Skip to main content

Quantifying the Stabilizing Effect of Forests on Shallow Landslide-Prone Slopes

  • Chapter
  • First Online:
Book cover Ecosystem-Based Disaster Risk Reduction and Adaptation in Practice

Part of the book series: Advances in Natural and Technological Hazards Research ((NTHR,volume 42))

Abstract

Shallow landslides are natural hazards that can affect human life and infrastructure both directly and indirectly. Such landslides usually involve low-cohesion soil mantles less than a few meters deep. As shown by evidence worldwide, the presence of forests can lead to increased slope stability, due to mechanical and hydrological mechanisms, and therefore significantly reduce the landslide risk in many locations. Therefore, the nationwide project SilvaProtect-CH, which provided data and defined uniform criteria for protection forest delimitation in Switzerland, has also included shallow landslide protection forests. According to the modelling results of SilvaProtect-CH, approximately 27 % of the Swiss protection forests provide a protective function against shallow landslides. To facilitate a quick quantitative evaluation of the slope stabilizing effect of such forests, we developed the tool SlideforNET, which is described in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bathurst JC, Moretti G, El-Hames A et al (2007) Modelling the impact of forest loss on shallow landslide sediment yield, Ijuez river catchment, Spanish Pyrenees. Hydrol Earth Syst Sci 11:569–583

    Article  Google Scholar 

  • Benda L, Dunne T (1997) Stochastic forcing of sediment supply to channel networks from land sliding and debris flow. Water Resour Res 33:2849–2863

    Article  Google Scholar 

  • Bischetti GB, Chiaradia EA, Epis T, Morlotti E (2009) Root cohesion of forest species in the Italian Alps. Plant Soil 324:71–89

    Article  Google Scholar 

  • Bishop DM, Stevens ME (1964) Landslides in logged areas in Southeast Alaska. U.S.D.A. Forest Service Research Paper NOOR-1, Northern Forest Experimental Station, Juneau, AK: 18 p

    Google Scholar 

  • BRP/BWW/BUWAL (1997) Berücksichtigung der Massenbewegungsgefahren bei raumwirksamen Tätigkeiten – Empfehlung. BRP/BWW/BUWAL, Bern: 42 p

    Google Scholar 

  • Cohen D, Schwarz M, Or D (2011) An analytical fiber bundle model for pullout mechanics of root bundles. J Geophys Res 116:F03010

    Google Scholar 

  • Cundall PA (1971) A computer model for simulating progressive, large scale movement in blocky rock system. In: Symposium ISRM. Nancy, France, Proc. 2:129–136

    Google Scholar 

  • Danjon F, Barker DH, Drexhage M, Stokes A (2008) Using three-dimensional plant root architecture in models of shallow-slope stability. Ann Bot 101(8):1281–1293

    Article  Google Scholar 

  • Fan CC, Lai YF (2014) Influence of the spatial layout of vegetation on the stability of slopes. Plant Soil 377:83–95

    Article  Google Scholar 

  • Fredlund DG (1979) Second Canadian geotechnical colloquium: appropriate concepts and technology for unsaturated soils. Can Geotech J 16(1):121–139

    Article  Google Scholar 

  • Frehner M, Wasser B, Schwitter R (2005) Nachhaltigkeit und Erfolgskontrolle im Schutzwald – Wegleitung für Pflegemassnahmen in Wäldern mit Schutzfunktion. BUWAL, Bundesamt für Umwelt, Wald und Landschaft, Bern

    Google Scholar 

  • Gamma P (2000) dfwalk – Ein Murgang-Simulationsprogramm zur Gefahrenzonierung, Geographica Bernensia G 66, Univ. Bern: 144 p.

    Google Scholar 

  • García-Ruiz JM, Beguería S, Alatorre LC, Puigdefábregas J (2010) Land cover changes and shallow landsliding in the flysch sector of the Spanish Pyrenees. Geomorphology 124(3–4):250–259

    Article  Google Scholar 

  • Giadrossich F, Schwarz M, Pirastru M, Niedda M (2013) Stabilization mechanisms of hillslopes due to root reinforcement. Quaderni di Idronomia Montana 31:353–362

    Google Scholar 

  • Greenway DR (1987) Vegetation and slope stability. In: Anderson MF, Richards KS (eds) Slope stability. Wiley, New York

    Google Scholar 

  • Haigh MJ, Rawat JS, Rawat MS et al (1995) Interactions between forest and landslide activity along new highways in the Kumaun Himalaya. For Ecol Manag 78(1–3):173–189

    Article  Google Scholar 

  • Hwang T, Band LE, Hales TC, et al. (2015) Simulating vegetation controls on hurricane-induced shallow landslides with a distributed ecohydrological model. J. Geophys. Res. Biogeosci. n/a

    Google Scholar 

  • Jakob M (2000) The impacts of logging on landslide activity at Clayoquot Sound, British Columbia. CATENA 38:279–300

    Article  Google Scholar 

  • Kim D, Im S, Lee C, Woo C (2013) Modeling the contribution of trees to shallow landslide development in a steep, forested watershed. Ecol Eng 61:658–668

    Article  Google Scholar 

  • Lehmann P, Or D (2012) Hydromechanical triggering of landslides: from progressive local failures to mass release. Water Resour Res 48:8250–8262

    Article  Google Scholar 

  • Liener S (2000) Zur Feststofflieferung in Wildbächen, Geographica Bernensia G 64, Univ. Bern. 91 pp

    Google Scholar 

  • Losey S, Wehrli A (2013) Schutzwald in der Schweiz. Vom Projekt SilvaProtect-CH zum harmonisierten Schutzwald. Federal Office for the Environment FOEN, Bern: 29 pp

    Google Scholar 

  • Malamud BD, Turcotte DL, Guzzetti F, Reichenbach P (2004) Landslide inventories and their statistical properties. Earth Surf Process Landf 29:687–711

    Article  Google Scholar 

  • Mao Z, Bourrier F, Stokes A, Fourcaud T (2014) Three-dimensional modelling of slope stability in heterogeneous montane forest ecosystems. Ecol Model 273:11–22

    Article  Google Scholar 

  • Markart G, Perzl F, Kohl B, et al. (2007) 22nd and 23rd august 2005 – analysis of flooding events and mass movements in selected communities of Vorarlberg. BFW-Dokumentation 5/2007: 45 pp

    Google Scholar 

  • Matthews C, Farook Z, Helm P (2014) Slope stability analysis – limit equilibrium or the finite element method? Ground Eng 2014:22–28

    Google Scholar 

  • Milledge DG, Bellugi D, McKean JA et al (2014) A multidimensional stability model for predicting shallow landslide size and shape across landscapes. J Geophys Res Earth Surf 119:2481–2504

    Article  Google Scholar 

  • Moser M, Schoger H (1989) Die Analyse der Hangbewegungen im mittleren Inntal anlässlich der Unwetterkatastrophe 1985. Wildbach- Lawinenverbau 53(110):1–22

    Google Scholar 

  • Okada Y, Kurokawa U (2015) Examining effects of tree roots on shearing resistance in shallow landslides triggered by heavy rainfall in Shobara in 2010. J For Res 20:230–235

    Article  Google Scholar 

  • Peduzzi P (2010) Landslides and vegetation cover in the 2005 North Pakistan earthquake: A GIS and statistical quantitative approach. Nat Hazards Earth Syst Sci 10:623–640

    Article  Google Scholar 

  • Phillips CJ, Watson AJ (1994) Structural tree root research in New Zealand: a review, Landcare Research Science Series N°7: 70 pp

    Google Scholar 

  • PLANAT (2005) Strategie Naturgefahren Schweiz – Synthesebericht. Bundesamt für Wasser und Geologie BWG, Biel: 81 pp

    Google Scholar 

  • Rickli C, Graf F (2009) Effects of forests on shallow landslides – case studies in Switzerland. For Snow Landsc Res 82(1):33–44

    Google Scholar 

  • Roering JJ, Schmidt KM, Stock JD et al (2003) Shallow landsliding, root reinforcement, and the spatial distribution of trees in the Oregon Coast Range. Can Geotech J 40:237–253

    Article  Google Scholar 

  • Schmidt KM, Roering JJ, Stock JD et al (2001) The variability of root cohesion as an influence on shallow landslide susceptibility in the Oregon 690 Coast Range. Can Geotech J 38:995–1024

    Article  Google Scholar 

  • Schwarz M, Lehmann P, Or D (2010a) Quantifying lateral root reinforcement in steep slopes – from a bundle of roots to tree stands. Earth Surf Process Landf 35:354–367

    Article  Google Scholar 

  • Schwarz M, Preti F, Giadrossich F et al (2010b) Quantifying the role of vegetation in slope stability: the Vinchiana case study (Tuscany, Italy). Ecol Eng 36:285–291

    Article  Google Scholar 

  • Schwarz M, Cohen D, Or D (2012) Spatial characterization of root reinforcement at stand scale: theory and case study. Geomorphology 171–172:190–200

    Article  Google Scholar 

  • Schwarz M, Feller K, Thormann J-J (2013) Entwicklung und Validierung einer neuen Methode für die Beurteilung und Planung der minimalen Schutzwaldpflege auf rutschgefährdeten Hängen, Final report «Wald- und Holzforschungsfonds», Swiss Federal Office for the Environment FOEN

  • Sidle RC (1992) A theoretical model of the effects of timber harvesting on slope stability. Water Resour Res 28:1897–1910

    Article  Google Scholar 

  • Sidle RC, Ochiai H (2006) Landslides: processes, prediction, and land use. American Geophysical Union, Washington, DC

    Book  Google Scholar 

  • Sidle RC, Wu W (1999) Simulation effects of timber harvesting on the temporal and spatial distribution of shallow landslides. Z Geomorphol NF 43:185–201

    Google Scholar 

  • Simoni S, Zanotti F, Bertoldi G, Rigon R (2007) Modelling the probability of occurrence of shallow landslides and channelized debris flows using GEOtop-FS. Hydrol Process 22:532–545

    Article  Google Scholar 

  • Stokes A, Norris JE, Beek LPH (2008) How vegetation reinforces soil on slopes. In: Norris JE, Stokes A, Mickovski SB et al (eds) Slope stability and erosion control: ecotechnological solutions. Springer, Dordrecht, pp 65–118

    Chapter  Google Scholar 

  • Toll DG, Lourenco SDN, Mendes J et al (2011) Soil suction monitoring for landslides and slopes. Q J Eng Geol Hydrogeol 44:23–33

    Article  Google Scholar 

  • Voellmy A (1955) Über die Zerstörungskraft von Lawinen. Schweizerische Bauzeitung 73:159–162, 212–217, 246–249, 280–285

    Google Scholar 

  • Wu TH, McKinnell WP, Swanston DN (1979) Strength of tree roots and landslides on Price of Wales Island. Alaska Can Geotechnol J 16:19–33

    Article  Google Scholar 

  • Wu W, Switala BM, Acharya MS (2015) Effect of vegetation on stability of soil slopes: numerical aspect. In: Wu W (ed) Recent advances in modeling landslides and debris flows. Springer International Publishing, Cham, pp 163–177

    Google Scholar 

  • Yu HS, Salgado R, Sloan SW, Kim JM (1998) Limit analysis versus limit equilibrium for slope stability. J Geotech Geoenviron Eng 124:1–11

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luuk Dorren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dorren, L., Schwarz, M. (2016). Quantifying the Stabilizing Effect of Forests on Shallow Landslide-Prone Slopes. In: Renaud, F., Sudmeier-Rieux, K., Estrella, M., Nehren, U. (eds) Ecosystem-Based Disaster Risk Reduction and Adaptation in Practice. Advances in Natural and Technological Hazards Research, vol 42. Springer, Cham. https://doi.org/10.1007/978-3-319-43633-3_11

Download citation

Publish with us

Policies and ethics