DNA Methyltransferases - Role and Function pp 151-172 | Cite as
The Role of DNA Methylation in Cancer
- 7 Citations
- 3.9k Downloads
Abstract
The malignant transformation of normal cells is driven by both genetic and epigenetic changes. With the advent of next-generation sequencing and large-scale multinational consortium studies, it has become possible to profile the genomes and epigenomes of thousands of primary tumors from nearly every cancer type. From these genome-wide studies, it became clear that the dynamic regulation of DNA methylation is a critical epigenetic mechanism of cancer initiation, maintenance, and progression. Proper control of DNA methylation is not only crucial for regulating gene transcription, but its broader consequences include maintaining the integrity of the genome and modulating immune response. Here, we describe the aberrant DNA methylation changes that take place in cancer and how they contribute to the disease phenotype. Further, we highlight potential clinical implications of these changes in the context of prognostic and diagnostic biomarkers, as well as therapeutic targets.
Keywords
Acute Myeloid Leukemia Methylation Level Promoter Methylation MGMT Expression Acute Lymphoid LeukemiaAbbreviations
- AML
Acute myeloid leukemia
- CGIs
CpG islands
- CIMP
CpG island methylator phenotype
- CpG
Cytosine-guanine dinucleotide
- DNMT
DNA methyltransferases
- DNMTi
DNA methyltransferase inhibitor
- dsRNA
Double-stranded RNA
- ERV
Endogenous retrovirus
- GBM
Glioblastoma multiforme
- MDS
Myelodysplastic syndrome
- TCGA
The Cancer Genome Atlas
- TSGs
Tumor suppressor genes
Notes
Acknowledgment
The work in the Liang laboratory has been supported in part by the generous contribution of George and Vicky Joseph.
References
- Agirre X, Vilas-Zornoza A, Jiménez-Velasco A, et al. Epigenetic silencing of the tumor suppressor microRNA Hsa-miR-124a regulates CDK6 expression and confers a poor prognosis in acute lymphoblastic leukemia. Cancer Res. 2009;69:4443–53. doi: 10.1158/0008-5472.CAN-08-4025.PubMedCrossRefGoogle Scholar
- Alvarez-Nuñez F, Bussaglia E, Mauricio D, et al. PTEN promoter methylation in sporadic thyroid carcinomas. Thyroid. 2006;16:17–23. doi: 10.1089/thy.2006.16.17.PubMedCrossRefGoogle Scholar
- Andreotti G, Karami S, Pfeiffer RM, et al. LINE1 methylation levels associated with increased bladder cancer risk in pre-diagnostic blood DNA among US (PLCO) and European (ATBC) cohort study participants. Epigenetics. 2014;9:404–15. doi: 10.4161/epi.27386.PubMedCrossRefGoogle Scholar
- Aran D, Hellman A. DNA methylation of transcriptional enhancers and cancer predisposition. Cell. 2013;154:11–3. doi: 10.1016/j.cell.2013.06.018.PubMedCrossRefGoogle Scholar
- Aran D, Sabato S, Hellman A. DNA methylation of distal regulatory sites characterizes dysregulation of cancer genes. Genome Biol. 2013;14:R21. doi: 10.1186/gb-2013-14-3-r21.PubMedPubMedCentralCrossRefGoogle Scholar
- Baylin SB, Jones PA. A decade of exploring the cancer epigenome — biological and translational implications. Nucleus. 2011. doi: 10.1038/nrc3130.Google Scholar
- Bender CM, Gonzalgo ML, Gonzales FA, et al. Roles of cell division and gene transcription in the methylation of CpG islands. Mol Cell Biol. 1999;19:6690–8.PubMedPubMedCentralCrossRefGoogle Scholar
- Bernstein BE, Stamatoyannopoulos JA, Costello JF, et al. The NIH roadmap epigenomics mapping consortium. Nat Biotechnol. 2010;28:1045–8. doi: 10.1038/nbt1010-1045.PubMedPubMedCentralCrossRefGoogle Scholar
- Bestor TH, Edwards JR, Boulard M. Notes on the role of dynamic DNA methylation in mammalian development. Proc Natl Acad Sci. 2015;112:6796–9. doi: 10.1073/pnas.1415301111.PubMedCrossRefGoogle Scholar
- Birney E, Stamatoyannopoulos JA, Dutta A, et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature. 2007;447:799–816. doi: 10.1038/nature05874.PubMedCrossRefGoogle Scholar
- Bjornsson HT, Brown LJ, Fallin MD, et al. Epigenetic specificity of loss of imprinting of the IGF2 gene in Wilms tumors. J Natl Cancer Inst. 2007;99:1270–3. doi: 10.1093/jnci/djm069.PubMedCrossRefGoogle Scholar
- Božić T, Lin Q, Frobel J, et al. DNA-methylation in C1R is a prognostic biomarker for acute myeloid leukemia. Clini Epigenetics. 2015;7:116. doi: 10.1186/s13148-015-0153-6.CrossRefGoogle Scholar
- Brennan CW, Verhaak RGW, McKenna A, et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155:462–77. doi: 10.1016/j.cell.2013.09.034.PubMedPubMedCentralCrossRefGoogle Scholar
- Bulger M, Groudine M. Functional and mechanistic diversity of distal transcription enhancers. Cell. 2011;144:327–39. doi: 10.1016/j.cell.2011.01.024.PubMedPubMedCentralCrossRefGoogle Scholar
- Calo E, Wysocka J. Modification of enhancer chromatin: what, how, and why? Mol Cell. 2013;49:825–37. doi: 10.1016/j.molcel.2013.01.038.PubMedCrossRefGoogle Scholar
- Chadwick LH. The NIH roadmap epigenomics program data resource. Epigenomics. 2012;4:317–24. doi: 10.2217/epi.12.18.PubMedPubMedCentralCrossRefGoogle Scholar
- Cheng JC, Yoo CB, Weisenberger DJ, et al. Preferential response of cancer cells to zebularine. Cancer Cell. 2004;6:151–8. doi: 10.1016/j.ccr.2004.06.023.PubMedCrossRefGoogle Scholar
- Chiang JW, Karlan BY, Cass L, Baldwin RL. BRCA1 promoter methylation predicts adverse ovarian cancer prognosis. Gynecol Oncol. 2006;101:403–10. doi: 10.1016/j.ygyno.2005.10.034.PubMedCrossRefGoogle Scholar
- Chiappinelli KB, Strissel PL, Desrichard A, et al. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell. 2015;162:974–86. doi: 10.1016/j.cell.2015.07.011.PubMedPubMedCentralCrossRefGoogle Scholar
- Christman JK. 5-Azacytidine and 5-aza-2’-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene. 2002;21:5483–95. doi: 10.1038/sj.onc.1205699.PubMedCrossRefGoogle Scholar
- Chuang JC, Warner SL, Vollmer D, et al. S110, a 5-Aza-2’-deoxycytidine-containing dinucleotide, is an effective DNA methylation inhibitor in vivo and can reduce tumor growth. Mol Cancer Ther. 2010;9:1443–50. doi: 10.1158/1535-7163.MCT-09-1048.PubMedPubMedCentralCrossRefGoogle Scholar
- Cordaux R, Batzer MA. The impact of retrotransposons on human genome evolution. Nat Rev Genet. 2009;10:691–703. doi: 10.1038/nrg2640.PubMedPubMedCentralCrossRefGoogle Scholar
- Costello JF, Berger MS, Huang HS, Cavenee WK. Silencing of p16/CDKN2 expression in human gliomas by methylation and chromatin condensation. Cancer Res. 1996;56:2405–10.PubMedGoogle Scholar
- Creighton CJ, Morgan M, Gunaratne PH, et al. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature. 2013;499:43–9. doi: 10.1038/nature12222.CrossRefGoogle Scholar
- Cui H. Loss of imprinting of IGF2 as an epigenetic marker for the risk of human cancer. Dis Markers. 2007;23:105–12.PubMedPubMedCentralCrossRefGoogle Scholar
- Dang L, White DW, Gross S, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009;462:739–44. doi: 10.1038/nature08617.PubMedPubMedCentralCrossRefGoogle Scholar
- De Carvalho DD, Sharma S, You JS, et al. DNA methylation screening identifies driver epigenetic events of cancer cell survival. Cancer Cell. 2012;21:655–67. doi: 10.1016/j.ccr.2012.03.045.PubMedPubMedCentralCrossRefGoogle Scholar
- De Smet C, De Backer O, Faraoni I, et al. The activation of human gene MAGE-1 in tumor cells is correlated with genome-wide demethylation. Proc Natl Acad Sci U S A. 1996;93:7149–53.PubMedPubMedCentralCrossRefGoogle Scholar
- Donson AM, Addo-Yobo SO, Handler MH, et al. MGMT promoter methylation correlates with survival benefit and sensitivity to temozolomide in pediatric glioblastoma. Pediatr Blood Cancer. 2007;48:403–7. doi: 10.1002/pbc.20803.PubMedCrossRefGoogle Scholar
- Eckhardt F, Lewin J, Cortese R, et al. DNA methylation profiling of human chromosomes 6, 20 and 22. Nat Genet. 2006;38:1378–85. doi: 10.1038/ng1909.PubMedPubMedCentralCrossRefGoogle Scholar
- Ecsedi SI, Hernandez-Vargas H, Lima SC, et al. Transposable hypomethylation is associated with metastatic capacity of primary melanomas. Int J Clin Exp Pathol. 2013;6:2943–8.PubMedPubMedCentralGoogle Scholar
- Ehrlich M. DNA hypomethylation in cancer cells. Epigenomics. 2010;1:239–59. doi: 10.2217/epi.09.33.DNA.CrossRefGoogle Scholar
- Ehrlich M, Lacey M. Epigenetic alterations in oncogenesis. Epigenetic Alterations Oncog Adv Exp 31 Med Biol. 2013;754:31–56. doi: 10.1007/978-1-4419-9967-2.CrossRefGoogle Scholar
- ENCODE Project Consortium. The ENCODE (ENCyclopedia of DNA Elements) Project. Science. 2004;306:636–40. doi: 10.1126/science.1105136.CrossRefGoogle Scholar
- ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74. doi: 10.1038/nature11247.CrossRefGoogle Scholar
- Esteller M. DNA methylation patterns in hereditary human cancers mimic sporadic tumorigenesis. Hum Mol Genet. 2001;10:3001–7. doi: 10.1093/hmg/10.26.3001.PubMedCrossRefGoogle Scholar
- Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12:861–74. doi: 10.1038/nrg3074.PubMedCrossRefGoogle Scholar
- Esteller M, Silva JM, Dominguez G, et al. Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J Natl Cancer Inst. 2000;92:564–9.PubMedCrossRefGoogle Scholar
- Fang F, Turcan S, Rimner A, et al. Breast cancer methylomes establish an epigenomic foundation for metastasis. Sci Transl Med. 2011;3:75ra25. doi: 10.1126/scitranslmed.3001875.PubMedPubMedCentralCrossRefGoogle Scholar
- Fatemi M, Paul TA, Brodeur GM, et al. Epigenetic silencing of CHD5, a novel tumor-suppressor gene, occurs in early colorectal cancer stages. Cancer. 2014;120:172–80. doi: 10.1002/cncr.28316.PubMedCrossRefGoogle Scholar
- Feinberg AP, Vogelstein B. Hypomethylation of ras oncogenes in primary human cancers. Biochem Biophys Res Commun. 1983;111:47–54. doi: 10.1016/S0006-291X(83)80115-6.PubMedCrossRefGoogle Scholar
- Fenaux P, Mufti GJ, Hellstrom-Lindberg E, et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol. 2009;10:223–32. doi: 10.1016/S1470-2045(09)70003-8.PubMedPubMedCentralCrossRefGoogle Scholar
- Ferguson-Smith AC. Genomic imprinting: the emergence of an epigenetic paradigm. Nat Rev Genet. 2011;12:565–75. doi: 10.1038/nrg3032.PubMedCrossRefGoogle Scholar
- Ferreira HJ, Heyn H, Moutinho C, Esteller M. CpG island hypermethylation-associated silencing of small nucleolar RNAs in human cancer. RNA Biol. 2012;9:881–90. doi: 10.4161/rna.19353.PubMedPubMedCentralCrossRefGoogle Scholar
- Figueroa ME, Abdel-Wahab O, Lu C, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell. 2010;18:553–67. doi: 10.1016/j.ccr.2010.11.015.PubMedPubMedCentralCrossRefGoogle Scholar
- Fujita T, Igarashi J, Okawa ER, et al. CHD5, a tumor suppressor gene deleted from 1p36.31 in neuroblastomas. J Natl Cancer Inst. 2008;100:940–9. doi: 10.1093/jnci/djn176.PubMedPubMedCentralCrossRefGoogle Scholar
- Gama-sosa MA, Slagel VA, Trewyn RW. The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Res. 1983;11:6883–94. doi: 10.1093/nar/11.19.6883.PubMedPubMedCentralCrossRefGoogle Scholar
- Gardiner-Garden M, Frommer M. CpG islands in vertebrate genomes. J Mol Biol. 1987;196:261–82.Google Scholar
- Gorringe KL, Choong DY, Williams LH, et al. Mutation and methylation analysis of the chromodomain-helicase-DNA binding 5 gene in ovarian cancer. Neoplasia. 2008;10:1253–8.PubMedPubMedCentralCrossRefGoogle Scholar
- Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.PubMedCrossRefGoogle Scholar
- Helbo A, Treppendahl M, Aslan D, et al. Hypermethylation of the VTRNA1-3 promoter is associated with poor outcome in lower risk myelodysplastic syndrome patients. Genes (Basel). 2015;6:977–90. doi: 10.3390/genes6040977.Google Scholar
- Herman JG, Latif F, Weng Y, et al. Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci U S A. 1994;91:9700–4.PubMedPubMedCentralCrossRefGoogle Scholar
- Hill VK, Shinawi T, Ricketts CJ, et al. Stability of the CpG island methylator phenotype during glioma progression and identification of methylated loci in secondary glioblastomas. BMC Cancer. 2014;14:506. doi: 10.1186/1471-2407-14-506.PubMedPubMedCentralCrossRefGoogle Scholar
- Hinoue T, Weisenberger DJ, Lange CPE, et al. Genome-scale analysis of aberrant DNA methylation in colorectal cancer. Genome Res. 2012;22:271–82. doi: 10.1101/gr.117523.110.PubMedPubMedCentralCrossRefGoogle Scholar
- Hitchins MP, Wong JJL, Suthers G, et al. Inheritance of a cancer-associated MLH1 germ-line epimutation. N Engl J Med. 2007;356:697–705. doi: 10.1056/NEJMoa064522.PubMedCrossRefGoogle Scholar
- Irizarry RA, Ladd-Acosta C, Wen B, et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet. 2009;41:178–86. doi: 10.1038/ng.298.PubMedPubMedCentralCrossRefGoogle Scholar
- Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002;3:415–28. doi: 10.1038/nrg816.PubMedCrossRefGoogle Scholar
- Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13:484–92. doi: 10.1038/nrg3230.PubMedCrossRefGoogle Scholar
- Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007;128:683–92. doi: 10.1016/j.cell.2007.01.029.PubMedPubMedCentralCrossRefGoogle Scholar
- Jones PA, Laird PW. Cancer epigenetics comes of age. Nat Genet. 1999;21:163–7. doi: 10.1038/5947.PubMedCrossRefGoogle Scholar
- Jones PA, Liang G. Rethinking how DNA methylation patterns are maintained. Nat Rev Genet. 2009;10:805–11. doi: 10.1038/nrg2651.PubMedPubMedCentralCrossRefGoogle Scholar
- Juo Y-Y, Gong X-J, Mishra A, et al. Epigenetic therapy for solid tumors: from bench science to clinical trials. Epigenomics. 2015;7:215–35. doi: 10.2217/epi.14.73.PubMedCrossRefGoogle Scholar
- Kaneda A, Feinberg AP. Loss of imprinting of IGF2: a common epigenetic modifier of intestinal tumor risk. Cancer Res. 2005;65:11236–40. doi: 10.1158/0008-5472.CAN-05-2959.PubMedCrossRefGoogle Scholar
- Karami S, Andreotti G, Liao LM, et al. LINE1 methylation levels in pre-diagnostic leukocyte DNA and future renal cell carcinoma risk. Epigenetics. 2015;10:282–92. doi: 10.1080/15592294.2015.1006505.PubMedPubMedCentralCrossRefGoogle Scholar
- Kasinathan S, Henikoff S. 5-Aza-CdR delivers a gene body blow. Cancer Cell. 2014;26:449–51. doi: 10.1016/j.ccell.2014.09.004.PubMedPubMedCentralCrossRefGoogle Scholar
- Kelly TK, De Carvalho DD, Jones PA. Epigenetic modifications as therapeutic targets. Nat Biotechnol. 2010;28:1069–78. doi: 10.1038/nbt.1678.PubMedPubMedCentralCrossRefGoogle Scholar
- Kelly TK, Liu Y, Lay FD, et al. Genome-wide mapping of nucleosome positioning and DNA methylation within individual DNA molecules. Genome Res. 2012;22:2497–506. doi: 10.1101/gr.143008.112.PubMedPubMedCentralCrossRefGoogle Scholar
- Ko M, Huang Y, Jankowska AM, et al. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature. 2010;468:839–43.PubMedPubMedCentralCrossRefGoogle Scholar
- Kohli RM, Zhang Y. TET enzymes, TDG and the dynamics of DNA demethylation. Nature. 2013;502:472–9. doi: 10.1038/nature12750.PubMedPubMedCentralCrossRefGoogle Scholar
- Kuang Y, El-Khoueiry A, Taverna P, et al. Guadecitabine (SGI-110) priming sensitizes hepatocellular carcinoma cells to oxaliplatin. Mol Oncol. 2015;9:1799–814. doi: 10.1016/j.molonc.2015.06.002.PubMedCrossRefGoogle Scholar
- Kulis M, Heath S, Bibikova M, et al. Epigenomic analysis detects widespread gene-body DNA hypomethylation in chronic lymphocytic leukemia. Nat Genet. 2012;44:1236–42. doi: 10.1038/ng.2443.PubMedCrossRefGoogle Scholar
- Kulis M, Queirós AC, Beekman R, Martín-Subero JI. Intragenic DNA methylation in transcriptional regulation, normal differentiation and cancer. Biochim Biophys Acta Gene Regul Mech. 2013;1829:1161–74. doi: 10.1016/j.bbagrm.2013.08.001.CrossRefGoogle Scholar
- Laird PW. The power and the promise of DNA methylation markers. Nat Rev Cancer. 2003;3:253–66. doi: 10.1038/nrc1045.PubMedCrossRefGoogle Scholar
- Lay FD, Liu Y, Kelly TK, et al. The role of DNA methylation in directing the functional organization of the cancer epigenome. 2015:1–11. doi: 10.1101/gr.183368.114.Freely.
- Lee K-S, Park J-L, Lee K, et al. nc886, a non-coding RNA of anti-proliferative role, is suppressed by CpG DNA methylation in human gastric cancer. Oncotarget. 2014;5:3944–55.PubMedPubMedCentralCrossRefGoogle Scholar
- Levenson VV. DNA methylation as a universal biomarker. Expert Rev Mol Diagn. 2010;10:481–8. doi: 10.1586/erm.10.17.PubMedPubMedCentralCrossRefGoogle Scholar
- Li E, Beard C, Jaenisch R. Role for DNA methylation in genomic imprinting. Nature. 1993;366:362–5. doi: 10.1038/366362a0.PubMedCrossRefGoogle Scholar
- Li H, Chiappinelli KB, Guzzetta AA, et al. Immune regulation by low doses of the DNA methyltransferase inhibitor 5-azacitidine in common human epithelial cancers. Oncotarget. 2014a;5:587–98.PubMedPubMedCentralCrossRefGoogle Scholar
- Li J, Huang Q, Zeng F, et al. The prognostic value of global DNA hypomethylation in cancer: a meta-analysis. PLoS One. 2014b;9:e106290. doi: 10.1371/journal.pone.0106290.PubMedPubMedCentralCrossRefGoogle Scholar
- Li X, Yao X, Wang Y, et al. MLH1 promoter methylation frequency in colorectal cancer patients and related clinicopathological and molecular features. PLoS One. 2013;8:e59064. doi: 10.1371/journal.pone.0059064.PubMedPubMedCentralCrossRefGoogle Scholar
- Liang G, Chan MF, Tomigahara Y, et al. Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements. Mol Cell Biol. 2002;22:480–91. doi: 10.1128/MCB.22.2.480.PubMedPubMedCentralCrossRefGoogle Scholar
- Licht JD. DNA Methylation Inhibitors in cancer therapy: the immunity dimension. Cell. 2015;162:938–9. doi: 10.1016/j.cell.2015.08.005.PubMedCrossRefGoogle Scholar
- Lin JC, Jeong S, Liang G, et al. Role of nucleosomal occupancy in the epigenetic silencing of the MLH1 CpG island. Cancer Cell. 2007;12:432–44. doi: 10.1016/j.ccr.2007.10.014.PubMedPubMedCentralCrossRefGoogle Scholar
- Lou S, Lee H-M, Qin H, et al. Whole-genome bisulfite sequencing of multiple individuals reveals complementary roles of promoter and gene body methylation in transcriptional regulation. Genome Biol. 2014;15:408. doi: 10.1186/s13059-014-0408-0.PubMedPubMedCentralCrossRefGoogle Scholar
- Lu J, Song G, Tang Q, et al. IRX1 hypomethylation promotes osteosarcoma metastasis via induction of CXCL14/NF- k B signaling. J Clin Invest. 2015;125:1–18. doi: 10.1172/JCI78437.Iroquois.CrossRefGoogle Scholar
- Mair B, Kubicek S, Nijman SMB. Exploiting epigenetic vulnerabilities for cancer therapeutics. Trends Pharmacol Sci. 2014;35:136–45. doi: 10.1016/j.tips.2014.01.001.PubMedCrossRefGoogle Scholar
- Meissner A, Mikkelsen TS, Gu H, et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature. 2008;454:766–70. doi: 10.1038/nature07107.PubMedPubMedCentralGoogle Scholar
- Mikkelsen TS, Ku M, Jaffe DB, et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature. 2007;448:553–60.PubMedPubMedCentralCrossRefGoogle Scholar
- Moen EL, Stark AL, Zhang W, et al. The role of gene body cytosine modifications in MGMT expression and sensitivity to temozolomide. Mol Cancer Ther. 2014;13:1334–44. doi: 10.1158/1535-7163.MCT-13-0924.PubMedPubMedCentralCrossRefGoogle Scholar
- Nagarajan RP, Zhang B, Bell RJA, et al. Recurrent epimutations activate gene body promoters in primary glioblastoma. Genome Res. 2014;24:761–74. doi: 10.1101/gr.164707.113.PubMedPubMedCentralCrossRefGoogle Scholar
- Noushmehr H, Weisenberger DJ, Diefes K, et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell. 2010;17:510–22. doi: 10.1016/j.ccr.2010.03.017.PubMedPubMedCentralCrossRefGoogle Scholar
- Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99:247–57. doi: 10.1016/S0092-8674(00)81656-6.PubMedCrossRefGoogle Scholar
- Oki Y, Aoki E, Issa J-PJ. Decitabine – bedside to bench. Crit Rev Oncol Hematol. 2007;61:140–52. doi: 10.1016/j.critrevonc.2006.07.010.PubMedCrossRefGoogle Scholar
- Pastor WA, Aravind L, Rao A. TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat Rev Mol Cell Biol. 2013;14:341–56. doi: 10.1038/nrm3589.PubMedPubMedCentralCrossRefGoogle Scholar
- Pastor WA, Pape UJ, Huang Y, et al. Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature. 2011;473:394–7.PubMedPubMedCentralCrossRefGoogle Scholar
- Pessia E, Makino T, Bailly-Bechet M, et al. Mammalian X chromosome inactivation evolved as a dosage-compensation mechanism for dosage-sensitive genes on the X chromosome. Proc Natl Acad Sci U S A. 2012;109:5346–51. doi: 10.1073/pnas.1116763109.PubMedPubMedCentralCrossRefGoogle Scholar
- Pfeifer GP. p53 mutational spectra and the role of methylated CpG sequences. Mutat Res. 2000;450:155–66. doi: 10.1016/S0027-5107(00)00022-1.PubMedCrossRefGoogle Scholar
- Pontier DB, Gribnau J. Xist regulation and function explored. Hum Genet. 2011;130:223–36. doi: 10.1007/s00439-011-1008-7.PubMedPubMedCentralCrossRefGoogle Scholar
- Ravenel JD, Broman KW, Perlman EJ, et al. Loss of imprinting of insulin-like growth factor-II (IGF2) gene in distinguishing specific biologic subtypes of wilms tumor. JNCI J Natl Cancer Inst. 2001;93:1698–703. doi: 10.1093/jnci/93.22.1698.PubMedCrossRefGoogle Scholar
- Rhee I, Bachman KE, Park BH, et al. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature. 2002;416:552–6.PubMedCrossRefGoogle Scholar
- Rhee I, Jair KW, Yen RW, et al. CpG methylation is maintained in human cancer cells lacking DNMT1. Nature. 2000;404:1003–7. doi: 10.1038/35010000.PubMedCrossRefGoogle Scholar
- Roulois D, Loo Yau H, Singhania R, et al. DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell. 2015;162:961–73. doi: 10.1016/j.cell.2015.07.056.PubMedPubMedCentralCrossRefGoogle Scholar
- Saied MH, Marzec J, Khalid S, et al. Genome wide analysis of acute myeloid leukemia reveal leukemia specific methylome and subtype specific hypomethylation of repeats. PLoS One. 2012;7:e33213. doi: 10.1371/journal.pone.0033213.PubMedPubMedCentralCrossRefGoogle Scholar
- Saito Y, Liang G, Egger G, et al. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell. 2006;9:435–43. doi: 10.1016/j.ccr.2006.04.020.PubMedCrossRefGoogle Scholar
- Sakai T, Toguchida J, Ohtani N, et al. Allele-specific hypermethylation of the retinoblastoma tumor-suppressor gene. Am J Hum Genet. 1991;48:880–8.PubMedPubMedCentralGoogle Scholar
- Sandoval J, Esteller M. Cancer epigenomics: beyond genomics. Curr Opin Genet Dev. 2012;22:50–5. doi: 10.1016/j.gde.2012.02.008.PubMedCrossRefGoogle Scholar
- Schmelz K, Wagner M, Dörken B, Tamm I. 5-Aza-2’-deoxycytidine induces p21WAF expression by demethylation of p73 leading to p53-independent apoptosis in myeloid leukemia. Int J Cancer. 2005;114:683–95. doi: 10.1002/ijc.20797.PubMedCrossRefGoogle Scholar
- Sharma S, De Carvalho DD, Jeong S, et al. Nucleosomes containing methylated DNA stabilize DNA methyltransferases 3A/3B and ensure faithful epigenetic inheritance. PLoS Genet. 2011;7, e1001286. doi: 10.1371/journal.pgen.1001286.PubMedPubMedCentralCrossRefGoogle Scholar
- Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis. 2010;31:27–36. doi: 10.1093/carcin/bgp220.PubMedCrossRefGoogle Scholar
- Shen H, Laird PW. Interplay between the cancer genome and Epigenome. Cell. 2013;153:38–55. doi: 10.1016/j.cell.2013.03.008.PubMedPubMedCentralCrossRefGoogle Scholar
- Shih AH, Abdel-Wahab O, Patel JP, Levine RL. The role of mutations in epigenetic regulators in myeloid malignancies. Nat Rev Cancer. 2012;12:599–612. doi: 10.1038/nrc3343.PubMedCrossRefGoogle Scholar
- Shiohama Y, Ohtake J, Ohkuri T, et al. Identification of a meiosis-specific protein, MEIOB, as a novel cancer/testis antigen and its augmented expression in demethylated cancer cells. Immunol Lett. 2014;158:175–82. doi: 10.1016/j.imlet.2014.01.004.PubMedCrossRefGoogle Scholar
- Silber JR, Bobola MS, Blank A, Chamberlain MC. O(6)-methylguanine-DNA methyltransferase in glioma therapy: promise and problems. Biochim Biophys Acta. 2012;1826:71–82. doi: 10.1016/j.bbcan.2011.12.004.PubMedPubMedCentralGoogle Scholar
- Smith ZD, Meissner A. DNA methylation: roles in mammalian development. Nat Rev Genet. 2013;14:204–20. doi: 10.1038/nrg3354.PubMedCrossRefGoogle Scholar
- Søes S, Daugaard IL, Sørensen BS, et al. Hypomethylation and increased expression of the putative oncogene ELMO3 are associated with lung cancer development and metastases formation. Oncoscience. 2014;1:367–74.PubMedPubMedCentralCrossRefGoogle Scholar
- Srivastava P, Paluch BE, Matsuzaki J, et al. Immunomodulatory action of the DNA methyltransferase inhibitor SGI-110 in epithelial ovarian cancer cells and xenografts. Epigenetics. 2015;10:237–46. doi: 10.1080/15592294.2015.1017198.PubMedPubMedCentralCrossRefGoogle Scholar
- Stresemann C, Lyko F. Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. Int J Cancer. 2008;123:8–13. doi: 10.1002/ijc.23607.PubMedCrossRefGoogle Scholar
- Su S-F, de Castro Abreu AL, Chihara Y, et al. A panel of three markers hyper- and hypomethylated in urine sediments accurately predicts bladder cancer recurrence. Clin Cancer Res. 2014;20:1978–89. doi: 10.1158/1078-0432.CCR-13-2637.PubMedCrossRefGoogle Scholar
- Taniguchi T, Sullivan MJ, Ogawa O, Reeve AE. Epigenetic changes encompassing the IGF2/H19 locus associated with relaxation of IGF2 imprinting and silencing of H19 in Wilms tumor. Proc Natl Acad Sci U S A. 1995;92:2159–63.PubMedPubMedCentralCrossRefGoogle Scholar
- TCGA. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474:609–15. doi: 10.1038/nature10166.CrossRefGoogle Scholar
- Tomczak K, Czerwińska P, Wiznerowicz M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol (Poznań, Poland). 2015;19:A68–77. doi: 10.5114/wo.2014.47136.Google Scholar
- Toyota M. Methylation profiling in acute myeloid leukemia. Blood. 2001;97:2823–9. doi: 10.1182/blood.V97.9.2823.PubMedCrossRefGoogle Scholar
- Toyota M, Ahuja N, Ohe-Toyota M, et al. CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci U S A. 1999;96:8681–6.PubMedPubMedCentralCrossRefGoogle Scholar
- Treppendahl MB, Qiu X, Søgaard A, et al. Allelic methylation levels of the noncoding VTRNA2-1 located on chromosome 5q31.1 predict outcome in AML. Blood. 2012;119:206–16. doi: 10.1182/blood-2011-06-362541.PubMedPubMedCentralCrossRefGoogle Scholar
- Tsai H-C, Li H, Van Neste L, et al. Transient low doses of DNA-demethylating agents exert durable antitumor effects on hematological and epithelial tumor cells. Cancer Cell. 2012;21:430–46. doi: 10.1016/j.ccr.2011.12.029.PubMedPubMedCentralCrossRefGoogle Scholar
- Turcan S, Rohle D, Goenka A, et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature. 2012;483:479–83. doi: 10.1038/nature10866.PubMedPubMedCentralCrossRefGoogle Scholar
- Vrba L, Garbe JC, Stampfer MR, Futscher BW. A lincRNA connected to cell mortality and epigenetically-silenced in most common human cancers. Epigenetics. 2015;10:1074–83. doi: 10.1080/15592294.2015.1106673.PubMedPubMedCentralCrossRefGoogle Scholar
- Wang J, Chen H, Fu S, et al. The involvement of CHD5 hypermethylation in laryngeal squamous cell carcinoma. Oral Oncol. 2011;47:601–8. doi: 10.1016/j.oraloncology.2011.05.003.PubMedCrossRefGoogle Scholar
- Weinstein JN, Collisson EA, Mills GB, et al. The cancer genome atlas pan-cancer analysis project. Nat Genet. 2013;45:1113–20. doi: 10.1038/ng.2764.PubMedPubMedCentralCrossRefGoogle Scholar
- Weisenberger DJ. Characterizing DNA methylation alterations from the cancer genome atlas. J Clin Invest. 2014;124:17–23. doi: 10.1172/JCI69740.PubMedPubMedCentralCrossRefGoogle Scholar
- Weisenberger DJ, Liang G. Contributions of DNA methylation aberrancies in shaping the cancer epigenome. Transl Cancer Res. 2015;4:219–34. doi: 10.3978/j.issn.2218-676X.2015.05.01.Google Scholar
- Weisenberger DJ, Siegmund KD, Campan M, et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet. 2006;38:787–93. doi: 10.1038/ng1834.PubMedCrossRefGoogle Scholar
- Wolff EM, Byun H-M, Han HF, et al. Hypomethylation of a LINE-1 promoter activates an alternate transcript of the MET oncogene in bladders with cancer. PLoS Genet. 2010;6:e1000917. doi: 10.1371/journal.pgen.1000917.PubMedPubMedCentralCrossRefGoogle Scholar
- Wrangle J, Wang W, Koch A, et al. Alterations of immune response of non-small cell lung cancer with azacytidine. Oncotarget. 2013;4:2067–79.PubMedPubMedCentralCrossRefGoogle Scholar
- Wu MS, Wang HP, Lin CC, et al. Loss of imprinting and overexpression of IGF2 gene in gastric adenocarcinoma. Cancer Lett. 1997;120:9–14.PubMedCrossRefGoogle Scholar
- Yamazaki J, Issa J-PJ. Epigenetic aspects of MDS and its molecular targeted therapy. Int J Hematol. 2013;97:175–82. doi: 10.1007/s12185-012-1197-4.PubMedCrossRefGoogle Scholar
- Yang X, Han H, De Carvalho DD, et al. Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer Cell. 2014;26:577–90. doi: 10.1016/j.ccr.2014.07.028.PubMedPubMedCentralCrossRefGoogle Scholar
- Yang X, Lay F, Han H, Jones PA. Targeting DNA methylation for epigenetic therapy. Trends Pharmacol Sci. 2010;31:536–46. doi: 10.1016/j.tips.2010.08.001.PubMedPubMedCentralCrossRefGoogle Scholar
- Yegnasubramanian S, Haffner MC, Zhang Y, et al. DNA hypomethylation arises later in prostate cancer progression than CpG island hypermethylation and contributes to metastatic tumor heterogeneity. Cancer Res. 2008;68:8954–67. doi: 10.1158/0008-5472.CAN-07-6088.PubMedPubMedCentralCrossRefGoogle Scholar
- Yoder JA, Walsh CP, Bestor TH. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 1997;13:335–40.PubMedCrossRefGoogle Scholar
- Yoo CB, Jeong S, Egger G, et al. Delivery of 5-aza-2’-deoxycytidine to cells using oligodeoxynucleotides. Cancer Res. 2007;67:6400–8. doi: 10.1158/0008-5472.CAN-07-0251.PubMedCrossRefGoogle Scholar
- You JS, Jones PA. Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell. 2012;22:9–20. doi: 10.1016/j.ccr.2012.06.008.PubMedPubMedCentralCrossRefGoogle Scholar
- Zarnett OJ, Sahgal A, Gosio J, et al. Treatment of elderly patients with glioblastoma: a systematic evidence-based analysis. JAMA Neurol. 2015;72:589–96. doi: 10.1001/jamaneurol.2014.3739.PubMedCrossRefGoogle Scholar