  50. Guilbault, C.R.: Products of open manifolds with \(\mathbb{R}\). Fund. Math. 197, 197–214 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  51. Guilbault, C.R.: Weak \(\cal {Z}\)-structures for some classes of groups. arXiv:1302.3908

  52. Guilbault, C.R., Tinsley, F.C.: Manifolds with non-stable fundamental groups at infinity. II. Geom. Topol. 7, 255–286 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  53. Guilbault, C.R., Tinsley, F.C.: Manifolds with non-stable fundamental groups at infinity. III. Geom. Topol. 10, 541–556 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  54. Guillbault, C.R., Tinsley, F.C.: Manifolds that are Inward Tame at Infinity, in Progress

    Google Scholar 

  55. Hu, S-t.: Theory of Retracts, pp. 234. Wayne State University Press, Detroit (1965)

    Google Scholar 

  56. Hughes, B., Ranicki, A.: Ends of complexes. In: Cambridge Tracts in Mathematics, vol. 123, pp. xxvi+353. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  57. Januszkiewicz, T., Świa̧tkowski, J.: Simplicial nonpositive curvature, vol. 104, pp. 1–85. Publ. Math. Inst. Hautes Études Sci. (2006)

    Google Scholar 

  58. Kapovich, I., Benakli, N.: Boundaries of hyperbolic groups. In: Combinatorial and Geometric Group Theory (New York, 2000/Hoboken, NJ, 2001), vol. 296, pp. 39–93. Contemporary Mathematics, American Mathematical Society, Providence (2002)

    Google Scholar 

  59. Kervaire, M.A.: Smooth homology spheres and their fundamental groups. Trans. Am. Math. Soc. 144, 67–72 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  60. Kwasik, S., Schultz, R.: Desuspension of group actions and the ribbon theorem. Topology 27(4), 443–457 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  61. Luft, E.: On contractible open topological manifolds. Invent. Math. 4, 192–201 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  62. Mather, M.: Counting homotopy types of manifolds. Topology 3, 93–94 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  63. Mazur, B.: A note on some contractible 4-manifolds. Ann. Math. 73(2), 221–228 (1961)

    Google Scholar 

  64. May, M.C.: Finite dimensional Z-compactifications. Thesis (Ph.D.), The University of Wisconsin - Milwaukee (2007)

    Google Scholar 

  65. McMillan Jr., D.R.: Some contractible open 3-manifolds. Trans. Am. Math. Soc. 102, 373–382 (1962)

    MATH  MathSciNet  Google Scholar 

  66. McMillan, D.R., Thickstun, T.L.: Open three-manifolds and the Poincaré conjecture. Topology 19(3), 313–320 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  67. Mihalik, M.L.: Semistability at the end of a group extension. Trans. Am. Math. Soc. 277(1), 307–321 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  68. Mihalik, M.L.: Senistability at \(\infty \), \(\infty \)-ended groups and group cohomology. Trans. Am. Math. Soc. 303(2), 479–485 (1987)

    MATH  Google Scholar 

  69. Mihalik, M.L.: Semistability of artin and coxeter groups. J. Pure Appl. Algebr. 111(1–3), 205–211 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  70. Mihalik, M.L., Tschantz, S.T.: One relator groups are semistable at infinity. Topology 31(4), 801–804 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  71. Mihalik, M.L., Tschantz, S.T.: Semistability of amalgamated products and HNN-extensions. Mem. Am. Math. Soc. 98(471), vi+86 (1992)

    Google Scholar 

  72. Milnor, J.: On the Steenrod homology theory. Novikov conjectures, index theorems and rigidity. In: London Mathematical Society Lecture Note Series 226, vol. 1, pp. 79–96. Cambridge University Press, Cambridge (1995). (Oberwolfach, 1993)

    Google Scholar 

  73. Molski, R.: On an irreducible absolute retract. Fund. Math. 57, 121–133 (1965)

    MATH  MathSciNet  Google Scholar 

  74. Mooney, C.P.: Examples of non-rigid CAT(0) groups from the category of knot groups. Algebr. Geom. Topol. 8(3), 1666–1689 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  75. Mooney, C.P.: Generalizing the Croke-Kleiner construction. Topol. Appl. 157(7), 1168–1181 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  76. Myers, R.: Contractible open 3-manifolds which are not covering spaces. Topology 27(1), 27–35 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  77. Newman, M.H.A.: Boundaries of ULC sets in Euclidean n-space. Proc. Nat. Acad. Sci. U.S.A. 34, 193–196 (1948)

    Article  MATH  MathSciNet  Google Scholar 

  78. Ontaneda, P.: Cocompact CAT(0) spaces are almost geodesically complete. Topology 44(1), 47–62 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  79. Osajda, D., Przytycki, P.: Boundaries of systolic groups. Geom. Topol. 13(5), 2807–2880 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  80. Papasoglu, P., Swenson, E.: Boundaries and JSJ decompositions of CAT(0)-groups. Geom. Funct. Anal. 19(2), 559–590 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  81. Quinn, F.: Ends of maps. I. Ann. Math. 110(2), 275–331 (1979)

    Google Scholar 

  82. Quinn, F.: Homotopically stratified sets. J. Am. Math. Soc. 1(2), 441–499 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  83. Rourke, C.P., Sanderson, B.J.: Introduction to piecewise-linear topology, Reprint. Springer Study Edition, pp. viii+123. Springer, Berlin (1982)

    Google Scholar 

  84. Ruane, K.: CAT(0) groups with specified boundary. Algebr. Geom. Topol. 6, 633–649 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  85. Scott, P., Wall, T.: Topological methods in group theory. In: Homological group theory (Proceedings of the Symposium, Durham, 1977), London Mathematical Society Lecture Note Series, vol. 36, pp. 137–203. Cambridge University Press, Cambridge (1979)

    Google Scholar 

  86. Siebenmann, L.C.: The obstruction to finding a boundary for an open manifold of dimension greater than five, Ph.D. thesis. Princeton University (1965)

    Google Scholar 

  87. Siebenmann, L.C.: Infinite simple homotopy types. Indag. Math. 32, 479–495 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  88. Stallings, J.: The piecewise-linear structure of Euclidean space. Proc. Camb. Philos. Soc. 58, 481–488 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  89. Stallings, J.: On torsion-free groups with infinitely many ends. Ann. Math. 88(2), 312–334 (1968)

    Google Scholar 

  90. Swarup, A.: On the cut point conjecture. Electron. Res. Announc. Am. Math. Soc. 2, 98–100 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  91. Swenson, E.L.: A cut point theorem for CAT(0) groups. J. Differ. Geom. 53(2), 327–358 (1999)

    MATH  MathSciNet  Google Scholar 

  92. Tirel, C.J.: \(\cal {Z}\)-structures on product groups. Algebr. Geom. Topol. 11(5), 2587–2625 (2011)

    Google Scholar 

  93. Toruńczyk, H.: On CE-images of the Hilbert cube and characterization of Q-manifolds. Fund. Math. 106(1), 31–40 (1980)

    MATH  MathSciNet  Google Scholar 

  94. Tucker, T.W.: Non-compact 3-manifolds and the missing-boundary problem. Topology 13, 267–273 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  95. Tukia, P.: Homeomorphic conjugates of Fuchsian groups. J. Reine Angew. Math. 391, 1–54 (1988)

    MATH  MathSciNet  Google Scholar 

  96. Wall, C.T.C.: Finiteness conditions for CW-complexes. Ann. Math. 81(2), 56–69 (1965)

    Google Scholar 

  97. West, J.E.: Mapping Hilbert cube manifolds to ANR’s: a solution of a conjecture of Borsuk. Ann. Math. 106(2), 1–18 (1977)

    Google Scholar 

  98. Whitehead, J.H.C.: A certain open manifold whose group is unity. Quart. J. Math. 6(1), 268–279 (1935)

    Article  MATH  Google Scholar 

  99. Wilson, J.M.: A CAT(0) group with uncountably many distinct boundaries. J. Group Theory 8(2), 229–238 (2005)

    MATH  MathSciNet  Google Scholar 

  100. Wright, D.G.: Contractible open manifolds which are not covering spaces. Topology 31(2), 281–291 (1992)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig R. Guilbault .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Guilbault, C.R. (2016). Ends, Shapes, and Boundaries in Manifold Topology and Geometric Group Theory. In: Davis, M., Fowler, J., Lafont, JF., Leary, I. (eds) Topology and Geometric Group Theory. Springer Proceedings in Mathematics & Statistics, vol 184. Springer, Cham. https://doi.org/10.1007/978-3-319-43674-6_3

Download citation

Publish with us

Policies and ethics