The Role of DNA Methylation in Cancer

  • Ranjani Lakshminarasimhan
  • Gangning LiangEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 945)


The malignant transformation of normal cells is driven by both genetic and epigenetic changes. With the advent of next-generation sequencing and large-scale multinational consortium studies, it has become possible to profile the genomes and epigenomes of thousands of primary tumors from nearly every cancer type. From these genome-wide studies, it became clear that the dynamic regulation of DNA methylation is a critical epigenetic mechanism of cancer initiation, maintenance, and progression. Proper control of DNA methylation is not only crucial for regulating gene transcription, but its broader consequences include maintaining the integrity of the genome and modulating immune response. Here, we describe the aberrant DNA methylation changes that take place in cancer and how they contribute to the disease phenotype. Further, we highlight potential clinical implications of these changes in the context of prognostic and diagnostic biomarkers, as well as therapeutic targets.


Acute Myeloid Leukemia Methylation Level Promoter Methylation MGMT Expression Acute Lymphoid Leukemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Acute myeloid leukemia


CpG islands


CpG island methylator phenotype


Cytosine-guanine dinucleotide


DNA methyltransferases


DNA methyltransferase inhibitor


Double-stranded RNA


Endogenous retrovirus


Glioblastoma multiforme


Myelodysplastic syndrome


The Cancer Genome Atlas


Tumor suppressor genes



The work in the Liang laboratory has been supported in part by the generous contribution of George and Vicky Joseph.


  1. Agirre X, Vilas-Zornoza A, Jiménez-Velasco A, et al. Epigenetic silencing of the tumor suppressor microRNA Hsa-miR-124a regulates CDK6 expression and confers a poor prognosis in acute lymphoblastic leukemia. Cancer Res. 2009;69:4443–53. doi: 10.1158/0008-5472.CAN-08-4025.PubMedCrossRefGoogle Scholar
  2. Alvarez-Nuñez F, Bussaglia E, Mauricio D, et al. PTEN promoter methylation in sporadic thyroid carcinomas. Thyroid. 2006;16:17–23. doi: 10.1089/thy.2006.16.17.PubMedCrossRefGoogle Scholar
  3. Andreotti G, Karami S, Pfeiffer RM, et al. LINE1 methylation levels associated with increased bladder cancer risk in pre-diagnostic blood DNA among US (PLCO) and European (ATBC) cohort study participants. Epigenetics. 2014;9:404–15. doi: 10.4161/epi.27386.PubMedCrossRefGoogle Scholar
  4. Aran D, Hellman A. DNA methylation of transcriptional enhancers and cancer predisposition. Cell. 2013;154:11–3. doi: 10.1016/j.cell.2013.06.018.PubMedCrossRefGoogle Scholar
  5. Aran D, Sabato S, Hellman A. DNA methylation of distal regulatory sites characterizes dysregulation of cancer genes. Genome Biol. 2013;14:R21. doi: 10.1186/gb-2013-14-3-r21.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Baylin SB, Jones PA. A decade of exploring the cancer epigenome — biological and translational implications. Nucleus. 2011. doi: 10.1038/nrc3130.Google Scholar
  7. Bender CM, Gonzalgo ML, Gonzales FA, et al. Roles of cell division and gene transcription in the methylation of CpG islands. Mol Cell Biol. 1999;19:6690–8.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bernstein BE, Stamatoyannopoulos JA, Costello JF, et al. The NIH roadmap epigenomics mapping consortium. Nat Biotechnol. 2010;28:1045–8. doi: 10.1038/nbt1010-1045.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bestor TH, Edwards JR, Boulard M. Notes on the role of dynamic DNA methylation in mammalian development. Proc Natl Acad Sci. 2015;112:6796–9. doi: 10.1073/pnas.1415301111.PubMedCrossRefGoogle Scholar
  10. Birney E, Stamatoyannopoulos JA, Dutta A, et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature. 2007;447:799–816. doi: 10.1038/nature05874.PubMedCrossRefGoogle Scholar
  11. Bjornsson HT, Brown LJ, Fallin MD, et al. Epigenetic specificity of loss of imprinting of the IGF2 gene in Wilms tumors. J Natl Cancer Inst. 2007;99:1270–3. doi: 10.1093/jnci/djm069.PubMedCrossRefGoogle Scholar
  12. Božić T, Lin Q, Frobel J, et al. DNA-methylation in C1R is a prognostic biomarker for acute myeloid leukemia. Clini Epigenetics. 2015;7:116. doi: 10.1186/s13148-015-0153-6.CrossRefGoogle Scholar
  13. Brennan CW, Verhaak RGW, McKenna A, et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155:462–77. doi: 10.1016/j.cell.2013.09.034.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bulger M, Groudine M. Functional and mechanistic diversity of distal transcription enhancers. Cell. 2011;144:327–39. doi: 10.1016/j.cell.2011.01.024.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Calo E, Wysocka J. Modification of enhancer chromatin: what, how, and why? Mol Cell. 2013;49:825–37. doi: 10.1016/j.molcel.2013.01.038.PubMedCrossRefGoogle Scholar
  16. Chadwick LH. The NIH roadmap epigenomics program data resource. Epigenomics. 2012;4:317–24. doi: 10.2217/epi.12.18.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Cheng JC, Yoo CB, Weisenberger DJ, et al. Preferential response of cancer cells to zebularine. Cancer Cell. 2004;6:151–8. doi: 10.1016/j.ccr.2004.06.023.PubMedCrossRefGoogle Scholar
  18. Chiang JW, Karlan BY, Cass L, Baldwin RL. BRCA1 promoter methylation predicts adverse ovarian cancer prognosis. Gynecol Oncol. 2006;101:403–10. doi: 10.1016/j.ygyno.2005.10.034.PubMedCrossRefGoogle Scholar
  19. Chiappinelli KB, Strissel PL, Desrichard A, et al. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell. 2015;162:974–86. doi: 10.1016/j.cell.2015.07.011.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Christman JK. 5-Azacytidine and 5-aza-2’-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene. 2002;21:5483–95. doi: 10.1038/sj.onc.1205699.PubMedCrossRefGoogle Scholar
  21. Chuang JC, Warner SL, Vollmer D, et al. S110, a 5-Aza-2’-deoxycytidine-containing dinucleotide, is an effective DNA methylation inhibitor in vivo and can reduce tumor growth. Mol Cancer Ther. 2010;9:1443–50. doi: 10.1158/1535-7163.MCT-09-1048.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Cordaux R, Batzer MA. The impact of retrotransposons on human genome evolution. Nat Rev Genet. 2009;10:691–703. doi: 10.1038/nrg2640.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Costello JF, Berger MS, Huang HS, Cavenee WK. Silencing of p16/CDKN2 expression in human gliomas by methylation and chromatin condensation. Cancer Res. 1996;56:2405–10.PubMedGoogle Scholar
  24. Creighton CJ, Morgan M, Gunaratne PH, et al. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature. 2013;499:43–9. doi: 10.1038/nature12222.CrossRefGoogle Scholar
  25. Cui H. Loss of imprinting of IGF2 as an epigenetic marker for the risk of human cancer. Dis Markers. 2007;23:105–12.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Dang L, White DW, Gross S, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009;462:739–44. doi: 10.1038/nature08617.PubMedPubMedCentralCrossRefGoogle Scholar
  27. De Carvalho DD, Sharma S, You JS, et al. DNA methylation screening identifies driver epigenetic events of cancer cell survival. Cancer Cell. 2012;21:655–67. doi: 10.1016/j.ccr.2012.03.045.PubMedPubMedCentralCrossRefGoogle Scholar
  28. De Smet C, De Backer O, Faraoni I, et al. The activation of human gene MAGE-1 in tumor cells is correlated with genome-wide demethylation. Proc Natl Acad Sci U S A. 1996;93:7149–53.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Donson AM, Addo-Yobo SO, Handler MH, et al. MGMT promoter methylation correlates with survival benefit and sensitivity to temozolomide in pediatric glioblastoma. Pediatr Blood Cancer. 2007;48:403–7. doi: 10.1002/pbc.20803.PubMedCrossRefGoogle Scholar
  30. Eckhardt F, Lewin J, Cortese R, et al. DNA methylation profiling of human chromosomes 6, 20 and 22. Nat Genet. 2006;38:1378–85. doi: 10.1038/ng1909.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Ecsedi SI, Hernandez-Vargas H, Lima SC, et al. Transposable hypomethylation is associated with metastatic capacity of primary melanomas. Int J Clin Exp Pathol. 2013;6:2943–8.PubMedPubMedCentralGoogle Scholar
  32. Ehrlich M. DNA hypomethylation in cancer cells. Epigenomics. 2010;1:239–59. doi: 10.2217/epi.09.33.DNA.CrossRefGoogle Scholar
  33. Ehrlich M, Lacey M. Epigenetic alterations in oncogenesis. Epigenetic Alterations Oncog Adv Exp 31 Med Biol. 2013;754:31–56. doi: 10.1007/978-1-4419-9967-2.CrossRefGoogle Scholar
  34. ENCODE Project Consortium. The ENCODE (ENCyclopedia of DNA Elements) Project. Science. 2004;306:636–40. doi: 10.1126/science.1105136.CrossRefGoogle Scholar
  35. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74. doi: 10.1038/nature11247.CrossRefGoogle Scholar
  36. Esteller M. DNA methylation patterns in hereditary human cancers mimic sporadic tumorigenesis. Hum Mol Genet. 2001;10:3001–7. doi: 10.1093/hmg/10.26.3001.PubMedCrossRefGoogle Scholar
  37. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12:861–74. doi: 10.1038/nrg3074.PubMedCrossRefGoogle Scholar
  38. Esteller M, Silva JM, Dominguez G, et al. Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J Natl Cancer Inst. 2000;92:564–9.PubMedCrossRefGoogle Scholar
  39. Fang F, Turcan S, Rimner A, et al. Breast cancer methylomes establish an epigenomic foundation for metastasis. Sci Transl Med. 2011;3:75ra25. doi: 10.1126/scitranslmed.3001875.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Fatemi M, Paul TA, Brodeur GM, et al. Epigenetic silencing of CHD5, a novel tumor-suppressor gene, occurs in early colorectal cancer stages. Cancer. 2014;120:172–80. doi: 10.1002/cncr.28316.PubMedCrossRefGoogle Scholar
  41. Feinberg AP, Vogelstein B. Hypomethylation of ras oncogenes in primary human cancers. Biochem Biophys Res Commun. 1983;111:47–54. doi: 10.1016/S0006-291X(83)80115-6.PubMedCrossRefGoogle Scholar
  42. Fenaux P, Mufti GJ, Hellstrom-Lindberg E, et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol. 2009;10:223–32. doi: 10.1016/S1470-2045(09)70003-8.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Ferguson-Smith AC. Genomic imprinting: the emergence of an epigenetic paradigm. Nat Rev Genet. 2011;12:565–75. doi: 10.1038/nrg3032.PubMedCrossRefGoogle Scholar
  44. Ferreira HJ, Heyn H, Moutinho C, Esteller M. CpG island hypermethylation-associated silencing of small nucleolar RNAs in human cancer. RNA Biol. 2012;9:881–90. doi: 10.4161/rna.19353.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Figueroa ME, Abdel-Wahab O, Lu C, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell. 2010;18:553–67. doi: 10.1016/j.ccr.2010.11.015.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Fujita T, Igarashi J, Okawa ER, et al. CHD5, a tumor suppressor gene deleted from 1p36.31 in neuroblastomas. J Natl Cancer Inst. 2008;100:940–9. doi: 10.1093/jnci/djn176.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Gama-sosa MA, Slagel VA, Trewyn RW. The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Res. 1983;11:6883–94. doi: 10.1093/nar/11.19.6883.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Gardiner-Garden M, Frommer M. CpG islands in vertebrate genomes. J Mol Biol. 1987;196:261–82.Google Scholar
  49. Gorringe KL, Choong DY, Williams LH, et al. Mutation and methylation analysis of the chromodomain-helicase-DNA binding 5 gene in ovarian cancer. Neoplasia. 2008;10:1253–8.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.PubMedCrossRefGoogle Scholar
  51. Helbo A, Treppendahl M, Aslan D, et al. Hypermethylation of the VTRNA1-3 promoter is associated with poor outcome in lower risk myelodysplastic syndrome patients. Genes (Basel). 2015;6:977–90. doi: 10.3390/genes6040977.Google Scholar
  52. Herman JG, Latif F, Weng Y, et al. Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci U S A. 1994;91:9700–4.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Hill VK, Shinawi T, Ricketts CJ, et al. Stability of the CpG island methylator phenotype during glioma progression and identification of methylated loci in secondary glioblastomas. BMC Cancer. 2014;14:506. doi: 10.1186/1471-2407-14-506.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Hinoue T, Weisenberger DJ, Lange CPE, et al. Genome-scale analysis of aberrant DNA methylation in colorectal cancer. Genome Res. 2012;22:271–82. doi: 10.1101/gr.117523.110.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Hitchins MP, Wong JJL, Suthers G, et al. Inheritance of a cancer-associated MLH1 germ-line epimutation. N Engl J Med. 2007;356:697–705. doi: 10.1056/NEJMoa064522.PubMedCrossRefGoogle Scholar
  56. Irizarry RA, Ladd-Acosta C, Wen B, et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet. 2009;41:178–86. doi: 10.1038/ng.298.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002;3:415–28. doi: 10.1038/nrg816.PubMedCrossRefGoogle Scholar
  58. Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13:484–92. doi: 10.1038/nrg3230.PubMedCrossRefGoogle Scholar
  59. Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007;128:683–92. doi: 10.1016/j.cell.2007.01.029.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Jones PA, Laird PW. Cancer epigenetics comes of age. Nat Genet. 1999;21:163–7. doi: 10.1038/5947.PubMedCrossRefGoogle Scholar
  61. Jones PA, Liang G. Rethinking how DNA methylation patterns are maintained. Nat Rev Genet. 2009;10:805–11. doi: 10.1038/nrg2651.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Juo Y-Y, Gong X-J, Mishra A, et al. Epigenetic therapy for solid tumors: from bench science to clinical trials. Epigenomics. 2015;7:215–35. doi: 10.2217/epi.14.73.PubMedCrossRefGoogle Scholar
  63. Kaneda A, Feinberg AP. Loss of imprinting of IGF2: a common epigenetic modifier of intestinal tumor risk. Cancer Res. 2005;65:11236–40. doi: 10.1158/0008-5472.CAN-05-2959.PubMedCrossRefGoogle Scholar
  64. Karami S, Andreotti G, Liao LM, et al. LINE1 methylation levels in pre-diagnostic leukocyte DNA and future renal cell carcinoma risk. Epigenetics. 2015;10:282–92. doi: 10.1080/15592294.2015.1006505.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Kasinathan S, Henikoff S. 5-Aza-CdR delivers a gene body blow. Cancer Cell. 2014;26:449–51. doi: 10.1016/j.ccell.2014.09.004.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Kelly TK, De Carvalho DD, Jones PA. Epigenetic modifications as therapeutic targets. Nat Biotechnol. 2010;28:1069–78. doi: 10.1038/nbt.1678.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Kelly TK, Liu Y, Lay FD, et al. Genome-wide mapping of nucleosome positioning and DNA methylation within individual DNA molecules. Genome Res. 2012;22:2497–506. doi: 10.1101/gr.143008.112.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Ko M, Huang Y, Jankowska AM, et al. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature. 2010;468:839–43.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Kohli RM, Zhang Y. TET enzymes, TDG and the dynamics of DNA demethylation. Nature. 2013;502:472–9. doi: 10.1038/nature12750.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Kuang Y, El-Khoueiry A, Taverna P, et al. Guadecitabine (SGI-110) priming sensitizes hepatocellular carcinoma cells to oxaliplatin. Mol Oncol. 2015;9:1799–814. doi: 10.1016/j.molonc.2015.06.002.PubMedCrossRefGoogle Scholar
  71. Kulis M, Heath S, Bibikova M, et al. Epigenomic analysis detects widespread gene-body DNA hypomethylation in chronic lymphocytic leukemia. Nat Genet. 2012;44:1236–42. doi: 10.1038/ng.2443.PubMedCrossRefGoogle Scholar
  72. Kulis M, Queirós AC, Beekman R, Martín-Subero JI. Intragenic DNA methylation in transcriptional regulation, normal differentiation and cancer. Biochim Biophys Acta Gene Regul Mech. 2013;1829:1161–74. doi: 10.1016/j.bbagrm.2013.08.001.CrossRefGoogle Scholar
  73. Laird PW. The power and the promise of DNA methylation markers. Nat Rev Cancer. 2003;3:253–66. doi: 10.1038/nrc1045.PubMedCrossRefGoogle Scholar
  74. Lay FD, Liu Y, Kelly TK, et al. The role of DNA methylation in directing the functional organization of the cancer epigenome. 2015:1–11. doi: 10.1101/gr.183368.114.Freely.
  75. Lee K-S, Park J-L, Lee K, et al. nc886, a non-coding RNA of anti-proliferative role, is suppressed by CpG DNA methylation in human gastric cancer. Oncotarget. 2014;5:3944–55.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Levenson VV. DNA methylation as a universal biomarker. Expert Rev Mol Diagn. 2010;10:481–8. doi: 10.1586/erm.10.17.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Li E, Beard C, Jaenisch R. Role for DNA methylation in genomic imprinting. Nature. 1993;366:362–5. doi: 10.1038/366362a0.PubMedCrossRefGoogle Scholar
  78. Li H, Chiappinelli KB, Guzzetta AA, et al. Immune regulation by low doses of the DNA methyltransferase inhibitor 5-azacitidine in common human epithelial cancers. Oncotarget. 2014a;5:587–98.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Li J, Huang Q, Zeng F, et al. The prognostic value of global DNA hypomethylation in cancer: a meta-analysis. PLoS One. 2014b;9:e106290. doi: 10.1371/journal.pone.0106290.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Li X, Yao X, Wang Y, et al. MLH1 promoter methylation frequency in colorectal cancer patients and related clinicopathological and molecular features. PLoS One. 2013;8:e59064. doi: 10.1371/journal.pone.0059064.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Liang G, Chan MF, Tomigahara Y, et al. Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements. Mol Cell Biol. 2002;22:480–91. doi: 10.1128/MCB.22.2.480.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Licht JD. DNA Methylation Inhibitors in cancer therapy: the immunity dimension. Cell. 2015;162:938–9. doi: 10.1016/j.cell.2015.08.005.PubMedCrossRefGoogle Scholar
  83. Lin JC, Jeong S, Liang G, et al. Role of nucleosomal occupancy in the epigenetic silencing of the MLH1 CpG island. Cancer Cell. 2007;12:432–44. doi: 10.1016/j.ccr.2007.10.014.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Lou S, Lee H-M, Qin H, et al. Whole-genome bisulfite sequencing of multiple individuals reveals complementary roles of promoter and gene body methylation in transcriptional regulation. Genome Biol. 2014;15:408. doi: 10.1186/s13059-014-0408-0.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Lu J, Song G, Tang Q, et al. IRX1 hypomethylation promotes osteosarcoma metastasis via induction of CXCL14/NF- k B signaling. J Clin Invest. 2015;125:1–18. doi: 10.1172/JCI78437.Iroquois.CrossRefGoogle Scholar
  86. Mair B, Kubicek S, Nijman SMB. Exploiting epigenetic vulnerabilities for cancer therapeutics. Trends Pharmacol Sci. 2014;35:136–45. doi: 10.1016/ Scholar
  87. Meissner A, Mikkelsen TS, Gu H, et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature. 2008;454:766–70. doi: 10.1038/nature07107.PubMedPubMedCentralGoogle Scholar
  88. Mikkelsen TS, Ku M, Jaffe DB, et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature. 2007;448:553–60.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Moen EL, Stark AL, Zhang W, et al. The role of gene body cytosine modifications in MGMT expression and sensitivity to temozolomide. Mol Cancer Ther. 2014;13:1334–44. doi: 10.1158/1535-7163.MCT-13-0924.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Nagarajan RP, Zhang B, Bell RJA, et al. Recurrent epimutations activate gene body promoters in primary glioblastoma. Genome Res. 2014;24:761–74. doi: 10.1101/gr.164707.113.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Noushmehr H, Weisenberger DJ, Diefes K, et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell. 2010;17:510–22. doi: 10.1016/j.ccr.2010.03.017.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99:247–57. doi: 10.1016/S0092-8674(00)81656-6.PubMedCrossRefGoogle Scholar
  93. Oki Y, Aoki E, Issa J-PJ. Decitabine – bedside to bench. Crit Rev Oncol Hematol. 2007;61:140–52. doi: 10.1016/j.critrevonc.2006.07.010.PubMedCrossRefGoogle Scholar
  94. Pastor WA, Aravind L, Rao A. TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat Rev Mol Cell Biol. 2013;14:341–56. doi: 10.1038/nrm3589.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Pastor WA, Pape UJ, Huang Y, et al. Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature. 2011;473:394–7.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Pessia E, Makino T, Bailly-Bechet M, et al. Mammalian X chromosome inactivation evolved as a dosage-compensation mechanism for dosage-sensitive genes on the X chromosome. Proc Natl Acad Sci U S A. 2012;109:5346–51. doi: 10.1073/pnas.1116763109.PubMedPubMedCentralCrossRefGoogle Scholar
  97. Pfeifer GP. p53 mutational spectra and the role of methylated CpG sequences. Mutat Res. 2000;450:155–66. doi: 10.1016/S0027-5107(00)00022-1.PubMedCrossRefGoogle Scholar
  98. Pontier DB, Gribnau J. Xist regulation and function explored. Hum Genet. 2011;130:223–36. doi: 10.1007/s00439-011-1008-7.PubMedPubMedCentralCrossRefGoogle Scholar
  99. Ravenel JD, Broman KW, Perlman EJ, et al. Loss of imprinting of insulin-like growth factor-II (IGF2) gene in distinguishing specific biologic subtypes of wilms tumor. JNCI J Natl Cancer Inst. 2001;93:1698–703. doi: 10.1093/jnci/93.22.1698.PubMedCrossRefGoogle Scholar
  100. Rhee I, Bachman KE, Park BH, et al. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature. 2002;416:552–6.PubMedCrossRefGoogle Scholar
  101. Rhee I, Jair KW, Yen RW, et al. CpG methylation is maintained in human cancer cells lacking DNMT1. Nature. 2000;404:1003–7. doi: 10.1038/35010000.PubMedCrossRefGoogle Scholar
  102. Roulois D, Loo Yau H, Singhania R, et al. DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell. 2015;162:961–73. doi: 10.1016/j.cell.2015.07.056.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Saied MH, Marzec J, Khalid S, et al. Genome wide analysis of acute myeloid leukemia reveal leukemia specific methylome and subtype specific hypomethylation of repeats. PLoS One. 2012;7:e33213. doi: 10.1371/journal.pone.0033213.PubMedPubMedCentralCrossRefGoogle Scholar
  104. Saito Y, Liang G, Egger G, et al. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell. 2006;9:435–43. doi: 10.1016/j.ccr.2006.04.020.PubMedCrossRefGoogle Scholar
  105. Sakai T, Toguchida J, Ohtani N, et al. Allele-specific hypermethylation of the retinoblastoma tumor-suppressor gene. Am J Hum Genet. 1991;48:880–8.PubMedPubMedCentralGoogle Scholar
  106. Sandoval J, Esteller M. Cancer epigenomics: beyond genomics. Curr Opin Genet Dev. 2012;22:50–5. doi: 10.1016/j.gde.2012.02.008.PubMedCrossRefGoogle Scholar
  107. Schmelz K, Wagner M, Dörken B, Tamm I. 5-Aza-2’-deoxycytidine induces p21WAF expression by demethylation of p73 leading to p53-independent apoptosis in myeloid leukemia. Int J Cancer. 2005;114:683–95. doi: 10.1002/ijc.20797.PubMedCrossRefGoogle Scholar
  108. Sharma S, De Carvalho DD, Jeong S, et al. Nucleosomes containing methylated DNA stabilize DNA methyltransferases 3A/3B and ensure faithful epigenetic inheritance. PLoS Genet. 2011;7, e1001286. doi: 10.1371/journal.pgen.1001286.PubMedPubMedCentralCrossRefGoogle Scholar
  109. Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis. 2010;31:27–36. doi: 10.1093/carcin/bgp220.PubMedCrossRefGoogle Scholar
  110. Shen H, Laird PW. Interplay between the cancer genome and Epigenome. Cell. 2013;153:38–55. doi: 10.1016/j.cell.2013.03.008.PubMedPubMedCentralCrossRefGoogle Scholar
  111. Shih AH, Abdel-Wahab O, Patel JP, Levine RL. The role of mutations in epigenetic regulators in myeloid malignancies. Nat Rev Cancer. 2012;12:599–612. doi: 10.1038/nrc3343.PubMedCrossRefGoogle Scholar
  112. Shiohama Y, Ohtake J, Ohkuri T, et al. Identification of a meiosis-specific protein, MEIOB, as a novel cancer/testis antigen and its augmented expression in demethylated cancer cells. Immunol Lett. 2014;158:175–82. doi: 10.1016/j.imlet.2014.01.004.PubMedCrossRefGoogle Scholar
  113. Silber JR, Bobola MS, Blank A, Chamberlain MC. O(6)-methylguanine-DNA methyltransferase in glioma therapy: promise and problems. Biochim Biophys Acta. 2012;1826:71–82. doi: 10.1016/j.bbcan.2011.12.004.PubMedPubMedCentralGoogle Scholar
  114. Smith ZD, Meissner A. DNA methylation: roles in mammalian development. Nat Rev Genet. 2013;14:204–20. doi: 10.1038/nrg3354.PubMedCrossRefGoogle Scholar
  115. Søes S, Daugaard IL, Sørensen BS, et al. Hypomethylation and increased expression of the putative oncogene ELMO3 are associated with lung cancer development and metastases formation. Oncoscience. 2014;1:367–74.PubMedPubMedCentralCrossRefGoogle Scholar
  116. Srivastava P, Paluch BE, Matsuzaki J, et al. Immunomodulatory action of the DNA methyltransferase inhibitor SGI-110 in epithelial ovarian cancer cells and xenografts. Epigenetics. 2015;10:237–46. doi: 10.1080/15592294.2015.1017198.PubMedPubMedCentralCrossRefGoogle Scholar
  117. Stresemann C, Lyko F. Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. Int J Cancer. 2008;123:8–13. doi: 10.1002/ijc.23607.PubMedCrossRefGoogle Scholar
  118. Su S-F, de Castro Abreu AL, Chihara Y, et al. A panel of three markers hyper- and hypomethylated in urine sediments accurately predicts bladder cancer recurrence. Clin Cancer Res. 2014;20:1978–89. doi: 10.1158/1078-0432.CCR-13-2637.PubMedCrossRefGoogle Scholar
  119. Taniguchi T, Sullivan MJ, Ogawa O, Reeve AE. Epigenetic changes encompassing the IGF2/H19 locus associated with relaxation of IGF2 imprinting and silencing of H19 in Wilms tumor. Proc Natl Acad Sci U S A. 1995;92:2159–63.PubMedPubMedCentralCrossRefGoogle Scholar
  120. TCGA. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474:609–15. doi: 10.1038/nature10166.CrossRefGoogle Scholar
  121. Tomczak K, Czerwińska P, Wiznerowicz M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol (Poznań, Poland). 2015;19:A68–77. doi: 10.5114/wo.2014.47136.Google Scholar
  122. Toyota M. Methylation profiling in acute myeloid leukemia. Blood. 2001;97:2823–9. doi: 10.1182/blood.V97.9.2823.PubMedCrossRefGoogle Scholar
  123. Toyota M, Ahuja N, Ohe-Toyota M, et al. CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci U S A. 1999;96:8681–6.PubMedPubMedCentralCrossRefGoogle Scholar
  124. Treppendahl MB, Qiu X, Søgaard A, et al. Allelic methylation levels of the noncoding VTRNA2-1 located on chromosome 5q31.1 predict outcome in AML. Blood. 2012;119:206–16. doi: 10.1182/blood-2011-06-362541.PubMedPubMedCentralCrossRefGoogle Scholar
  125. Tsai H-C, Li H, Van Neste L, et al. Transient low doses of DNA-demethylating agents exert durable antitumor effects on hematological and epithelial tumor cells. Cancer Cell. 2012;21:430–46. doi: 10.1016/j.ccr.2011.12.029.PubMedPubMedCentralCrossRefGoogle Scholar
  126. Turcan S, Rohle D, Goenka A, et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature. 2012;483:479–83. doi: 10.1038/nature10866.PubMedPubMedCentralCrossRefGoogle Scholar
  127. Vrba L, Garbe JC, Stampfer MR, Futscher BW. A lincRNA connected to cell mortality and epigenetically-silenced in most common human cancers. Epigenetics. 2015;10:1074–83. doi: 10.1080/15592294.2015.1106673.PubMedPubMedCentralCrossRefGoogle Scholar
  128. Wang J, Chen H, Fu S, et al. The involvement of CHD5 hypermethylation in laryngeal squamous cell carcinoma. Oral Oncol. 2011;47:601–8. doi: 10.1016/j.oraloncology.2011.05.003.PubMedCrossRefGoogle Scholar
  129. Weinstein JN, Collisson EA, Mills GB, et al. The cancer genome atlas pan-cancer analysis project. Nat Genet. 2013;45:1113–20. doi: 10.1038/ng.2764.PubMedPubMedCentralCrossRefGoogle Scholar
  130. Weisenberger DJ. Characterizing DNA methylation alterations from the cancer genome atlas. J Clin Invest. 2014;124:17–23. doi: 10.1172/JCI69740.PubMedPubMedCentralCrossRefGoogle Scholar
  131. Weisenberger DJ, Liang G. Contributions of DNA methylation aberrancies in shaping the cancer epigenome. Transl Cancer Res. 2015;4:219–34. doi: 10.3978/j.issn.2218-676X.2015.05.01.Google Scholar
  132. Weisenberger DJ, Siegmund KD, Campan M, et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet. 2006;38:787–93. doi: 10.1038/ng1834.PubMedCrossRefGoogle Scholar
  133. Wolff EM, Byun H-M, Han HF, et al. Hypomethylation of a LINE-1 promoter activates an alternate transcript of the MET oncogene in bladders with cancer. PLoS Genet. 2010;6:e1000917. doi: 10.1371/journal.pgen.1000917.PubMedPubMedCentralCrossRefGoogle Scholar
  134. Wrangle J, Wang W, Koch A, et al. Alterations of immune response of non-small cell lung cancer with azacytidine. Oncotarget. 2013;4:2067–79.PubMedPubMedCentralCrossRefGoogle Scholar
  135. Wu MS, Wang HP, Lin CC, et al. Loss of imprinting and overexpression of IGF2 gene in gastric adenocarcinoma. Cancer Lett. 1997;120:9–14.PubMedCrossRefGoogle Scholar
  136. Yamazaki J, Issa J-PJ. Epigenetic aspects of MDS and its molecular targeted therapy. Int J Hematol. 2013;97:175–82. doi: 10.1007/s12185-012-1197-4.PubMedCrossRefGoogle Scholar
  137. Yang X, Han H, De Carvalho DD, et al. Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer Cell. 2014;26:577–90. doi: 10.1016/j.ccr.2014.07.028.PubMedPubMedCentralCrossRefGoogle Scholar
  138. Yang X, Lay F, Han H, Jones PA. Targeting DNA methylation for epigenetic therapy. Trends Pharmacol Sci. 2010;31:536–46. doi: 10.1016/ Scholar
  139. Yegnasubramanian S, Haffner MC, Zhang Y, et al. DNA hypomethylation arises later in prostate cancer progression than CpG island hypermethylation and contributes to metastatic tumor heterogeneity. Cancer Res. 2008;68:8954–67. doi: 10.1158/0008-5472.CAN-07-6088.PubMedPubMedCentralCrossRefGoogle Scholar
  140. Yoder JA, Walsh CP, Bestor TH. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 1997;13:335–40.PubMedCrossRefGoogle Scholar
  141. Yoo CB, Jeong S, Egger G, et al. Delivery of 5-aza-2’-deoxycytidine to cells using oligodeoxynucleotides. Cancer Res. 2007;67:6400–8. doi: 10.1158/0008-5472.CAN-07-0251.PubMedCrossRefGoogle Scholar
  142. You JS, Jones PA. Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell. 2012;22:9–20. doi: 10.1016/j.ccr.2012.06.008.PubMedPubMedCentralCrossRefGoogle Scholar
  143. Zarnett OJ, Sahgal A, Gosio J, et al. Treatment of elderly patients with glioblastoma: a systematic evidence-based analysis. JAMA Neurol. 2015;72:589–96. doi: 10.1001/jamaneurol.2014.3739.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of UrologyUniversity of Southern California, Norris Comprehensive Cancer CenterLos AngelesUSA

Personalised recommendations