Advertisement

CONTROLO 2016 pp 361-371 | Cite as

Wheels for Staircases

  • Fátima Silva Leite
  • Jorge Batista
  • Krzysztof Krakowski
  • André Carvalho
  • Tiago Cruz
  • Eduardo Domingues
  • André Lizardo
  • Gonçalo Saraiva
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 402)

Abstract

Our objective is to design innovative robot wheels capable of rolling on staircases, without sliding and without bouncing. This is the first step to reach the ultimate goal of building wheelchairs capable to overcome the obstacles imposed by staircases on people with limited mobility. We show that, given a staircase with equal steps, there is an infinite number of wheels that roll over it, with the constraints of no-sliding and no-bouncing. Some of these wheels appear to be very interesting for real applications. We also present an algorithm for the construction of a wheel, which depends only on the measures of the tread (the part of the staircase that is stepped on) and the riser (the vertical portion between each tread) of the step.

Keywords

Robot wheels Stairs climbing wheels Rolling Bouncing Sliding Bernoulli spirals 

References

  1. 1.
    Yoshida, T., Koyanagi, E., Tadokoro, E., Yoshida, K., Nagatani, K., Ohno, K., Tsubouchi, T., Maeyama, S., Noda, I., Takizawa, O., Hada, Y.: A high mobility 6-crawler mobile robot Kenaf. In: Proceedings of 4th International Workshop on Synthetic Simulation and Robotics to Mitigate Earthquake Disaster (SRMED2007), Atlanta, USA, p. 38, July, 2007Google Scholar
  2. 2.
    Hirose, S., Sensu, T., Aoki, S.: The TAQT carrier: a practical terrain-adaptive quadru-track carrier robot. In: Proceedings of IEEE/RSJ International conference on Intelligent Robots and Systems, Tokyo, Japan, pp. 2068–2073, July 1992Google Scholar
  3. 3.
    Hirai, K., Hirose, M., Haikawa, Y., Takenaka, T.: The development of honda humanoid robot. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA98), Leuven, Belgium, pp. 1321–1326, May 1998Google Scholar
  4. 4.
    ASIMO—the world’s most advanced humanoid robot. http://asimo.honda.com/
  5. 5.
    Harada, K., Kajita, S., Kaneko, K., Hirukawa, H.: Dynamics and balance of a humanoid robot during manipulation tasks. IEEE Trans. Robot. 22(3), 568–575 (2006)CrossRefGoogle Scholar
  6. 6.
    Sugahara, Y., Carbone, G., Hashimoto, K., Ceccarelli, M., Lim, H., Takanishi, A.: Experimental stiffness measurement of WL-16RII biped walking vehicle during walking operation. J. Robot. Mechatron. 19(3), 272–280 (2007)Google Scholar
  7. 7.
    Siegwart, R., Lamon, P., Estier, T., Lauria, M., Piguet, R.: Innovative design for wheeled locomotion in rough terrain. Robot. Auton. Syst. 40(2–3), 152–162 (2002)Google Scholar
  8. 8.
    Nakajima, S., Nakano, E., Takahashi, T.: Motion control technique for practical use of a leg-wheel robot on unknown outdoor rough terrains. Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. 1, 1353–1358 (2004). OctGoogle Scholar
  9. 9.
    Altendorfer, R., Moore, E.Z., Komsuoglu, H., Buehler, M., Brown, H., McMordie, D., Saranli, U., Full, R., Koditschek, D.E.: A biologically inspired hexapod runner. Auton. Robots 11, 207–213 (2001)Google Scholar
  10. 10.
    Yim, M.H., Homans, S.B., Roufas, K.D.: Climbing with snake-like robots. In: IFAC Workshop on Mobile Robot Technology, Korea, pp. 21–22, May 2001Google Scholar
  11. 11.
    The Galileo wheelchair. https://www.galileomobility.com
  12. 12.
  13. 13.
    TopChair-S a powered wheelchair. https://www.topchair.fr
  14. 14.
  15. 15.
    Hall, L., Wagon, S.: Roads and wheels. Math. Mag. 65(5), 283–301 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Modak, G.S., Bhoomkar, M.M.: Innovative design of staircase climbing wheelchair. Int. J. Eng. Res. Technol. (IJERT) 2(2), 1–6 (2013)Google Scholar
  17. 17.
    Asai, Y., Chiba, Y., Sakaguchi, K., Sudo, T., Bushida, N., Otsuka, H., Saito, Y., Kikuchi, K.: Wheel-based stair-climbing robot with hopping mechanism—demonstration of continuous stair climbing using vibration. J. Robot. Mechatron. 20(2), 221–227 (2008)CrossRefGoogle Scholar
  18. 18.
    Hirose, S., Yoneda, Y.: Toward development of practical quadruped walking vehicles. J. Robot. Mechatron. 6, 498–504 (1993)Google Scholar
  19. 19.
    Kikuchi, K., Sakaguchi, K., Sudo, T., Bushida, N., Chiba, Y., Asai, Y.: A study on wheel-based stair-climbing robot with hopping mechanism. Mech. Syst. Signal Process. (MSSP) 22(6), 1316–1326 (2008)CrossRefGoogle Scholar
  20. 20.
    Lawn, M.J.: Study of stair-climbing assistive mechanisms for the disabled. Ph.D. thesis, Nagasaki University, Japan, Dec 2002Google Scholar
  21. 21.
    Matsumoto, O., Kajita, S., Saigo, M., Tani, K.: Biped-type leg-wheeled robot. Adv. Robot. 13(3), 235–236 (1999). OctCrossRefGoogle Scholar
  22. 22.
    Nakajima, S.: Development of a personal mobility vehicle for rough terrain. In: Proceedings of 14th CLAWAR, pp. 650–657 (2011)Google Scholar
  23. 23.
    Nakajima, S.: Mobile platform with leg-wheel mechanism for practical use. In: Gacovski, Z. (ed.) Mobile Robots—Current Trends (2011). doi: 10.5772/25517. http://www.intechopen.com/books/mobile-robots-current-trends/mobile-platform-with-leg-wheel-mechanism-for-practical-use
  24. 24.
    Nakajima, S., Fujikawa, T.: Proposal for personal mobility vehicle supported by mobility support system. In: 2012 IEEE International Electric Vehicle Conference (IEVC), pp. 1–6 (2012)Google Scholar
  25. 25.
    Wellman, P., Krovi, W., Kuma, V., Harwin, W.: Design of a wheelchair with legs for people with motor disabilities. IEEE Trans. Rehabil. Eng. 3, 343–353 (1995)CrossRefGoogle Scholar
  26. 26.
    Scalamobile, Ulrich Alber GmbH + Co. KG, Sigmaringer Str. 100, D-72458, Albstadt, GermanyGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Fátima Silva Leite
    • 1
    • 2
  • Jorge Batista
    • 1
    • 3
  • Krzysztof Krakowski
    • 1
    • 4
  • André Carvalho
    • 6
  • Tiago Cruz
    • 2
  • Eduardo Domingues
    • 3
  • André Lizardo
    • 5
  • Gonçalo Saraiva
    • 2
  1. 1.Institute of Systems and Robotics, University of CoimbraCoimbraPortugal
  2. 2.Department of MathematicsUniversity of CoimbraCoimbraPortugal
  3. 3.Department of Electrical Engineering and ComputersUniversity of CoimbraCoimbraPortugal
  4. 4.Wydział Matematyczno-PrzyrodniczyUniwersytet Kardynała Stefana WyszyńskiegoWarsawPoland
  5. 5.Department of Informatics EngineeringUniversity of CoimbraCoimbraPortugal
  6. 6.Department of Electrical Engineering and ComputersUniversity of LisbonLisboaPortugal

Personalised recommendations