Skip to main content

Physiologic Considerations for Minimally Invasive Surgery in Infants and Children

  • Chapter
  • First Online:
The SAGES Manual of Pediatric Minimally Invasive Surgery

Abstract

Laparoscopy and thoracoscopy are effective and beneficial approaches for many abdominal and thoracic surgical procedures in children of all ages. Safe application of minimally invasive surgery in pediatric patients requires an understanding of the effects of carbon dioxide insufflation. Insufflation causes two major physiological consequences—increased intra-abdominal or intrathoracic pressure and CO2 absorption—which in turn produce a variety of physiologic sequelae. Cardiac index, mean arterial pressure, and aortic blood flow decrease during abdominal insufflation, and increased intra-abdominal pressure can lead to impaired pulmonary mechanics. Increased minute ventilation must be achieved during minimally invasive surgery, especially in neonates, to prevent hypercarbia and subsequent acidosis. Newborns are very sensitive to ventilation/perfusion mismatch if single-lung ventilation is employed during thoracoscopy. Reversible anuria and oliguria occur with laparoscopy, although this effect is less common after infancy. Effects on inflammatory cytokines and cellular infiltrates appear to be less significant in laparoscopic versus open operations in children. This chapter details the physiologic effects of laparoscopy and thoracoscopy on individual organ systems and discusses general preoperative and postoperative considerations for minimally invasive surgery in children.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lacher M, Kuebler JF, Dingemann J, Ure BM. Minimal invasive surgery in the newborn: current status and evidence. Semin Pediatr Surg. 2014;23(5):249–56.

    Article  PubMed  Google Scholar 

  2. Ponsky TA, Rothenberg SS. Minimally invasive surgery in infants less than 5 kg: experience of 649 cases. Surg Endosc. 2008;22(10):2214–9.

    Article  PubMed  Google Scholar 

  3. Blinman T, Ponsky T. Pediatric minimally invasive surgery: laparoscopy and thoracoscopy in infants and children. Pediatrics. 2012;130(3):539–49.

    Article  PubMed  Google Scholar 

  4. Kalfa N, Allal H, Raux O, et al. Multicentric assessment of the safety of neonatal video surgery. Surg Endosc. 2007;21(2):303–8.

    Article  PubMed  Google Scholar 

  5. Means LJ, Green MC, Bilal R. Anesthesia for minimally invasive surgery. Semin Pediatr Surg. 2004;13(3):181–7.

    Article  PubMed  Google Scholar 

  6. Watkins SC, Morrow SE, McNew BS, Donahue BS. Perioperative management of infants undergoing fundoplication and gastrostomy after stage I palliation of hypoplastic left heart syndrome. Pediatr Cardiol. 2012;95:204–11.

    Google Scholar 

  7. Slater B, Rangel S, Ramamoorthy C, Abrajano C, Albanese CT. Outcomes after laparoscopic surgery in neonates with hypoplastic heart left heart syndrome. J Pediatr Surg. 2007;42(6):1118–21.

    Article  PubMed  Google Scholar 

  8. Cribbs RK, Heiss KF, Clabby ML, Wulkan ML. Gastric fundoplication is effective in promoting weight gain in children with severe congenital heart defects. J Pediatr Surg. 2008;43(2):283–9.

    Article  PubMed  Google Scholar 

  9. Bozkurt P, Kaya G, Yeker Y, et al. Arterial carbon dioxide markedly increases during diagnostic laparoscopy in portal hypertensive children. Anesth Analg. 2002;95(5):1236–40.

    Article  CAS  PubMed  Google Scholar 

  10. Gueugniaud PY, Abisseror M, Moussa M, et al. The hemodynamic effects of pneumoperitoneum during laparoscopic surgery in healthy infants: assessment by continuous esophageal aortic blood flow echo-Doppler. Anesth Analg. 1998;86(2):290–3.

    CAS  PubMed  Google Scholar 

  11. Sakka SG, Huettemann E, Petrat G, et al. Transoesophageal echocardiographic assessment of haemodynamic changes during laparoscopic herniorrhaphy in small children. Br J Anaesth. 2000;84:330–4.

    Article  CAS  PubMed  Google Scholar 

  12. Metzelder ML, Kuebler JF, Huber D, et al. Cardiovascular responses to prolonged carbon dioxide pneumoperitoneum in neonatal versus adolescent pigs. Surg Endosc. 2010;24(3):670–4.

    Article  CAS  PubMed  Google Scholar 

  13. De Waal EEC, Kalkman CJ. Haemodynamic changes during low-pressure carbon dioxide pneumoperitoneum in young children. Paediatr Anaesth. 2003;13(1):18–25.

    Article  PubMed  Google Scholar 

  14. Aksakal D, Hückstädt T, Richter S, et al. Comparison of femoral and carotid blood pressure during laparoscopy in piglets. J Pediatr Surg. 2012;47(9):1688–93.

    Article  PubMed  Google Scholar 

  15. Bannister CF, Brosius KK, Wulkan M. The effect of insufflation pressure on pulmonary mechanics in infants during laparoscopic surgical procedures. Paediatr Anaesth. 2003;13(9):785–9.

    Article  PubMed  Google Scholar 

  16. Beebe DS, Zhu S, Kumar MVS, et al. The effect of insufflation pressure on CO(2) pneumoperitoneum and embolism in piglets. Anesth Analg. 2002;94(5):1182–7.

    Article  PubMed  Google Scholar 

  17. McHoney M, Corizia L, Eaton S, et al. Carbon dioxide elimination during laparoscopy in children is age dependent. J Pediatr Surg. 2003;38(1):105–10.

    Article  PubMed  Google Scholar 

  18. Tanaka T, Satoh K, Torii Y, Suzuki M, Furutani H, Harioka T. Arterial to end-tidal carbon dioxide tension difference during laparoscopic colorectal surgery. Masui. 2006;55(8):988–91.

    PubMed  Google Scholar 

  19. Wulkan ML, Vasudevan SA. Is end-tidal CO2 an accurate measure of arterial CO2 during laparoscopic procedures in children and neonates with cyanotic congenital heart disease? J Pediatr Surg. 2001;36(8):1234–6.

    Article  CAS  PubMed  Google Scholar 

  20. Sanders JC, Gerstein N. Arterial to endtidal carbon dioxide gradient during pediatric laparoscopic fundoplication. Paediatr Anaesth. 2008;18(11):1096–101.

    Article  PubMed  Google Scholar 

  21. Bozkurt P, Kaya G, Altintas F, et al. Systemic stress response during operations for acute abdominal pain performed via laparoscopy or laparotomy in children. Anaesthesia. 2000;55(1):5–9.

    Article  CAS  PubMed  Google Scholar 

  22. Ure BM, Niewold TA, Bax NMA, et al. Peritoneal, systemic, and distant organ inflammatory responses are reduced by a laparoscopic approach and carbon dioxide vs air. Surg Endosc. 2002;16(5):836–42.

    Article  CAS  PubMed  Google Scholar 

  23. Wang L, Qin W, Tian F, et al. Cytokine responses following laparoscopic or open pyeloplasty in children. Surg Endosc. 2009;23(3):544–9.

    Article  PubMed  Google Scholar 

  24. Montalto AS, Bitto A, Irrera N, et al. CO2 pneumoperitoneum impact on early liver and lung cytokine expression in a rat model of abdominal sepsis. Surg Endosc. 2012;26(4):984–9.

    Article  PubMed  Google Scholar 

  25. Papparella A, Noviello C, Romano M, et al. Local and systemic impact of pneumoperitoneum on prepubertal rats. Pediatr Surg Int. 2007;23(5):453–7.

    Article  PubMed  Google Scholar 

  26. Moehrlen U, Ziegler U, Boneberg E, et al. Impact of carbon dioxide versus air pneumoperitoneum on peritoneal cell migration and cell fate. Surg Endosc. 2006;20(10):1607–13.

    Article  CAS  PubMed  Google Scholar 

  27. Berdan EA, Segura BJ, Saltzman DA. Physiology of the newborn. In: Holcomb GW, Murphy JP, Ostlie DJ, editors. Ashcraft’s pediatric surgery. 6th ed. Elsevier Saunders; 2014:3–18.

    Google Scholar 

  28. Gómez Dammeier BH, Karanik E, Glüer S, et al. Anuria during pneumoperitoneum in infants and children: a prospective study. J Pediatr Surg. 2005;40(9):1454–8.

    Article  PubMed  Google Scholar 

  29. Lew YS, Thambi Dorai CR, Phyu PT. A case of supercarbia following pneumoperitoneum in an infant. Paediatr Anaesth. 2005;15(4):346–9.

    Article  CAS  PubMed  Google Scholar 

  30. Bishay M, Giacomello L, Retrosi G, Thyoka M, Garriboli M, Brierley J, Harding L, Scuplak S, Cross KM, Curry JI, Kiely EM, De Coppi P, Eaton S, Pierro A. Hypercapnia and acidosis during open and thoracoscopic repair of congenital diaphragmatic hernia and esophageal atresia: results of a pilot randomized controlled trial. Ann Surg. 2013;258(6):895–900.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gretchen Purcell Jackson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Craig, B.T., Jackson, G.P. (2017). Physiologic Considerations for Minimally Invasive Surgery in Infants and Children. In: Walsh, D., Ponsky, T., Bruns, N. (eds) The SAGES Manual of Pediatric Minimally Invasive Surgery. Springer, Cham. https://doi.org/10.1007/978-3-319-43642-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43642-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43640-1

  • Online ISBN: 978-3-319-43642-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics