Skip to main content

Hereditary Disorders of the Dermis

  • Chapter
  • First Online:
Therapy in Pediatric Dermatology

Abstract

Various proteins compose the connective tissue that is found in normal skin and account for its strength and elasticity. Abnormalities in the structure or function of any of these essential dermal proteins can lead to a myriad of highly variable cutaneous disorders, and because some of these same proteins that are important in the skin also play a critical role in the connective tissue of blood vessels and other organs, these entities range in severity, from entirely benign to those that have significant morbidity or are even lethal. Although occasionally acquired, the majority of the disorders of the dermis are inherited, and the recent discovery of many of the causative mutations has led to improved classification schemes and a clearer understanding of their pathogenesis. Medical therapies for these hereditary disorders of the dermis are limited, and in many cases, optimal medical management of these conditions consists instead of providing an accurate diagnosis, implementation of preventative strategies to avoid future complications, and a multidisciplinary approach to address the cutaneous and extra cutaneous manifestations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Levy HP. Ehlers-Danlos syndrome, hypermobility type. 2004 Oct 22 [Updated 2012 Sep 13]. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. GeneReviews® [internet]. Seattle: University of Washington. Available from: http://www.ncbi.nlm.nih.gov/books/NBK1279/.

  2. Malfait F, Wenstrup R, De Paepe A. Ehlers-Danls syndrome, classic type. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. GeneReviews [internet]. 2007th ed. Seattle: University of Washington; 2007. Available from: http://www.ncbi.nlm.nih.gov/books/NBK1244/.

  3. Pepin MG, Murray ML, Byers PH. Vascular Ehlers-Danlos syndrome. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. GeneReviews [internet]. Seattle: University of Washington; 1999. Available from: http:/www.ncbi.nlm.nih.gov/books/NBK1494/.

  4. Sobey G. Ehlers-Danlos syndrome: how to diagnose and when to perform genetic tests. Arch Dis Child. 2015;100:57.

    Article  PubMed  Google Scholar 

  5. Hiratzka LF, Bakris GL, Beckman JA, Bersin RM, Carr VF, Casey Jr DE, et al. ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with thoracic aortic disease: executive Summary. Circulation. 2010;121:1544–79.

    Article  Google Scholar 

  6. Gao L, Mao Q, Wen D, Zhang L, Zhou X, Hui R. The effect of beta-blocker therapy on progressive aortic dilatation in children and adolescents with Marfan’s syndrome: a meta-analysis. Acta Paediatr. 2011;100(9):e101–5.

    Article  PubMed  Google Scholar 

  7. Thakur V, Rankin KN, Hartling L, Mackie AS. A systematic review of the pharmacological management of aortic root dilatation in Marfan syndrome. Cardiol Young. 2013;23:568–81.

    Article  PubMed  Google Scholar 

  8. Dietz HC, McKusick VA. Marfan syndrome. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, et al., editors. GeneReviews® [internet]. Seattle: University of Washington; 1993–2016. 2001 Apr 18 [updated 12 Jun 2004].

    Google Scholar 

  9. Lacro RV, Dietz HC, Sleeper LA, Yetman AT, Bradley TJ, Colan SD, et al. Atenolol versus losartan in children and young adults with Marfan’s syndrome. N Engl J Med. 2014;371(22):2061–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Yacoub M, Radford M. COMPARE and Pediatric Heart Network Investigator trials: losartan finally validated in humans with Marfan, but much work remains. Glob Cardiol Sci Pract. 2014;2014(4):371–8.

    PubMed  PubMed Central  Google Scholar 

  11. The Marfan Foundation. Available at: http://www.marfan.org. Accessed 30 Jul 2015.

  12. Berk DR, Bentley DD, Bayliss SJ, Lind A, Urban Z. Cutis laxa: a review. J Am Acad Dermatol. 2012;66:842.e1–17.

    Article  Google Scholar 

  13. Loeys B, DePaepe A, Urban Z. EFEMP2-related Cutis Laxa. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, et al., editors. GeneReviews® [internet] Seattle: University of Washington; 1993–2016. 2011 May 12 [updated 23 Jul 2015].

    Google Scholar 

  14. Van Maldergem L, Loeys B. FBLN5-Related Cutis Laxa. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, et al., editors. GeneReviews® [internet] Seattle: University of Washington; 1993–2016. 2009 Mar 19 [updated 13 Mar 2014].

    Google Scholar 

  15. Jansen RS, Duijst S, Mahakena S, Sommer D, Szeri F, Váradi A, et al. ABCC6-mediated ATP secretion by the liver is the main source of the mineralization inhibitor inorganic pyrophosphate in the systemic circulation-brief report. Arterioscler Thromb Vasc Biol. 2014;34(9):1985–9.

    Article  CAS  PubMed  Google Scholar 

  16. Dabisch-Ruthe M, Kuzaj P, Gotting C, Knabbe C, Hendig D. Pyrophosphates as a major inhibitor of matrix calcification in pseudoxanthoma elasticum. J Dermatol Sci. 2014;75(2):109–20.

    Article  CAS  PubMed  Google Scholar 

  17. Boraldi F, Annovi G, Bartolomeo A, Quaglino D. Fibroblasts from patients affected by pseudoxanthoma elasticum exhibit an altered PPi metabolism and are more responsive to pro-calcifying stimuli. J Dermatol Sci. 2014;74(1):72–80.

    Article  CAS  PubMed  Google Scholar 

  18. Jansen RS, Kucukosmanoglu A, de Haas M, Sapthu S, Otero JA, Hegman IE, et al. ABCC6 prevents ectopic mineralization seen in pseudoxanthoma elasticum by inducing cellular nucleotide release. Proc Natl Acad Sci U S A. 2013;110(50):20206–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li Q, Kingman J, Uitto J. Mineral content of the maternal diet influences ectopic mineralization in offspring of ABCC6(−/−) mice. Cell Cycle. 2015;14(19):3184–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Uitto J, Jiang Q, Varadi A, Bercovitch LG, Terry SF. Pseudoxanthoma elasticum: diagnostic features, classification, and treatment options. Expert Opin Orphan Drug. 2014;2(6):567–77.

    Article  CAS  Google Scholar 

  21. Li Q, Guo H, Chou DW, Berndt A, Sundberg JP, Uitto J. Mouse models for pseudoxanthoma elasticum: genetic and dietary modulation of the ectopic mineralization phenotypes. PLoS One. 2014;9(2):e89268.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Kupetsky EA, Rincon F, Uitto J. Rate of change of carotid intima-media thickness with magnesium administration in Abcc6−/− mice. Clin Transl Sci. 2013;6(6):485–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jiang Q, Uitto J. Restricting dietary magnesium accelerates ectopic connective tissue mineralization in a mouse model of pseudoxanthoma elasticum (Abcc6(−/−)). Exp Dermatol. 2012;21(9):564–9.

    Article  CAS  Google Scholar 

  24. Kupetsky-Rincon EA, Li Q, Uitto J. Magnesium reduces carotid intima-media thickness in a mouse model of pseudoxanthoma elasticum: a novel treatment biomarker. Clin Transl Sci. 2012;5(3):259–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Li Q, Larusso J, Grand-Pierre AE, Uitto J. Magnesium carbonate-containing phosphate binder prevents connective tissue mineralization in Abcc6(−/−) mice – potential for treatment of pseudoxanthoma elasticum. Clin Transl Sci. 2009;2(6):398–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gorgels TG, Waarsing JH, de Wolf A, ten Brink JB, Loves WJ, Bergen AA. Dietary magnesium, not calcium, prevents vascular calcification in a mouse model for pseudoxanthoma elasticum. J Mol Med (Berl). 2010;88(5):467–75.

    Article  CAS  Google Scholar 

  27. La Russo J, Li Q, Uitto J. Elevated dietary magnesium prevents connective tissue mineralization in a mouse model of pseudoxanthoma elasticum (Abcc6(−/−)). J Invest Dermatol. 2009;129(6):1388–94.

    Article  CAS  Google Scholar 

  28. Li Q, Guo H, Chou DW, Harrington DJ, Schurgers LJ, Terry SF, et al. Warfarin accelerates ectopic mineralization in Abcc6(−/−) mice: clinical relevance to pseudoxanthoma elasticum. Am J Pathol. 2013;182(4):1139–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gorgels TG, Waarsing JH, Herfs M, Versteeg D, Schoensiegel F, Sato T, et al. Vitamin K supplementation increases vitamin K tissue levels but fails to counteract ectopic calcification in a mouse model for pseudoxanthoma elasticum. J Mol Med (Berl). 2011;89(11):1125–35.

    Article  CAS  Google Scholar 

  30. Brampton C, Yamaguchi Y, Vanakker O, Van Laer L, Chen LH, Thakore M, et al. Vitamin K does not prevent soft tissue mineralization in a mouse model of pseudoxanthoma elasticum. Cell Cycle. 2011;10(11):1810–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jiang Q, Li Q, Grand-Pierre AE, Schurgers LJ, Uitto J. Administration of vitamin K does not counteract the ectopic mineralization of connective tissues in Abcc6 (−/−) mice, a model for pseudoxanthoma elasticum. Cell Cycle. 2011;10(4):701–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Savastano MC, Minnella AM, Zinzanella G, Falsini B, Caporossi A. Successful long-term management of choroidal neovascularization secondary to angioid streaks in a patient with pseudoxanthoma elasticum: a case report. J Med Case Rep. 2014;8:458.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Finger RP, Charbel Issa P, Hendig D, Scholl HP, Holz FG. Monthly ranibizumab for choroidal neovascularizations secondary to angioid streaks in pseudoxanthoma elasticum: a one-year prospective study. Am J Ophthalmol. 2011;152(4):695–703.

    Article  CAS  PubMed  Google Scholar 

  34. Finger RP, Charbel Issa P, Schmitz-Valckenberg S, Holz FG, Scholl HN. Long-term effectiveness of intravitreal bevacizumab for choroidal neovascularization secondary to angioid streaks in pseudoxanthoma elasticum. Retina. 2011;31(7):1268–78.

    Article  CAS  PubMed  Google Scholar 

  35. Myung JS, Bhatnagar P, Spaide RF, Klancnik Jr JM, Cooney MJ, Yannuzzi LA, et al. Long-term outcomes of intravitreal antivascular endothelial growth factor therapy for the management of choroidal neovascularization in pseudoxanthoma elasticum. Retina. 2010;30(5):748–55.

    Article  PubMed  Google Scholar 

  36. Bhatnagar P, Freund KB, Spaide RF, Klancnik Jr JM, Cooney MJ, Ho I, et al. Intravitreal bevacizumab for the management of choroidal neovascularization in pseudoxanthoma elasticum. Retina. 2007;27(7):897–902.

    Article  PubMed  Google Scholar 

  37. Georgalas I, Tservakis I, Papaconstaninou D, Kardara M, Koutsandrea C, Ladas I. Pseudoxanthoma elasticum, ocular manifestations, complications and treatment. Clin Exp Optom. 2011;94(2):169–80.

    Article  PubMed  Google Scholar 

  38. Finger RP, Charbel Issa P, Ladewig MS, Götting C, Szliska C, Scholl HP, et al. Pseudoxanthoma elasticum: genetics, clinical manifestations and therapeutic approaches. Surv Ophthalmol. 2009;54(2):272–85.

    Article  PubMed  Google Scholar 

  39. Jiang Q, Takahagi S, Uitto J. Administration of bone marrow derived mesenchymal stem cells into the liver: potential to rescue pseudoxanthoma elasticum in a mouse model (Abcc6−/−). J Biomed Biotechnol. 2012;2012:818–937.

    Google Scholar 

  40. Zhou Y, Jiang Q, Takahagi S, Shao C, Uitto J. Premature termination codon read-through in the ABCC6 gene: potential treatment for pseudoxanthoma elasticum. J Invest Dermatol. 2013;133:2672–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Akram H, Sewell MD, Cheng LH. Pseudoxanthoma elasticum. Br J Oral Maxillofac Surg. 2008;46(3):237–8.

    Article  PubMed  Google Scholar 

  42. Akali AU, Sharpe DT. Cervical midline Z-plasty revision surgery for pseudoxanthoma elasticum. Br J Plast Surg. 2003;56(3):289–91.

    Article  CAS  PubMed  Google Scholar 

  43. Salles AG, Remigio AF, Moraes LB, Varoni AC, Gemperli R, Ferreira MC. Pseudoxanthoma elasticum treatment with fractional CO2 laser. Plast Reconstr Surg Glob Open. 2014;2(9):e219.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Vearrier D, Buka RL, Roberts B, Cunningham BB, Eichenfield LF, Friedlander SF. What is standard of care in the evaluation of elastosis perforans serpiginosa? A survey of pediatric dermatologists. Pediatr Dermatol. 2006;23(3):219–24.

    Article  PubMed  Google Scholar 

  45. Kalkan G, Sahin M, Vahaboglu G, Astarci M, Ekşioğlu M. A case of elastosis perforans serpiginosa treatment with cryotherapy. Int J Dermatol. 2012;51(12):1487–90.

    Article  PubMed  Google Scholar 

  46. Escribano-Stable JC, Domenech C, Matarredona J, Pascual JC, Jaen A, Vicente J. Tacalcitol in the treatment of acquired perforating collagenosis. Case Rep Dermatol. 2014;6(1):69–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lee SH, Choi Y, Kim SC. Elastosis perforans serpiginosa. Ann Dermatol. 2014;26(1):103–6.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Outland JD, Brown TS, Callen JP. Tazarotene is an effective therapy for elastosis perforans serpiginosa. Arch Dermatol. 2002;138(2):169–71.

    Article  PubMed  Google Scholar 

  49. Ratnavel RC, Norris PG. Penicillamine-induced elastosis perforans serpiginosa treated successfully with isotretinoin. Dermatology. 1994;189(1):81–3.

    Article  CAS  PubMed  Google Scholar 

  50. Gregersen PA, Stausbol-Gron B, Ramsing M, Sommerlund M. Elastosis perforans serpiginosa in a patient with Down syndrome treated with imiquimod 5% cream. Dermatol Rep. 2010;2(2):15.

    Article  Google Scholar 

  51. Kelly SC, Purcell SM. Imiquimod therapy for elastosis perforans serpiginosa. Arch Dermatol. 2006;142(7):829–30.

    Article  PubMed  Google Scholar 

  52. Pereira AC, Baeta IG, Cost Junior SR, Gontijo Júnior OM, Vale EC. Elastosis perforans serpiginosa in a patient with Down’s syndrome. An Bras Dermatol. 2010;85(5):691–4.

    Article  PubMed  Google Scholar 

  53. Humphrey S, Hemmati I, Randhawa R, Crawford RI, Hong CH. Elastosis perforans serpiginosa: treatment with liquid nitrogen cryotherapy and review of the literature. J Cutan Med Surg. 2010;14(1):38–42.

    Article  PubMed  Google Scholar 

  54. Loche F, Raynal H, Bazex J. Acne-like eruption induced by pseudoxanthoma elasticum: effectiveness of liquid nitrogen cryotherapy. Eur J Dermatol. 1998;8(1):63–5.

    CAS  PubMed  Google Scholar 

  55. Tuyp EJ, McLeod WA. Elastosis perforans serpiginosa: treatment with liquid nitrogen. Int J Dermatol. 1990;29(9):655–6.

    Article  CAS  PubMed  Google Scholar 

  56. Rosenblum GA. Liquid nitrogen cryotherapy in a case of elastosis perforans serpiginosa. J Am Acad Dermatol. 1983;8(5):718–21.

    Article  CAS  PubMed  Google Scholar 

  57. Campanati A, Martina E, Giuliodori K, Ganzetti G, Marconi B, Conta I, et al. Elastosis perforans serpiginosa: a case successfully treated with intralesional steroids and topical allium cepa-allantoin-pentaglycan gel. Acta Dermatovenerol Alp Pannonica Adriat. 2014;23(2):39–41.

    PubMed  Google Scholar 

  58. Yang JH, Han SS, Won CH, Chang SE, Lee MW, Choi JH, et al. Treatment of elastosis perforans serpiginosa with the pinhole method using a carbon dioxide laser. Dermatol Surg. 2011;37(4):524–6.

    Article  CAS  PubMed  Google Scholar 

  59. Saxena M, Tope WD. Response of elastosis perforans serpiginosa to pulsed CO2, Er:YAG, and dye lasers. Dermatol Surg. 2003;29(6):677–8.

    PubMed  Google Scholar 

  60. Kaufman AJ. Treatment of elastosis perforans serpiginosa with the flashlamp pulsed dye laser. Dermatol Surg. 2000;26(11):1060–2.

    Article  CAS  PubMed  Google Scholar 

  61. Wang D, Liang J, Xu J, Chen L. Effective treatment of d-penicillamine induced elastosis perforans serpiginosa with ALA-PDT. Photodiagnosis Photodyn Ther. 2015;12(1):140–2.

    Article  CAS  PubMed  Google Scholar 

  62. Skarzynski H, Podskarbi-Fayette R. Treatment of otorhinolaryngological manifestations of three rare genetic syndromes: Branchio-Oculo-Facial (BOF), Ectrodactyly Ectodermal dysplasia Clefting (EEC) and focal dermal hypoplasia (Goltz syndrome). Int J Pediatr Otorhinolaryngol. 2009;73(1):143–51.

    Article  PubMed  Google Scholar 

  63. Rhee KY, Baek RM, Ahn KJ. Airway management in a patient with focal dermal hypoplasia. Anesth Analg. 2006;103(5):1342.

    Article  PubMed  Google Scholar 

  64. Sutton VR, Van den Veyver IB. Focal dermal hypoplasia. In: Pagon RA, Adam MP, Ardinger HH, Bird TD, Dolan CR, Fong CT, Smith RJH, Stephens K, editors. GeneReviews® [internet]. Seattle: University of Washington; 2008 [updated 2013 Apr 11].

    Google Scholar 

  65. Alster TS, Wilson F. Focal dermal hypoplasia (Goltz’s syndrome). Treatment of cutaneous lesions with the 585-nm flashlamp-pumped pulsed dye laser. Arch Dermatol. 1995;131(2):143–4.

    Article  CAS  PubMed  Google Scholar 

  66. Liu J, Hsu PT, VanderWielen BA, Teng JM. Treatment of recalcitrant excessive granulation tissue with photodynamic therapy in an eight-year-old patient with focal dermal hypoplasia syndrome. Pediatr Dermatol. 2012;29(3):324–6.

    Article  PubMed  Google Scholar 

  67. Zhang Y, Castori M, Ferranti G, Paradisi M, Wordsworth BP. Novel and recurrent germline LEMD3 mutations causing Buschke Ollendorff syndrome and osteopoikilosis but not isolated melorheostosis. Clin Genet. 2009;75:556–61.

    Article  CAS  PubMed  Google Scholar 

  68. Surrenti T, Callea F, De Horatio LT, Diociaiuti A, El Hachem M. Buschke-Ollendorff syndrome: sparing unnecessary investigations. Cutis. 2014;94:97–100.

    PubMed  Google Scholar 

  69. Progeria Research Foundation. Available at: http://www.progeriaresearch.org. Accessed 28 Jan 2015.

  70. Gordon LB, Brown WT, Collins FS. Hutchinson-Gilford progeria syndrome. In: Pagon RA, Adam MP, Ardinger HH, et al. (editors). GeneReviews (internet). Seattle. Available at: http://www.ncbi.nlm.nih.gov.ezproxy2.umc.edu/books/NBK1121. Accessed 3 Feb 2016.

  71. Gordon LB, Massaro J, D’Agostino Sr RB, Campbell SE, Brazier J, Brown WT, et al. Impact of farnesylation inhibitors on survival in Hutchinson-Gilford progeria syndrome. Circulation. 2014;130(1):27–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fong LG, Frost D, Meta M, Qiao X, Yang SH, Coffinier C, et al. A protein farnesyltransferase inhibitor ameliorates disease in a mouse model of progeria. Science. 2006;311(5767):1621–3.

    Article  CAS  PubMed  Google Scholar 

  73. Rusinol AE, Sinensky MS. Farnesylated lamins, progeroid syndromes and farnesyl transferase inhibitors. J Cell Sci. 2006;119(Pt16):3265–72.

    Article  CAS  PubMed  Google Scholar 

  74. Young SG, Meta M, Yang SH, Fong LG. Prelamin A farnesylation and progeroid syndromes. J Biol Chem. 2006;281(52):39741–5.

    Article  CAS  PubMed  Google Scholar 

  75. Gordon LB, Kleinman ME, Miller DT, Neuberg DS, Giobbie-Hurder A, Gerhard-Herman M, et al. Clinical trial of a farnesyltransferase inhibitor in children with Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A. 2012;109(41):16666–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Varela I, Pereira S, Ugalde AP, Navarro CL, Suárez MF, Cau P, et al. Combined treatment with statins and aminobisphosphonates extends longevity in a mouse model of human premature aging. Nat Med. 2008;14:767–72.

    Article  CAS  PubMed  Google Scholar 

  77. Ramos FJ, Chen SC, Garelick MG, Dai DF, Liao CY, Schreiber KH, et al. Rapamycin reverses elevated mTORC1 signaling in lamin A/C-deficient mice, rescues cardiac and skeletal muscle function, and extends survival. Sci Transl Med. 2012;4(144):144ra103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Cao K, Graziotto JJ, Blair CD, Mazzulli JR, Erdos MR, Krainc D, et al. Rapamycin reverses cellular phenotypes and enhances mutant protein clearance in Hutchinson-Gilford progeria syndrome cells. Sci Transl Med. 2011;3(89):89ra58.

    Article  CAS  PubMed  Google Scholar 

  79. Gabriel D, Roedl D, Gordon LB, Djabali K. Sulforaphane enhances progerin clearance in Hutchinson-Gilford progeria fibroblasts. Aging Cell. 2015;14(1):78–91.

    Article  CAS  PubMed  Google Scholar 

  80. Werner Syndrome. Available at: http://www.wernersyndrome.org. Accessed 28 Jan 2015.

  81. Davis T, Rokicki MJ, Bagley MC, Kipling D. The effect of small-molecule inhibition of MAPKAPK2 on cell ageing phenotypes of fibroblasts from human Werner syndrome. Chem Cent J. 2013;7(1):18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Davis T, Baird DM, Haughton MF, Jones CJ, Kipling D. Prevention of accelerated cell aging in Werner syndrome using a p38 mitogen-activated protein kinase inhibitor. J Gerontol A Biol Sci Med Sci. 2005;60(11):1386–93.

    Article  PubMed  Google Scholar 

  83. Uchiumi F, Watanabe T, Hasegawa S, Hoshi T, Higami Y, Tanuma S. The effect of resveratrol on the Werner syndrome RecQ helicase gene and telomerase activity. Curr Aging Sci. 2011;4(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  84. Labbe A, Garand C, Cogger VC, Paquet ER, Desbiens M, Le Couteur DG, et al. Resveratrol improves insulin resistance hyperglycemia and hepatosteatosis but not hypertriglyceridemia, inflammation, and life span in a mouse model for Werner syndrome. J Gerontol A Biol Sci Med Sci. 2011;66(3):264–78.

    Article  PubMed  CAS  Google Scholar 

  85. Massip L, Garand C, Paquet ER, Cogger VC, O’Reilly JN, Tworek L, et al. Vitamin C restores healthy aging in a mouse model for Werner syndrome. FASEB J. 2010;24(1):158–72.

    Article  PubMed  CAS  Google Scholar 

  86. Kashino G, Kodama S, Nakayama Y, Suzuki K, Fukase K, Goto M, et al. Relief of oxidative stress by ascorbic acid delays cellular senescence of normal human and Werner syndrome fibroblast cells. Free Radic Biol Med. 2003;35(4):438–43.

    Article  CAS  PubMed  Google Scholar 

  87. Kobayashi J, Murano S, Yokote K, Mori S, Matsunaga A, Sasaki J, et al. Marked decrease in plasma apolipoprotein-A-I and high density lipoprotein-cholesterol in a case with Werner syndrome. Clin Chim Acta. 2000;293(1–2):63–73.

    Article  CAS  PubMed  Google Scholar 

  88. Honjo S, Yokote K, Fujishiro T, Maezawa Y, Sato S, Koshizaka M, et al. Early amelioration of insulin resistance and reduction of interleukin-6 in Werner syndrome using pioglitazone. J Am Geriatr Soc. 2008;56(1):173–4.

    Article  PubMed  Google Scholar 

  89. Yamamoto H, Kurebayashi S, Kouhara H, Yoshiuchi K, Matsuhisa M, Yamasaki Y, et al. Impacts of long-term treatments with testosterone replacement and pioglitazone on glucose and lipid metabolism in male patients with Werner syndrome. Clin Chim Acta. 2007;379(1–2):167–70.

    Article  CAS  PubMed  Google Scholar 

  90. Hattori S, Kasai M, Namatame T, Hattori Y, Kasai K. Pioglitazone treatment of insulin resistance in a patient with Werner’s syndrome. Diabetes Care. 2004;27(12):3021–2.

    Article  PubMed  Google Scholar 

  91. Yokote K, Honjo S, Kobayashi K, Fujimoto M, Kawamura H, Mori S, et al. Metabolic improvement and abdominal fat redistribution in Werner syndrome by pioglitazone. J Am Geriatr Soc. 2004;52(9):1582–3.

    Article  PubMed  Google Scholar 

  92. Imano E, Kanda T, Kawamori R, Kajimoto Y, Yamasaki Y. Pioglitazone-reduced insulin resistance in patient with Werner syndrome. Lancet. 1997;350(9088):1365.

    Article  CAS  PubMed  Google Scholar 

  93. Rubin CD, Reed B, Sakhaee K, Pak CY. Treating a patient with the Werner syndrome and osteoporosis using recombinant human insulin-like growth factor. Ann Intern Med. 1994;121(9):665–8.

    Article  CAS  PubMed  Google Scholar 

  94. Wollina U, Gruner M, Koch A, Köstler E, Hubl W, Hanson NB, et al. Topical PDGF-BB results in limited healing in a patient with Werner’s syndrome and chronic leg ulcers. J Wound Care. 2004;13(10):415–6.

    CAS  PubMed  Google Scholar 

  95. Noda S, Asano Y, Masuda S, Miyagawa T, Sugita M, Yamamoto M, et al. Bosentan: a novel therapy for leg ulcers in Werner syndrome. J Am Acad Dermatol. 2011;65(2):e54–5.

    Article  PubMed  Google Scholar 

  96. Smigiel R, Jakubiak A, Esteves-Vieira V, Szela K, Halon A, Jurek T, Levy N, DeSandre-Giovannoli A. Novel frameshifting mutations of the ZMPSTE24 gene in two siblings affected with restrictive dermopathy and review of the mutations described in the literature. Am J Med Genet A. 2010;152A:447–52.

    Article  CAS  PubMed  Google Scholar 

  97. Gene tests. Lethal restrictive dermopathy. Available at: https://www.genetests.org. Accessed 28 Jul 2015.

  98. Hou J-W. A shared founder mutation underlies lethal restrictive dermopathy in the Austronesian aboriginal Atayal tribe of Taiwan. J Formos Med Assoc. 2015;114(10):1017–9. Available at: http://dx.doi.org/10.1016/j.jfma.2014.08.007.

    Article  PubMed  Google Scholar 

  99. Loeys BL, Gerber EE, Riegert-Johnson D, Iqbal S, Whiteman P, McConnell V, et al. Mutations in fibrillin-1 cause congenital scleroderma: stiff skin syndrome. Sci Transl Med. 2010;2(23):23ra20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gene tests. Stiff skin syndrome. Available at: https://www.genetests.org. Accessed 28 Jul 2015.

  101. Liu T, McCalmont TH, Frieden IJ, Williams ML, Connolly MK, Gilliam AE. The stiff skin syndrome: case series, differential diagnosis of the stiff skin phenotype, and review of the literature. Arch Dermatol. 2008;144(10):1351–9. doi:10.1001/archderm.144.10.1351.

    Article  PubMed  Google Scholar 

  102. McCalmont TH, Gilliam AE. A subcutaneous lattice-like array of thick collagen is a clue to the diagnosis of stiff skin syndrome. J Cutan Pathol. 2012;39(1):2–4. doi:10.1111/j.1600-0560.2011.01845_2.x. 1.

    Article  PubMed  Google Scholar 

  103. Callizo M, Ibáñez-Flores N, Laue J, Cuadrado V, Graell X, Sancho JM. Eyelid lesions in lipoid proteinosis or Urbach-Wiethe disease: case report and review of the literature. Orbit. 2011;30(5):242–4.

    Article  PubMed  Google Scholar 

  104. Muda AO, Paradisi M, Angelo C, Mostaccioli S, Atzori F, Puddu P, Faraggiana T. Lipoid proteinosis: clinical, histologic, and ultrastructural investigations. Cutis. 1995;56(4):220–4.

    CAS  PubMed  Google Scholar 

  105. Kaya TI, Tursen U, Kokturk A, Ikizoglu G, Dusmez D. The early erosive vesicular stage of lipoid proteinosis: clinical and histopathological features. Br J Dermatol. 2003;148(2):380–2.

    Article  CAS  PubMed  Google Scholar 

  106. Akoglu G, Karaduman A, Ergin S, Erkin G, Gokoz O, Unal OF, Hamada T. Clinical and histopathological response to acitretin therapy in lipoid proteinosis. J Dermatol Treat. 2011;22(3):178–83.

    Article  CAS  Google Scholar 

  107. Rosenthal G, Lifshitz T, Monos T, Kachco L, Argov S. Carbon dioxide laser treatment for lipoid proteinosis (Urbach-Wiethe syndrome) involving the eyelids. Br J Ophthalmol. 1997;81(3):253.

    Article  CAS  PubMed  Google Scholar 

  108. Kroukamp G, Lehmann K. Treatment of laryngeal lipoid proteinosis using CO2 laser. S Afr Med J. 2007;97(2):90–2.

    PubMed  Google Scholar 

  109. Dertlioğlu SB, Çalık M, Çiçek D. Demographic, clinical, and radiologic signs and treatment responses of lipoid proteinosis patients: a 10-case series from Şanlıurfa. Int J Dermatol. 2014;53(4):516–23.

    Article  PubMed  Google Scholar 

  110. Bakry OA, Samaka RM, Houla NS, Basha MA. Two Egyptian cases of lipoid proteinosis successfully treated with acitretin. J Dermatol Case Rep. 2014;8(1):29–34.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Kaya TI, Kokturk A, Tursen U, Ikizoglu G, Polat A. D-penicillamine treatment for lipoid proteinosis. Pediatr Dermatol. 2002;19(4):359–62.

    Article  PubMed  Google Scholar 

  112. Wong CK, Lin CS. Remarkable response of lipoid proteinosis to oral dimethyl sulphoxide. Br J Dermatol. 1988;119(4):541–4.

    Article  CAS  PubMed  Google Scholar 

  113. Buchan NG, Kemble JV. Successful surgical treatment of lipoid proteinosis. Br J Dermatol. 1974;90:561–6.

    Article  CAS  PubMed  Google Scholar 

  114. Nofal A, Sanad M, Assaf M, Nofal E, Nassar A, Almokadem S, et al. Juvenile hyaline fibromatosis and infantile systemic hyalinosis: a unifying term and a proposed grading system. J Am Acad Dermatol. 2009;61:695–700.

    Article  PubMed  Google Scholar 

  115. Stucki U, Spycher MA, Eich G, Rossi A, Sacher P, Steinmann B, et al. Infantile systemic hyalinosis in siblings: clinical report, biochemical and ultrastructural findings, and review of the literature. Am J Med Genet. 2001;100:122–9.

    Article  CAS  PubMed  Google Scholar 

  116. Shin HT, Paller A, Hoganson G, Willner JP, Chang MW, Orlow SJ. Infantile systemic hyalinosis. J Am Acad Dermatol. 2004;50:S61–4.

    Article  PubMed  Google Scholar 

  117. Lindvall LE, Kormeili T, Chen E, Ramirez MC, Grum-Tokars V, Glucksman MJ, et al. Infantile systemic hyalinosis: case report and review of the literature. J Am Acad Dermatol. 2008;58:303–7.

    Article  PubMed  Google Scholar 

  118. Biggin A, Munns CF. Osteogenesis imperfecta: diagnosis and treatment. Curr Osteoporos Rep. 2014;12:279.

    Article  CAS  PubMed  Google Scholar 

  119. Steiner RD, Adsit J, Basel D. COL1A1/2-related osteogenesis imperfecta. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. GeneReviews® [internet]. Seattle: University of Washington; 1993–2016. [Updated 2013 Feb 14]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK1295/. Accessed 28 Jan 2005.

  120. Dwan K, Phillipi CA, Steiner RD, Basel D. Bisphosphonate therapy for osteogenesis imperfecta. Cochrane Database Syst Rev. 2014;(7):CD005088.

    Google Scholar 

  121. Al Kaissi A, Scholl-Buergi S, Biedermann R, Maurer K, Hofstaetter JG, Klaushofer K, et al. The diagnosis and management of patients with idiopathic osteolysis. Pediatr Rheumatol Online J. 2011;9:31.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia M. Witman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tollefson, M.M., Harfmann, K.L., Jacks, S.K., Witman, P.M. (2017). Hereditary Disorders of the Dermis. In: Teng, J., Marqueling, A., Benjamin, L. (eds) Therapy in Pediatric Dermatology. Springer, Cham. https://doi.org/10.1007/978-3-319-43630-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43630-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43628-9

  • Online ISBN: 978-3-319-43630-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics