Guide to Elliptic Boundary Value Problems for Dirac-Type Operators

  • Christian Bär
  • Werner BallmannEmail author
Part of the Progress in Mathematics book series (PM, volume 319)


We present an introduction to boundary value problems for Dirac-type operators on complete Riemannian manifolds with compact boundary. We introduce a very general class of boundary conditions which contain local elliptic boundary conditions in the sense of Lopatinski and Shapiro as well as the Atiyah–Patodi–Singer boundary conditions. We discuss boundary regularity of solutions and also spectral and index theory. The emphasis is on providing the reader with a working knowledge.


Operators of Dirac type Boundary conditions Boundary regularity Coercivity Coercivity at infinity Spectral theory Index theory Decomposition theorem Relative index theorem Cobordism theorem 

2010 Mathematics Subject Classification.

35J56 58J05 58J20 58J32. 


  1. [AT]
    T. Ackermann, J. Tolksdorf, The generalized Lichnerowicz formula and analysis of Dirac operators. J. Reine Angew. Math. 471, 23–42 (1996)MathSciNetzbMATHGoogle Scholar
  2. [APS]
    M. Atiyah, V. Patodi, I. Singer, Spectral asymmetry and Riemannian Geometry. I. Math. Proc. Camb. Philos. Soc. 77, 43–69 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  3. [B]
    C. Bär, Real killing spinors and holonomy. Commun. Math. Phys. 154, 509–521 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  4. [BB]
    C. Bär, W. Ballmann, Boundary value problems for elliptic differential operators of first order, in Survey in Differential Geometry, vol. 17, ed. by H.-D. Cao, S.-T. Yau (International Press, Somerville, 2012), pp. 1–78Google Scholar
  5. [BBC]
    W. Ballmann, J. Brüning, G. Carron, Regularity and index theory for Dirac-Schrödinger systems with Lipschitz coefficients. J. Math. Pures Appl. 89, 429–476 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  6. [BW]
    B. Booss–Bavnbek, K. Wojciechowski, Elliptic Boundary Problems for Dirac Operators (Birkhäuser, Boston, 1993)Google Scholar
  7. [Fr]
    D. Freed, Two index theorems in odd dimensions. Commun. Anal. Geom. 6, 317–329 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  8. [Fri]
    T. Friedrich, Der erste Eigenwert des Dirac-Operators einer kompakten, Riemannschen Mannigfaltigkeit nichtnegativer Skalarkrümmung. Math. Nachr. 97, 117–146 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  9. [Gi]
    P. Gilkey, Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem (Publish or Perish, Wilmington, 1984)zbMATHGoogle Scholar
  10. [GL]
    M. Gromov, H.B. Lawson, Positive scalar curvature and the Dirac operator on complete Riemannian manifolds. Inst. Hautes Études Sci. Publ. Math. 58 (1983), 83–196 (1984)MathSciNetzbMATHGoogle Scholar
  11. [GN]
    N. Große, R. Nakad, Boundary value problems for noncompact boundaries of spinc manifolds and spectral estimates. arxiv:1207.4568[v2] Proc. Lond. Math. Soc. (3)109 (2014), 4, 946–974Google Scholar
  12. [Hi]
    N. Higson, A note on the cobordism invariance of the index. Topology 30, 439–443 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  13. [HMR]
    O. Hijazi, S. Montiel, A. Roldán, Eigenvalue boundary problems for the Dirac operator. Commun. Math. Phys. 231, 375–390 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  14. [Ka]
    T. Kato, Perturbation Theory for Linear Operators. 2nd edn. (Springer, Berlin, 1986)Google Scholar
  15. [LM]
    H.B. Lawson, M.-L. Michelsohn, Spin Geometry (Princeton University Press, Princeton, 1989)zbMATHGoogle Scholar
  16. [Pa]
    R.S. Palais, Seminar on the Atiyah-Singer Index Theorem. With contributions by M. F. Atiyah, A. Borel, E. E. Floyd, R. T. Seeley, W. Shih, and R. Solovay (Princeton University Press, Princeton, 1965)Google Scholar
  17. [Ro]
    J. Roe, Partitioning noncompact manifolds and the dual Toeplitz problem, in Operator Algebras and Applications, vol. 1. London Mathematical Society Lecture Note Series, vol. 135 (Cambridge University Press, Cambridge, 1988), pp. 187–228Google Scholar
  18. [Se]
    R.T. Seeley, Complex powers of an elliptic operator. Proc. Symp. Pure Math. 10, 288–307 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  19. [Ta]
    M.E. Taylor, Partial Differential Equations. I. Basic Theory (Springer, New York, 1996)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institut für Mathematik, Universität PotsdamPotsdamGermany
  2. 2.Max Planck Institute for MathematicsBonnGermany

Personalised recommendations