Skip to main content

Neurobiological Fundamentals of Strategy Change: A Core Competence of Companion-Systems

  • Chapter
  • First Online:

Part of the book series: Cognitive Technologies ((COGTECH))

Abstract

Companion-Systems interact with users via flexible, goal-directed dialogs. During dialogs both, user and Companion-System, can identify and communicate their goals iteratively. In that sense, they can be conceptualized as communication partners, equipped with a processing scheme producing actions as outputs in consequence of (1) inputs from the other communication partner and (2) internally represented goals. A quite general core competence of communication partners is the capability for strategy change, defined as the modification of action planning under the boundary condition of maintaining a constant goal. Interestingly, the biological fundamentals for this capability are largely unknown. Here we describe a research program that employs an animal model for strategy change to (1) investigate its underlying neuronal mechanisms and (2) describe these mechanisms in an algorithmic syntax, suitable for implementation in technical Companion-Systems. It is crucial for this research program that investigated scenarios be sufficiently complex to contain all relevant aspects of strategy change, but at the same time simple enough to allow for a detailed neurophysiological analysis only obtainable in animal models. To this end, two forms of strategy change are considered in detail: Strategy change caused by modified feature selection, and strategy change caused by modified action assignment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Amemori, K.I., Gibb, L.G., Graybiel, A.M.: Shifting responsibly: the importance of striatal modularity to reinforcement learning in uncertain environments. Front. Hum. Neurosci. 5, 47 (2011). doi:10.3389/fnhum.2011.00047. http://dx.doi.org/10.3389/fnhum.2011.00047

    Article  Google Scholar 

  2. Bathellier, B., Tee, S.P., Hrovat, C., Rumpel, S.: A multiplicative reinforcement learning model capturing learning dynamics and interindividual variability in mice. Proc. Natl. Acad. Sci. USA 110(49), 19950–19955 (2013). doi:10.1073/pnas.1312125110. http://dx.doi.org/10.1073/pnas.1312125110

    Article  Google Scholar 

  3. Bitterman, M.E.: The comparative analysis of learning. Science 188(4189), 699–709 (1975). doi:10.1126/science.188.4189.699. http://dx.doi.org/10.1126/science.188.4189.699

    Article  Google Scholar 

  4. Bond, A.B., Kamil, A.C., Balda, R.P.: Serial reversal learning and the evolution of behavioral flexibility in three species of North American corvids (Gymnorhinus cyanocephalus, Nucifraga columbiana, Aphelocoma californica). J. Comp. Psychol. 121(4), 372–379 (2007). doi:10.1037/0735-7036.121.4.372. http://dx.doi.org/10.1037/0735-7036.121.4.372

    Article  Google Scholar 

  5. Boulougouris, V., Dalley, J.W., Robbins, T.W.: Effects of orbitofrontal, infralimbic and prelimbic cortical lesions on serial spatial reversal learning in the rat. Behav. Brain. Res. 179(2), 219–228 (2007). doi:10.1016/j.bbr.2007.02.005. http://dx.doi.org/10.1016/j.bbr.2007.02.005

    Article  Google Scholar 

  6. Budinger, E., Laszcz, A., Lison, H., Scheich, H., Ohl, F.W.: Non-sensory cortical and subcortical connections of the primary auditory cortex in mongolian gerbils: bottom-up and top-down processing of neuronal information via field ai. Brain Res. 1220, 2–32 (2008). doi:10.1016/j.brainres.2007.07.084. http://dx.doi.org/10.1016/j.brainres.2007.07.084

    Article  Google Scholar 

  7. Bussey, T.J., Muir, J.L., Everitt, B.J., Robbins, T.W.: Triple dissociation of anterior cingulate, posterior cingulate, and medial frontal cortices on visual discrimination tasks using a touchscreen testing procedure for the rat. Behav. Neurosci. 111(5), 920–936 (1997)

    Article  Google Scholar 

  8. Castañé, A., Theobald, D.E.H., Robbins, T.W.: Selective lesions of the dorsomedial striatum impair serial spatial reversal learning in rats. Behav. Brain. Res. 210(1), 74–83 (2010). doi:10.1016/j.bbr.2010.02.017. http://dx.doi.org/10.1016/j.bbr.2010.02.017

    Article  Google Scholar 

  9. Clayton, K.N.: The relative effects of forced reward and forced nonreward during widely spaced successive discrimination reversal. J. Comput. Physiol. Psychol. 55, 992–997 (1962)

    Article  Google Scholar 

  10. Dabrowska, J.: Multiple reversal learning in frontal rats. Acta Biol. Exp. (Warsz) 24, 99–102 (1964)

    Google Scholar 

  11. Deco, G., Rolls, E.T.: Synaptic and spiking dynamics underlying reward reversal in the orbitofrontal cortex. Cereb. Cortex 15(1), 15–30 (2005). doi:10.1093/cercor/bhh103. http://dx.doi.org/10.1093/cercor/bhh103

    Article  Google Scholar 

  12. Dias, R., Robbins, T.W., Roberts, A.C.: Primate analogue of the Wisconsin card sorting test: effects of excitotoxic lesions of the prefrontal cortex in the marmoset. Behav. Neurosci. 110(5), 872–886 (1996)

    Article  Google Scholar 

  13. Dias, R., Robbins, T.W., Roberts, A.C.: Dissociable forms of inhibitory control within prefrontal cortex with an analog of the Wisconsin card sort test: restriction to novel situations and independence from “on-line” processing. J. Neurosci. 17(23), 9285–9297 (1997)

    Google Scholar 

  14. Divac, I.: Frontal lobe system and spatial reversal in the rat. Neuropsychologia 9(2), 175–183 (1971)

    Article  Google Scholar 

  15. Dombrowski, P.A., Maia, T.V., Boschen, S.L., Bortolanza, M., Wendler, E., Schwarting, R.K.W., Brandão, M.L., Winn, P., Blaha, C.D., Cunha, C.D.: Evidence that conditioned avoidance responses are reinforced by positive prediction errors signaled by tonic striatal dopamine. Behav. Brain Res. 241, 112–119 (2013). doi:10.1016/j.bbr.2012.06.031. http://dx.doi.org/10.1016/j.bbr.2012.06.031

    Article  Google Scholar 

  16. Feldman, J.: Successive discrimination reversal performance as a function of level of drive and incentive. Psychon. Sci. 13(5), 265–266 (1968). doi:10.3758/BF03342516. http://dx.doi.org/10.3758/BF03342516

    Article  Google Scholar 

  17. Fellows, L.K.: Orbitofrontal contributions to value-based decision making: evidence from humans with frontal lobe damage. Ann. N. Y. Acad. Sci. 1239, 51–58 (2011). doi:10.1111/j.1749-6632.2011.06229.x. http://dx.doi.org/10.1111/j.1749-6632.2011.06229.x

    Article  Google Scholar 

  18. Ferry, A.T., Lu, X.C., Price, J.L.: Effects of excitotoxic lesions in the ventral striatopallidal–thalamocortical pathway on odor reversal learning: inability to extinguish an incorrect response. Exp. Brain Res. 131(3), 320–335 (2000)

    Article  Google Scholar 

  19. Frank, M.J.: Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and nonmedicated parkinsonism. J. Cogn. Neurosci. 17(1), 51–72 (2005). doi:10.1162/0898929052880093. http://dx.doi.org/10.1162/0898929052880093

    Article  Google Scholar 

  20. Frank, M.J., Seeberger, L.C., O’Reilly, R.C.: By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science 306(5703), 1940–1943 (2004). doi:10.1126/science.1102941. http://dx.doi.org/10.1126/science.1102941

    Article  Google Scholar 

  21. Garner, H., Wessinger, W., McMillan, D.: Effect of multiple discrimination reversals on acquisition of a drug discrimination task in rats. Behav. Pharmacol. 7(2), 200–204 (1996)

    Article  Google Scholar 

  22. Gossette, R.L., Hood, P.: Successive discrimination reversal measures as a function of variation of motivational and incentive levels. Percept. Mot. Skills 26(1), 47–52 (1968). doi:10.2466/pms.1968.26.1.47. http://dx.doi.org/10.2466/pms.1968.26.1.47

    Article  Google Scholar 

  23. Gossette, R.L., Inman, N.: Comparison of spatial successive discrimination reversal performances of two groups of new world monkeys. Percept. Mot. Skills 23(1), 169–170 (1966). doi:10.2466/pms.1966.23.1.169. http://dx.doi.org/10.2466/pms.1966.23.1.169

    Article  Google Scholar 

  24. Haber, S.N., Calzavara, R.: The cortico-basal ganglia integrative network: the role of the thalamus. Brain Res. Bull. 78(2-3), 69–74 (2009). doi:10.1016/j.brainresbull.2008.09.013. http://dx.doi.org/10.1016/j.brainresbull.2008.09.013

    Article  Google Scholar 

  25. Hamilton, D.A., Brigman, J.L.: Behavioral flexibility in rats and mice: contributions of distinct frontocortical regions. Genes Brain Behav. 14(1), 4–21 (2015). doi:10.1111/gbb.12191. http://dx.doi.org/10.1111/gbb.12191

    Article  Google Scholar 

  26. Houk, J.C.: Agents of the mind. Biol. Cybern. 92(6), 427–437 (2005). doi:10.1007/s00422-005-0569-8. http://dx.doi.org/10.1007/s00422-005-0569-8

    Article  MATH  Google Scholar 

  27. Houk, J.C., Wise, S.P.: Distributed modular architectures linking basal ganglia, cerebellum, and cerebral cortex: their role in planning and controlling action. Cereb. Cortex 5(2), 95–110 (1995)

    Article  Google Scholar 

  28. Ilango, A., Wetzel, W., Scheich, H., Ohl, F.W.: The combination of appetitive and aversive reinforcers and the nature of their interaction during auditory learning. Neuroscience 166(3), 752–762 (2010). doi:10.1016/j.neuroscience.2010.01.010. http://dx.doi.org/10.1016/j.neuroscience.2010.01.010

    Article  Google Scholar 

  29. Ilango, A., Shumake, J., Wetzel, W., Scheich, H., Ohl, F.W.: Effects of ventral tegmental area stimulation on the acquisition and long-term retention of active avoidance learning. Behav. Brain Res. 225(2), 515–521 (2011). doi:10.1016/j.bbr.2011.08.014. http://dx.doi.org/10.1016/j.bbr.2011.08.014

    Article  Google Scholar 

  30. Ilango, A., Shumake, J., Wetzel, W., Scheich, H., Ohl, F.W.: The role of dopamine in the context of aversive stimuli with particular reference to acoustically signaled avoidance learning. Front. Neurosci. 6, 132 (2012)

    Article  Google Scholar 

  31. Ilango, A., Shumake, J., Wetzel, W., Ohl, F.W.: Contribution of emotional and motivational neurocircuitry to cue-signaled active avoidance learning. Front. Behav. Neurosci. 8, 372 (2014). doi:10.3389/fnbeh.2014.00372. http://dx.doi.org/10.3389/fnbeh.2014.00372

    Google Scholar 

  32. Ionescu, T.: Exploring the nature of cognitive flexibility. New Ideas Psychol. 30(2), 190–200 (2012). doi:10.1016/j.newideapsych.2011.11.001. http://dx.doi.org/10.1016/j.newideapsych.2011.11.001

    Article  Google Scholar 

  33. Jonker, F.A., Jonker, C., Scheltens, P., Scherder, E.J.A.: The role of the orbitofrontal cortex in cognition and behavior. Rev. Neurosci. 26(1), 1–11 (2015). doi:10.1515/revneuro-2014-0043. http://dx.doi.org/10.1515/revneuro-2014-0043

    Article  Google Scholar 

  34. Kangas, B.D., Bergman, J.: Repeated acquisition and discrimination reversal in the squirrel monkey (Saimiri sciureus). Anim. Cogn. 17(2), 221–228 (2014). doi:10.1007/s10071-013-0654-7. http://dx.doi.org/10.1007/s10071-013-0654-7

    Article  Google Scholar 

  35. Kehagia, A.A., Murray, G.K., Robbins, T.W.: Learning and cognitive flexibility: frontostriatal function and monoaminergic modulation. Curr. Opin. Neurobiol. 20(2), 199–204 (2010). doi:10.1016/j.conb.2010.01.007. http://dx.doi.org/10.1016/j.conb.2010.01.007

    Article  Google Scholar 

  36. Kulig, B.M., Calhoun, W.H.: Enhancement of successive discrimination reversal learning by methamphetamine. Psychopharmacologia 27(3), 233–240 (1972)

    Article  Google Scholar 

  37. Li, L., Shao, J.: Restricted lesions to ventral prefrontal subareas block reversal learning but not visual discrimination learning in rats. Physiol. Behav. 65(2), 371–379 (1998)

    Article  Google Scholar 

  38. Mackintosh, N., Cauty, A.: Spatial reversal learning in rats, pigeons, and goldfish. Psychon. Sci. 22, 281–282 (1971)

    Article  Google Scholar 

  39. Mackintosh, N.J., McGonigle, B., Holgate, V., Vanderver, V.: Factors underlying improvement in serial reversal learning. Can. J. Psychol. 22(2), 85–95 (1968)

    Article  Google Scholar 

  40. McAlonan, K., Brown, V.J.: Orbital prefrontal cortex mediates reversal learning and not attentional set shifting in the rat. Behav. Brain Res. 146(1-2), 97–103 (2003)

    Article  Google Scholar 

  41. McDannald, M.A., Jones, J.L., Takahashi, Y.K., Schoenbaum, G.: Learning theory: a driving force in understanding orbitofrontal function. Neurobiol. Learn. Mem. 108, 22–27 (2014). doi:10.1016/j.nlm.2013.06.003. http://dx.doi.org/10.1016/j.nlm.2013.06.003

    Article  Google Scholar 

  42. McGeorge, A.J., Faull, R.L.: The organization of the projection from the cerebral cortex to the striatum in the rat. Neuroscience 29(3), 503–37 (1989). http://www.ncbi.nlm.nih.gov/pubmed/2472578

    Article  Google Scholar 

  43. McHaffie, J.G., Stanford, T.R., Stein, B.E., Coizet, V., Redgrave, P.: Subcortical loops through the basal ganglia. Trends Neurosci. 28(8), 401–407 (2005). doi:10.1016/j.tins.2005.06.006. http://dx.doi.org/10.1016/j.tins.2005.06.006

    Article  Google Scholar 

  44. Montague, P.R., Dayan, P., Sejnowski, T.J.: A framework for mesencephalic dopamine systems based on predictive Hebbian learning. J. Neurosci. 16(5), 1936–1947 (1996)

    Google Scholar 

  45. Mota, T., Giurfa, M.: Multiple reversal olfactory learning in honeybees. Front. Behav. Neurosci. 4 (2010). doi:10.3389/fnbeh.2010.00048. http://dx.doi.org/10.3389/fnbeh.2010.00048

  46. Mowrer, O.H.: Two-factor learning theory reconsidered, with special reference to secondary reinforcement and the concept of habit. Psychol. Rev. 63(2), 114–128 (1956)

    Article  Google Scholar 

  47. Nolte, G., Bai, O., Wheaton, L., Mari, Z., Vorbach, S., Hallett, M.: Identifying true brain interaction from eeg data using the imaginary part of coherency. Clin. Neurophysiol. 115(10), 2292–2307 (2004). doi:10.1016/j.clinph.2004.04.029. http://dx.doi.org/10.1016/j.clinph.2004.04.029

    Article  Google Scholar 

  48. O’Doherty, J., Dayan, P., Schultz, J., Deichmann, R., Friston, K., Dolan, R.J.: Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science 304(5669), 452–454 (2004). doi:10.1126/science.1094285. http://dx.doi.org/10.1126/science.1094285

    Article  Google Scholar 

  49. Ohl, F.W., Scheich, H., Freeman, W.J.: Change in pattern of ongoing cortical activity with auditory category learning. Nature 412(6848), 733–736 (2001). doi:10.1038/35089076. http://dx.doi.org/10.1038/35089076

    Article  Google Scholar 

  50. Pennartz, C.M.A., Berke, J.D., Graybiel, A.M., Ito, R., Lansink, C.S., van der Meer, M., Redish, A.D., Smith, K.S., Voorn, P.: Corticostriatal interactions during learning, memory processing, and decision making. J. Neurosci. 29(41), 12831–12838 (2009). doi:10.1523/JNEUROSCI.3177-09.2009. http://dx.doi.org/10.1523/JNEUROSCI.3177-09.2009

    Article  Google Scholar 

  51. Piray, P.: The role of dorsal striatal d2-like receptors in reversal learning: a reinforcement learning viewpoint. J. Neurosci. 31(40), 14049–14050 (2011). doi:10.1523/JNEUROSCI.3008-11.2011. http://dx.doi.org/10.1523/JNEUROSCI.3008-11.2011

    Article  Google Scholar 

  52. Pubols, B. Jr.: Successive discrimination reversal learning in the white rat: a comparison of two procedures. J. Comput. Physiol. Psychol. 50(3), 319–322 (1957)

    Article  Google Scholar 

  53. Pubols, B.H.: Serial reversal learning as a function of the number of trials per reversal. J. Comput. Physiol. Psychol. 55, 66–68 (1962)

    Article  Google Scholar 

  54. Ragozzino, M.E.: Acetylcholine actions in the dorsomedial striatum support the flexible shifting of response patterns. Neurobiol. Learn. Mem. 80(3), 257–267 (2003)

    Article  Google Scholar 

  55. Remijnse, P.L., Nielen, M.M.A., Uylings, H.B.M., Veltman, D.J.: Neural correlates of a reversal learning task with an affectively neutral baseline: an event-related fMRI study. Neuroimage 26(2), 609–618 (2005). doi:10.1016/j.neuroimage.2005.02.009. http://dx.doi.org/10.1016/j.neuroimage.2005.02.009

    Article  Google Scholar 

  56. Rodgers, C.C., DeWeese, M.R.: Neural correlates of task switching in prefrontal cortex and primary auditory cortex in a novel stimulus selection task for rodents. Neuron 82(5), 1157–1170 (2014). doi:10.1016/j.neuron.2014.04.031. http://dx.doi.org/10.1016/j.neuron.2014.04.031

    Article  Google Scholar 

  57. Schoenbaum, G., Nugent, S.L., Saddoris, M.P., Setlow, B.: Orbitofrontal lesions in rats impair reversal but not acquisition of go, no-go odor discriminations. Neuroreport 13(6), 885–890 (2002)

    Article  Google Scholar 

  58. Schoenbaum, G., Setlow, B., Nugent, S.L., Saddoris, M.P., Gallagher, M.: Lesions of orbitofrontal cortex and basolateral amygdala complex disrupt acquisition of odor-guided discriminations and reversals. Learn. Mem. 10(2), 129–140 (2003). doi:10.1101/lm.55203. http://dx.doi.org/10.1101/lm.55203

    Article  Google Scholar 

  59. Schultz, W.: The reward signal of midbrain dopamine neurons. News Physiol. Sci. 14, 249–255 (1999)

    Google Scholar 

  60. Schultz, W.: Reward signaling by dopamine neurons. Neuroscientist 7(4), 293–302 (2001)

    Article  Google Scholar 

  61. Schultz, W., Dayan, P., Montague, P.R.: A neural substrate of prediction and reward. Science 275(5306), 1593–1599 (1997)

    Article  Google Scholar 

  62. Schulz, A.L., Woldeit, M.L., Gonçalves, A.I., Saldeitis, K., Ohl, F.W.: Selective increase of auditory cortico-striatal coherence during auditory-cued go/nogo discrimination learning. Front. Behav. Neurosci. 9(368) (2016). doi:10.3389/fnbeh.2015.00368

    Google Scholar 

  63. Smith, Y., Surmeier, D.J., Redgrave, P., Kimura, M.: Thalamic contributions to basal ganglia-related behavioral switching and reinforcement. J. Neurosci. 31(45), 16102–16106 (2011). doi:10.1523/JNEUROSCI.4634-11.2011. http://dx.doi.org/10.1523/JNEUROSCI.4634-11.2011

    Article  Google Scholar 

  64. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT, Cambridge, MA (1998)

    Google Scholar 

  65. Tremblay, L., Hollerman, J.R., Schultz, W.: Modifications of reward expectation-related neuronal activity during learning in primate striatum. J. Neurophysiol. 80(2), 964–977 (1998)

    Article  Google Scholar 

  66. von der Gablentz, J., Tempelmann, C., Münte, T.F., Heldmann, M.: Performance monitoring and behavioral adaptation during task switching: an fMRI study. Neuroscience 285, 227–235 (2015). doi:10.1016/j.neuroscience.2014.11.024. http://dx.doi.org/10.1016/j.neuroscience.2014.11.024

    Article  Google Scholar 

  67. Voorn, P., Vanderschuren, L.J.M.J., Groenewegen, H.J., Robbins, T.W., Pennartz, C.M.a.: Putting a spin on the dorsal-ventral divide of the striatum. Trends Neurosci. 27(8), 468–74 (2004). doi:10.1016/j.tins.2004.06.006. http://www.ncbi.nlm.nih.gov/pubmed/15271494

  68. Walton, M.E., Behrens, T.E.J., Noonan, M.P., Rushworth, M.F.S.: Giving credit where credit is due: orbitofrontal cortex and valuation in an uncertain world. Ann. N. Y. Acad. Sci. 1239, 14–24 (2011). doi:10.1111/j.1749-6632.2011.06257.x. http://dx.doi.org/10.1111/j.1749-6632.2011.06257.x

    Article  Google Scholar 

  69. Wassum, K.M., Izquierdo, A.: The basolateral amygdala in reward learning and addiction. Neurosci. Biobehav. Rev. 57, 271–283 (2015). doi:10.1016/j.neubiorev.2015.08.017. http://dx.doi.org/10.1016/j.neubiorev.2015.08.017

    Article  Google Scholar 

  70. Woldeit, M.L., Schulz, A.L., Ohl, F.W.: Phase de-synchronization effects auditory gating in the ventral striatum but not auditory cortex. Neuroscience 216, 70–81 (2012). doi:10.1016/j.neuroscience.2012.04.058. http://dx.doi.org/10.1016/j.neuroscience.2012.04.058

    Article  Google Scholar 

  71. Xiong, Q., Znamenskiy, P., Zador, A.M.: Selective corticostriatal plasticity during acquisition of an auditory discrimination task. Nature (2015). doi:10.1038/nature14225. http://dx.doi.org/10.1038/nature14225

    Google Scholar 

  72. Xue, G., Xue, F., Droutman, V., Lu, Z.L., Bechara, A., Read, S.: Common neural mechanisms underlying reversal learning by reward and punishment. PLoS One 8(12), e82169 (2013). doi:10.1371/journal.pone.0082169. http://dx.doi.org/10.1371/journal.pone.0082169

    Article  Google Scholar 

Download references

Acknowledgements

This work was done within the Transregional Collaborative Research Centre SFB/TRR 62 “Companion-Technology for Cognitive Technical Systems” funded by the German Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas L. Schulz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schulz, A.L., Woldeit, M.L., Ohl, F.W. (2017). Neurobiological Fundamentals of Strategy Change: A Core Competence of Companion-Systems. In: Biundo, S., Wendemuth, A. (eds) Companion Technology. Cognitive Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-43665-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43665-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43664-7

  • Online ISBN: 978-3-319-43665-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics