The Right Adjoint of the Parabolic Induction

  • Marie-France VignérasEmail author
Part of the Progress in Mathematics book series (PM, volume 319)


We extend the results of Emerton on the ordinary part functor to the category of the smooth representations over a general commutative ring R, of a general reductive p-adic group G (rational points of a reductive connected group over a local non-archimedean field F of residual characteristic p). In Emerton’s work, the characteristic of F is 0, R is a complete artinian local \(\mathbb{Z}_{p}\) -algebra having a finite residual field, and the representations are admissible. We show:

The smooth parabolic induction functor admits a right adjoint. The center-locally finite part of the smooth right adjoint is equal to the admissible right adjoint of the admissible parabolic induction functor when R is noetherian. The smooth and admissible parabolic induction functors are fully faithful when p is nilpotent in R.


  1. [Bu]
    C.J. Bushnell, Representations of reductive p-adic groups: localization of Hecke algebras and applications. J. Lond. Math. Soc. 63 (2), 364–386 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  2. [Bo]
    A. Borel, Linear Algebraic Groups, 2 edn. (Springer, New York, 1991).CrossRefzbMATHGoogle Scholar
  3. [BT1]
    F. Bruhat, J. Tits, Groupes réductifs sur un corps local: I. Données radicielles valuées. Publ. Math. I.H.E.S. 41 (1972)Google Scholar
  4. [Dat]
    J.-F. Dat, Finitude pour les représentations lisses de groupes réductifs p-adiques. J. Inst. Math. Jussieu 8 (1), 261–333 (2009)MathSciNetCrossRefGoogle Scholar
  5. [Emerton]
    M. Emerton, Ordinary parts of admissible representations of p-adic reductive groups I. Astérisque 331, 355–402 (2010)MathSciNetzbMATHGoogle Scholar
  6. [Emerton2]
    M. Emerton, Ordinary parts of admissible representations of p-adic reductive groups II. Astérisque 331, 403–459 (2010)MathSciNetzbMATHGoogle Scholar
  7. [HV]
    G. Henniart, M.-F. Vigneras, Comparison of compact induction with parabolic induction. Special issue to the memory of J. Rogawski. Pac. J. Math. 260 (2), 457–495 (2012)Google Scholar
  8. [KS]
    M. Kashiwara, P. Schapira, Categories and sheaves. Grundlehren des mathematischen Wissenschaften, vol. 332 (Springer, New York, 2006). Errata in,/books.
  9. [Ly]
    T. Ly, Irreducible representations modulo p representations of GL(n, D). Thesis. University of Paris 7, 2013Google Scholar
  10. [Matsumura]
    H. Matsumura, Categories for the Working Mathematician (Springer, New York, 1971)Google Scholar
  11. [ML]
    L.S. Mac, Categories for the Working Mathematician (Springer, New York, 1971)zbMATHGoogle Scholar
  12. [SVZ]
    P. Schneider, M.-F. Vigneras, G. Zabradi, From étale P +-representations to G-equivariant sheaves on GP (2012). PreprintGoogle Scholar
  13. [SGA4]
    A. Grothendieck, J.-L. Verdier, Préfaisceaux Séminaire de géometrie algébrique by M. Artin, A. Grothendieck and J.-L. Verdier (1963–1964). Lecture Notes in Mathematics, vol. 269 (Springer, New York, 1972)Google Scholar
  14. [VigLang]
    M.-F. Vigneras, Représentations p-adiques de torsion admissibles. Number Theory, Analysis and Geometry: In Memory of Serge Lang (Springer, New York, 2011)Google Scholar
  15. [Viglivre]
    M.-F. Vigneras, Représentations l-modulaires d’un groupe réductif p-adique avec p. Progress in Mathematics, vol. 131 (Birkhäuser, Boston, 1996)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institut de Mathematiques de JussieuUniversité de Paris 7ParisFrance

Personalised recommendations