Bacterial DNA Methylation and Methylomes

  • Josep CasadesúsEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 945)


Formation of C5-methylcytosine, N4-methylcytosine, and N6-methyladenine in bacterial genomes is postreplicative and involves transfer of a methyl group from S-adenosyl-methionine to a base embedded in a specific DNA sequence context. Most bacterial DNA methyltransferases belong to restriction-modification systems; in addition, “solitary” or “orphan” DNA methyltransferases are frequently found in the genomes of bacteria and phage. Base methylation can affect the interaction of DNA-binding proteins with their cognate sites, either by a direct effect (e.g., steric hindrance) or by changes in DNA topology. In both Alphaproteobacteria and Gammaproteobacteria, the roles of DNA base methylation are especially well known for N6-methyladenine, including control of chromosome replication, nucleoid segregation, postreplicative correction of DNA mismatches, cell cycle-coupled transcription, formation of bacterial cell lineages, and regulation of bacterial virulence. Technical procedures that permit genome-wide analysis of DNA methylation are nowadays expanding our knowledge of the extent, evolution, and physiological significance of bacterial DNA methylation.


Cluster Regularly Interspaced Short Palindromic Repeat Chromosome Replication SMRT Sequencing GATC Site IS10 Transposase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.





Cell cycle-regulated methylase


Replication origin of the Caulobacter chromosome


Clustered regularly interspaced short palindromic repeats


Interpulse duration


Median lethal dose


Modification gene in restriction-modification systems


Replication origin of the E. coli chromosome


Single-molecule modification analysis of long reads


Single-molecule real time


Salmonella pathogenicity island 1


Upstream regulatory region





I thank Ignacio Cota, María A. Sánchez-Romero, and Lucía García-Pastor for discussions and Modesto Carballo, Laura Navarro, and Cristina Reyes (CITIUS) for assistance. Research in my laboratory is supported by grants BIO2013-44220-R from the Ministerio de Economía y Competitividad of Spain (MINECO) and the European Regional Fund, PCIN-2015-131 by MINECO and Infect-ERA, and CVI-5879 from the Consejería de Innovación, Ciencia y Empresa, Junta de Andalucía, Spain.


  1. Albu RF, Jurkowski TP, Jeltsch A. The Caulobacter crescentus DNA-(adenine N6)-methyltransferase CcrM methylates DNA in a distributive manner. Nucleic Acids Res. 2011;40(4):1708–16.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Arber W. Genetic variation: molecular mechanisms and impact on microbial evolution. FEMS Microbiol Rev. 2000;24(1):1–7.PubMedCrossRefGoogle Scholar
  3. Arber W, Linn S. DNA modification and restriction. Annu Rev Biochem. 1969;38:467–500.PubMedCrossRefGoogle Scholar
  4. Aya Castaneda Mdel R, Sarnacki SH, Noto Llana M, Lopez Guerra AG, Giacomodonato MN, Cerquetti MC. Dam methylation is required for efficient biofilm production in Salmonella enterica serovar Enteritidis. Int J Food Microbiol. 2015;193:15–22.PubMedCrossRefGoogle Scholar
  5. Balbontin R, Rowley G, Pucciarelli MG, Lopez-Garrido J, Wormstone Y, Lucchini S, Garcia-Del Portillo F, Hinton JC, Casadesus J. DNA adenine methylation regulates virulence gene expression in Salmonella enterica serovar Typhimurium. J Bacteriol. 2006;188(23):8160–8.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Banas JA, Biswas S, Zhu M. Effects of DNA methylation on expression of virulence genes in Streptococcus mutans. Appl Environ Microbiol. 2011;77(20):7236–42.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Beaulaurier J, Zhang XS, Zhu S, Sebra R, Rosenbluh C, Deikus G, Shen N, Munera D, Waldor MK, Chess A, Blaser MJ, Schadt EE, Fang G. Single molecule-level detection and long read-based phasing of epigenetic variations in bacterial methylomes. Nat Commun. 2015;6:7438.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Benkovic SJ, Baker SJ, Alley MR, Woo YH, Zhang YK, Akama T, Mao W, Baboval J, Rajagopalan PT, Wall M, Kahng LS, Tavassoli A, Shapiro L. Identification of borinic esters as inhibitors of bacterial cell growth and bacterial methyltransferases, CcrM and MenH. J Med Chem. 2005;48(23):7468–76.PubMedCrossRefGoogle Scholar
  9. Bergerat A, Guschlbauer W, Fazakerley GV. Allosteric and catalytic binding of S-adenosylmethionine to Escherichia coli DNA adenine methyltransferase monitored by 3H NMR. Proc Natl Acad Sci U S A. 1991;88(15):6394–7.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bertani G, Weigle JJ. Host controlled variation in bacterial viruses. J Bacteriol. 1953;65(2):113–21.Google Scholar
  11. Bhaya D, Davison M, Barrangou R. CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet. 2012;45:273–97.CrossRefGoogle Scholar
  12. Blakeway LV, Power PM, Jen FE, Worboys SR, Boitano M, Clark TA, Korlach J, Bakaletz LO, Jennings MP, Peak IR, Seib KL. ModM DNA methyltransferase methylome analysis reveals a potential role for Moraxella catarrhalis phasevarions in otitis media. FASEB J. 2014;28(12):5197–207.PubMedCrossRefGoogle Scholar
  13. Blow MJ, Clark TA, Daum CG, Deutschbauer AM, Fomenkov A, Fries R, Froula J, Kang DD, Malmstrom RR, Morgan RD, Posfai J, Singh K, Visel A, Wetmore K, Zhao Z, Rubin EM, Korlach J, Pennacchio LA, Roberts RJ. The epigenomic landscape of prokaryotes. PLoS Genet. 2016;12(2):e1005854.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Blyn LB, Braaten BA, Low DA. Regulation of pap pilin phase variation by a mechanism involving differential dam methylation states. EMBO J. 1990;9(12):4045–54.PubMedPubMedCentralGoogle Scholar
  15. Boye E, Løbner-Olesen A, Skarstad K. Limiting DNA replication to once and only once. EMBO Rep. 2000;1(6):479–83.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Braaten BA, Nou X, Kaltenbach LS, Low DA. Methylation patterns in pap regulatory DNA control pyelonephritis-associated pili phase variation in E. coli. Cell. 1994;76(3):577–88.PubMedCrossRefGoogle Scholar
  17. Braun RE, Wright A. DNA methylation differentially enhances the expression of one of the two E. coli dnaA promoters in vivo and in vitro. Mol Gen Genet. 1986;202(2):246–50.PubMedCrossRefGoogle Scholar
  18. Broadbent SE, Balbontin R, Casadesus J, Marinus MG, van der Woude M. YhdJ, a nonessential CcrM-like DNA methyltransferase of Escherichia coli and Salmonella enterica. J Bacteriol. 2007;189(11):4325–7.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Broadbent SE, Davies MR, van der Woude MW. Phase variation controls expression of Salmonella lipopolysaccharide modification genes by a DNA methylation-dependent mechanism. Mol Microbiol. 2010;77(2):337–53.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Brunet YR, Bernard CS, Gavioli M, Lloubes R, Cascales E. An epigenetic switch involving overlapping Fur and DNA methylation optimizes expression of a type VI secretion gene cluster. PLoS Genet. 2011;7(7):e1002205.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Calmann MA, Marinus MG. Regulated expression of the Escherichia coli dam gene. J Bacteriol. 2003;185(16):5012–4.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Camacho EM, Casadesus J. Conjugal transfer of the virulence plasmid of Salmonella enterica is regulated by the leucine-responsive regulatory protein and DNA adenine methylation. Mol Microbiol. 2002;44(6):1589–98.PubMedCrossRefGoogle Scholar
  23. Camacho EM, Casadesus J. Regulation of traJ transcription in the Salmonella virulence plasmid by strand-specific DNA adenine hemimethylation. Mol Microbiol. 2005;57(6):1700–18.PubMedCrossRefGoogle Scholar
  24. Casadesus J, D’Ari R. Memory in bacteria and phage. Bioessays. 2002;24(6):512–8.PubMedCrossRefGoogle Scholar
  25. Casadesus J, Low D. Epigenetic gene regulation in the bacterial world. Microbiol Mol Biol Rev. 2006;70(3):830–56.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Casadesus J, Low DA. Programmed heterogeneity: epigenetic mechanisms in bacteria. J Biol Chem. 2013;288(20):13929–35.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Chao MC, Zhu S, Kimura S, Davis BM, Schadt EE, Fang G, Waldor MK. A cytosine methyltransferase modulates the cell envelope stress response in the cholera pathogen. PLoS Genet. 2015;11(11):e1005666.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Chen L, Paulsen DB, Scruggs DW, Banes MM, Reeks BY, Lawrence ML. Alteration of DNA adenine methylase (Dam) activity in Pasteurella multocida causes increased spontaneous mutation frequency and attenuation in mice. Microbiology. 2003;149:2283–90.PubMedCrossRefGoogle Scholar
  29. Cheng X. Structure and function of DNA methyltransferases. Annu Rev Biophys Biomol Struct. 1995;24:293–318.PubMedCrossRefGoogle Scholar
  30. Coffin SR, Reich NO. Modulation of Escherichia coli DNA methyltransferase activity by biologically derived GATC-flanking sequences. J Biol Chem. 2008;283(29):20106–16.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Collier J. Epigenetic regulation of the bacterial cell cycle. Curr Opin Microbiol. 2009;12(6):722–9.PubMedCrossRefGoogle Scholar
  32. Correnti J, Munster V, Chan T, Woude M. Dam-dependent phase variation of Ag43 in Escherichia coli is altered in a seqA mutant. Mol Microbiol. 2002;44(2):521–32.PubMedCrossRefGoogle Scholar
  33. Cota I, Blanc-Potard AB, Casadesus J. STM2209-STM2208 (opvAB): a phase variation locus of Salmonella enterica involved in control of O-antigen chain length. PLoS One. 2012;7(5):e36863.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Cota I, Bunk B, Sproer C, Overmann J, Konig C, Casadesus J. OxyR-dependent formation of DNA methylation patterns in OpvABOFF and OpvABON cell lineages of Salmonella enterica. Nucleic Acids Res. 2016;44(8):3595–609. doi: 10.1093/nar/gkv1483.PubMedCrossRefGoogle Scholar
  35. Cota I, Sanchez-Romero MA, Hernandez SB, Pucciarelli MG, Garcia-Del Portillo F, Casadesus J. Epigenetic control of Salmonella enterica O-antigen chain length: A tradeoff between virulence and bacteriophage resistance. PLoS Genet. 2015;11(11):e1005667.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Cullum J, Collins JF, Broda P. The spread of plasmids in model populations of Escherichia coli K12. Plasmid. 1978;1(4):545–56.PubMedCrossRefGoogle Scholar
  37. Danese PN, Pratt LA, Dove SL, Kolter R. The outer membrane protein, antigen 43, mediates cell-to-cell interactions within Escherichia coli biofilms. Mol Microbiol. 2000;37(2):424–32.PubMedCrossRefGoogle Scholar
  38. Davies MR, Broadbent SE, Harris SR, Thomson NR, van der Woude MW. Horizontally acquired glycosyltransferase operons drive salmonellae lipopolysaccharide diversity. PLoS Genet. 2013;9(6):e1003568.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Davis BM, Chao MC, Waldor MK. Entering the era of bacterial epigenomics with single molecule real time DNA sequencing. Curr Opin Microbiol. 2013;16(2):192–8.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Fälker S, Schilling J, Schmidt MA, Heusipp G. Overproduction of DNA adenine methyltransferase alters motility, invasion, and the lipopolysaccharide O-antigen composition of Yersinia enterocolitica. Infect Immun. 2007;75(10):4990–7.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Fang G, Munera D, Friedman DI, Mandlik A, Chao MC, Banerjee O, Feng Z, Losic B, Mahajan MC, Jabado OJ, Deikus G, Clark TA, Luong K, Murray IA, Davis BM, Keren-Paz A, Chess A, Roberts RJ, Korlach J, Turner SW, Kumar V, Waldor MK, Schadt EE. Genome-wide mapping of methylated adenine residues in pathogenic Escherichia coli using single-molecule real-time sequencing. Nat Biotechnol. 2012;30(12):1232–9.PubMedCrossRefGoogle Scholar
  42. Fioravanti A, Fumeaux C, Mohapatra SS, Bompard C, Brilli M, Frandi A, Castric V, Villeret V, Viollier PH, Biondi EG. DNA binding of the cell cycle transcriptional regulator GcrA depends on N6-adenosine methylation in Caulobacter crescentus and other Alphaproteobacteria. PLoS Genet. 2013;9(5):e1003541.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Flusberg BA, Webster DR, Lee JH, Travers KJ, Olivares EC, Clark TA, Korlach J, Turner SW. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Methods. 2010;7(6):461–5.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Fox KL, Dowideit SJ, Erwin AL, Srikhanta YN, Smith AL, Jennings MP. Haemophilus influenzae phasevarions have evolved from type III DNA restriction systems into epigenetic regulators of gene expression. Nucleic Acids Res. 2007a;35(15):5242–52.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Fox KL, Srikhanta YN, Jennings MP. Phase variable type III restriction-modification systems of host-adapted bacterial pathogens. Mol Microbiol. 2007b;65(6):1375–9.PubMedCrossRefGoogle Scholar
  46. Furuta Y, Namba-Fukuyo H, Shibata TF, Nishiyama T, Shigenobu S, Suzuki Y, Sugano S, Hasebe M, Kobayashi I. Methylome diversification through changes in DNA methyltransferase sequence specificity. PLoS Genet. 2014;10(4):e1004272.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Garcia-Del Portillo F, Pucciarelli MG, Casadesus J. DNA adenine methylase mutants of Salmonella typhimurium show defects in protein secretion, cell invasion, and M cell cytotoxicity. Proc Natl Acad Sci U S A. 1999;96(20):11578–83.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Giacomodonato MN, Sarnacki SH, Caccuri RL, Sordelli DO, Cerquetti MC. Host response to a dam mutant of Salmonella enterica serovar Enteritidis with a temperature-sensitive phenotype. Infect Immun. 2004;72(9):5498–501.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Giacomodonato MN, Sarnacki SH, Llana MN, Cerquetti MC. Dam and its role in pathogenicity of Salmonella enterica. J Infect Dev Ctries. 2009a;3(7):484–90.PubMedCrossRefGoogle Scholar
  50. Giacomodonato MN, Sarnacki SH, Llana MN, Garcia Cattaneo AS, Uzzau S, Rubino S, Cerquetti MC. Impaired synthesis and secretion of SopA in Salmonella Typhimurium dam mutants. FEMS Microbiol Lett. 2009b;292(1):71–7.PubMedCrossRefGoogle Scholar
  51. Glickman B, van den Elsen P, Radman M. Induced mutagenesis in dam- mutants of Escherichia coli: a role for 6-methyladenine residues in mutation avoidance. Mol Gen Genet. 1978;163(3):307–12.PubMedCrossRefGoogle Scholar
  52. Gonzalez D, Collier J. DNA methylation by CcrM activates the transcription of two genes required for the division of Caulobacter crescentus. Mol Microbiol. 2013;88(1):203–18.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Gonzalez D, Kozdon JB, McAdams HH, Shapiro L, Collier J. The functions of DNA methylation by CcrM in Caulobacter crescentus: a global approach. Nucleic Acids Res. 2014;42(6):3720–35.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Haagmans W, van der Woude M. Phase variation of Ag43 in Escherichia coli: Dam-dependent methylation abrogates OxyR binding and OxyR-mediated repression of transcription. Mol Microbiol. 2000;35(4):877–87.PubMedCrossRefGoogle Scholar
  55. Hale WB, van der Woude MW, Low DA. Analysis of nonmethylated GATC sites in the Escherichia coli chromosome and identification of sites that are differentially methylated in response to environmental stimuli. J Bacteriol. 1994;176(11):3438–41.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Heithoff DM, Enioutina EI, Daynes RA, Sinsheimer RL, Low DA, Mahan MJ. Salmonella DNA adenine methylase mutants confer cross-protective immunity. Infect Immun. 2001;69:6725–30.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Heithoff DM, Sinsheimer RL, Low DA, Mahan MJ. An essential role for DNA adenine methylation in bacterial virulence. Science. 1999;284(5416):967–70.PubMedCrossRefGoogle Scholar
  58. Hénaut A, Rouxel T, Gleizes A, Moszer I, Danchin A. Uneven distribution of GATC motifs in the Escherichia coli chromosome, its plasmids and its phages. J Mol Biol. 1996;257(3):574–85.PubMedCrossRefGoogle Scholar
  59. Henderson IR, Owen P. The major phase-variable outer membrane protein of Escherichia coli structurally resembles the immunoglobulin A1 protease class of exported protein and is regulated by a novel mechanism involving Dam and OxyR. J Bacteriol. 1999;181(7):2132–41.PubMedPubMedCentralGoogle Scholar
  60. Herman GE, Modrich P. Escherichia coli dam methylase. Physical and catalytic properties of the homogeneous enzyme. J Biol Chem. 1982;257(5):2605–12.PubMedGoogle Scholar
  61. Hernday A, Krabbe M, Braaten B, Low D. Self-perpetuating epigenetic pili switches in bacteria. Proc Natl Acad Sci U S A. 2002;99:16470–6.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Hernday AD, Braaten BA, Low DA. The mechanism by which DNA adenine methylase and PapI activate the pap epigenetic switch. Mol Cell. 2003;12(4):947–57.PubMedCrossRefGoogle Scholar
  63. Heusipp G, Fälker S, Schmidt MA. DNA adenine methylation and bacterial pathogenesis. Int J Med Microbiol. 2007;297(1):1–7.PubMedCrossRefGoogle Scholar
  64. Iyer RR, Pluciennik A, Burdett V, Modrich PL. DNA mismatch repair: functions and mechanisms. Chem Rev. 2006;106(2):302–23.PubMedCrossRefGoogle Scholar
  65. Jakomin M, Chessa D, Baumler AJ, Casadesus J. Regulation of the Salmonella enterica std fimbrial operon by DNA adenine methylation, SeqA, and HdfR. J Bacteriol. 2008;190(22):7406–13.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Jeltsch A. Beyond Watson and Crick: DNA methylation and molecular enzymology of DNA methyltransferases. Chembiochem. 2002;3(4):274–93.PubMedCrossRefGoogle Scholar
  67. Jeltsch A. Maintenance of species identity and controlling speciation of bacteria: a new function for restriction/modification systems? Gene. 2003;317(1–2):13–6.PubMedCrossRefGoogle Scholar
  68. Joshi MC, Magnan D, Montminy TP, Lies M, Stepankiw N, Bates D. Regulation of sister chromosome cohesion by the replication fork tracking protein SeqA. PLoS Genet. 2013;9(8):e1003673.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Kahng LS, Shapiro L. The CcrM DNA methyltransferase of Agrobacterium tumefaciens is essential, and its activity is cell-cycle regulated. J Bacteriol. 2001;183(10):3065–75.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Kahramanoglou C, Prieto AI, Khedkar S, Haase B, Gupta A, Benes V, Fraser GM, Luscombe NM, Seshasayee AS. Genomics of DNA cytosine methylation in Escherichia coli reveals its role in stationary phase transcription. Nat Commun. 2012;3:886.PubMedCrossRefGoogle Scholar
  71. Kaltenbach LS, Braaten BA, Low DA. Specific binding of PapI to Lrp-pap DNA complexes. J Bacteriol. 1995;177(22):6449–55.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Kaminska R, van der Woude MW. Establishing and maintaining sequestration of Dam target sites for phase variation of agN43 in Escherichia coli. J Bacteriol. 2010;192(7):1937–45.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Kim JS, Li J, Barnes IH, Baltzegar DA, Pajaniappan M, Cullen TW, Trent MS, Burns CM, Thompson SA. Role of the Campylobacter jejuni Cj1461 DNA methyltransferase in regulating virulence characteristics. J Bacteriol. 2008;190(19):6524–9.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Kim M, Ryu S. Spontaneous and transient defence against bacteriophage by phase-variable glucosylation of O-antigen in Salmonella enterica serovar Typhimurium. Mol Microbiol. 2012;86(2):411–25.PubMedCrossRefGoogle Scholar
  75. Kozdon JB, Melfi MD, Luong K, Clark TA, Boitano M, Wang S, Zhou B, Gonzalez D, Collier J, Turner SW, Korlach J, Shapiro L, McAdams HH. Global methylation state at base-pair resolution of the Caulobacter genome throughout the cell cycle. Proc Natl Acad Sci U S A. 2013;110(48):E4658–67.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Krebes J, Morgan RD, Bunk B, Sproer C, Luong K, Parusel R, Anton BP, Konig C, Josenhans C, Overmann J, Roberts RJ, Korlach J, Suerbaum S. The complex methylome of the human gastric pathogen Helicobacter pylori. Nucleic Acids Res. 2014;42(4):2415–32.PubMedCrossRefGoogle Scholar
  77. Kucherer C, Lother H, Kolling R, Schauzu MA, Messer W. Regulation of transcription of the chromosomal dnaA gene of Escherichia coli. Mol Gen Genet. 1985;205(1):115–21.CrossRefGoogle Scholar
  78. Kumar R, Mukhopadhyay AK, Ghosh P, Rao DN. Comparative transcriptomics of H. pylori strains AM5, SS1 and their hpyAVIBM deletion mutants: possible roles of cytosine methylation. PLoS One. 2012;7(8):e42303.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Lee WC, Anton BP, Wang S, Baybayan P, Singh S, Ashby M, Chua EG, Tay CY, Thirriot F, Loke MF, Goh KL, Marshall BJ, Roberts RJ, Vadivelu J. The complete methylome of Helicobacter pylori UM032. BMC Genomics. 2015;16:424.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Lluch-Senar M, Luong K, Llorens-Rico V, Delgado J, Fang G, Spittle K, Clark TA, Schadt E, Turner SW, Korlach J, Serrano L. Comprehensive methylome characterization of Mycoplasma genitalium and Mycoplasma pneumoniae at single-base resolution. PLoS Genet. 2013;9(1):e1003191.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Løbner-Olesen A, Boye E, Marinus MG. Expression of the Escherichia coli dam gene. Mol Microbiol. 1992;6(13):1841–51.PubMedCrossRefGoogle Scholar
  82. Løbner-Olesen A, Skovgaard O, Marinus MG. Dam methylation: coordinating cellular processes. Curr Op Microbiol. 2005;8:154–60.CrossRefGoogle Scholar
  83. Loenen WA, Dryden DT, Raleigh EA, Wilson GG, Murray NE. Highlights of the DNA cutters: a short history of the restriction enzymes. Nucleic Acids Res. 2014;42(1):3–19.PubMedCrossRefGoogle Scholar
  84. Loenen WA, Raleigh EA. The other face of restriction: modification-dependent enzymes. Nucleic Acids Res. 2014;42(1):56–69.PubMedCrossRefGoogle Scholar
  85. Lopez-Garrido J, Casadesus J. Regulation of Salmonella enterica pathogenicity island 1 by DNA adenine methylation. Genetics. 2010;184(3):637–49.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Lopez-Garrido J, Casadesus J. Crosstalk between virulence loci: regulation of Salmonella enterica pathogenicity island 1 (SPI-1) by products of the std fimbrial operon. PLoS One. 2012;7(1):e30499.PubMedPubMedCentralCrossRefGoogle Scholar
  87. Low DA, Casadesus J. Clocks and switches: bacterial gene regulation by DNA adenine methylation. Curr Opin Microbiol. 2008;11(2):106–12.PubMedCrossRefGoogle Scholar
  88. Lu M, Campbell JL, Boye E, Kleckner N. SeqA: a negative modulator of replication initiation in E. coli. Cell. 1994;77(3):413–26.PubMedCrossRefGoogle Scholar
  89. Luthje P, Brauner A. Ag43 promotes persistence of uropathogenic Escherichia coli isolates in the urinary tract. J Clin Microbiol. 2010;48(6):2316–7.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Marinus MG. Methylation of DNA. In: Neidhardt FC et al. editors. Escherichia coli and Salmonella. Cellular and molecular biology. 2nd ed. Washington, DC: ASM Press; 1996. p. 782–91.Google Scholar
  91. Marinus MG, Casadesus J. Roles of DNA adenine methylation in host-pathogen interactions: mismatch repair, transcriptional regulation, and more. FEMS Microbiol Rev. 2009;33(3):488–503.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Marinus MG, Morris NR. Biological function for 6-methyladenine residues in the DNA of Escherichia coli K12. J Mol Biol. 1974;85(2):309–22.PubMedCrossRefGoogle Scholar
  93. Marinus MG, Poteete A, Arraj JA. Correlation of DNA adenine methylase activity with spontaneous mutability in Escherichia coli K-12. Gene. 1984;28(1):123–5.PubMedCrossRefGoogle Scholar
  94. Mashhoon N, Carroll M, Pruss C, Eberhard J, Ishikawa S, Estabrook RA, Reich N. Functional characterization of Escherichia coli DNA adenine methyltransferase, a novel target for antibiotics. J Biol Chem. 2004;259:52075–81.CrossRefGoogle Scholar
  95. Mashhoon N, Pruss C, Carroll M, Johnson PH, Reich N. Selective inhibitors of bacterial DNA adenine methyltransferases. J Biomol Screen. 2006;11:497–506.PubMedCrossRefGoogle Scholar
  96. Messer W, Bellekes U, Lother H. Effect of dam methylation on the activity of the E. coli replication origin, oriC. EMBO J. 1985;4(5):1327–32.PubMedPubMedCentralGoogle Scholar
  97. Militello KT, Mandarano AH, Varechtchouk O, Simon RD. Cytosine DNA methylation influences drug resistance in Escherichia coli through increased sugE expression. FEMS Microbiol Lett. 2013;350(1):100–6.PubMedCrossRefGoogle Scholar
  98. Mohapatra SS, Fioravanti A, Biondi EG. DNA methylation in Caulobacter and other Alphaproteobacteria during cell cycle progression. Trends Microbiol. 2014;22:528–35.PubMedCrossRefGoogle Scholar
  99. Mohler VL, Heithoff DM, Mahan MJ, Hornitzky MA, Thomson PC, House JK. Development of a novel in-water vaccination protocol for DNA adenine methylase deficient Salmonella enterica serovar Typhimurium vaccine in adult sheep. Vaccine. 2012;30(8):1481–91.PubMedCrossRefGoogle Scholar
  100. Mott ML, Berger JM. DNA replication initiation: mechanisms and regulation in bacteria. Nat Rev Microbiol. 2007;5(5):343–54.PubMedCrossRefGoogle Scholar
  101. Murray IA, Clark TA, Morgan RD, Boitano M, Anton BP, Luong K, Fomenkov A, Turner SW, Korlach J, Roberts RJ. The methylomes of six bacteria. Nucleic Acids Res. 2012;40(22):11450–62.PubMedPubMedCentralCrossRefGoogle Scholar
  102. Naito T, Kusano K, Kobayashi I. Selfish behavior of restriction-modification systems. Science. 1995;267(5199):897–9.PubMedCrossRefGoogle Scholar
  103. Oshima T, Wada C, Kawagoe Y, Ara T, Maeda M, Masuda Y, Hiraga S, Mori H. Genome-wide analysis of deoxyadenosine methyltransferase-mediated control of gene expression in Escherichia coli. Mol Microbiol. 2002;45(3):673–95.PubMedCrossRefGoogle Scholar
  104. Peterson KR, Wertman KF, Mount DW, Marinus MG. Viability of Escherichia coli K-12 DNA adenine methylase (dam) mutants requires increased expression of specific genes in the SOS regulon. Mol Gen Genet. 1985;201(1):14–9.PubMedCrossRefGoogle Scholar
  105. Peterson SN, Reich NO. GATC flanking sequences regulate Dam activity: evidence for how Dam specificity may influence pap expression. J Mol Biol. 2006;355(3):459–72.PubMedCrossRefGoogle Scholar
  106. Pirone-Davies C, Hoffmann M, Roberts RJ, Muruvanda T, Timme RE, Strain E, Luo Y, Payne J, Luong K, Song Y, Tsai YC, Boitano M, Clark TA, Korlach J, Evans PS, Allard MW. Genome-wide methylation patterns in Salmonella enterica subsp. enterica serovars. PLoS One. 2015;10(4):e0123639.PubMedPubMedCentralCrossRefGoogle Scholar
  107. Poole A, Penny D, Sjoberg BM. Confounded cytosine! Tinkering and the evolution of DNA. Nat Rev Mol Cell Biol. 2001;2(2):147–51.PubMedCrossRefGoogle Scholar
  108. Pucciarelli MG, Prieto AI, Casadesus J, Garcia-del Portillo F. Envelope instability in DNA adenine methylase mutants of Salmonella enterica. Microbiology. 2002;148(4):1171–82.PubMedCrossRefGoogle Scholar
  109. Pukkila PJ, Peterson J, Herman G, Modrich P, Meselson M. Effects of high levels of DNA adenine methylation on methyl-directed mismatch repair in Escherichia coli. Genetics. 1983;104(4):571–82.PubMedPubMedCentralGoogle Scholar
  110. Ratel D, Ravanat JL, Charles MP, Platet N, Breuillaud L, Lunardi J, Berger F, Wion D. Undetectable levels of N6-methyl adenine in mouse DNA: cloning and analysis of PRED28, a gene coding for a putative mammalian DNA adenine methyltransferase. FEBS Lett. 2006;580(13):3179–84.PubMedCrossRefGoogle Scholar
  111. Ringquist S, Smith CL. The Escherichia coli chromosome contains specific, unmethylated dam and dcm sites. Proc Natl Acad Sci U S A. 1992;89(10):4539–43.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Roberts D, Hoopes BC, McClure WR, Kleckner N. IS10 transposition is regulated by DNA adenine methylation. Cell. 1985;43(1):117–30.PubMedCrossRefGoogle Scholar
  113. Robertson GT, Reisenauer A, Wright R, Jensen RB, Jensen A, Shapiro L, Roop II RM. The Brucella abortus CcrM DNA methyltransferase is essential for viability, and its overexpression attenuates intracellular replication in murine macrophages. J Bacteriol. 2000;182(12):3482–9.PubMedPubMedCentralCrossRefGoogle Scholar
  114. Sanchez-Romero MA, Cota I, Casadesus J. DNA methylation in bacteria: from the methyl group to the methylome. Curr Opin Microbiol. 2015;25:9–16.PubMedCrossRefGoogle Scholar
  115. Shell SS, Prestwich EG, Baek SH, Shah RR, Sassetti CM, Dedon PC, Fortune SM. DNA methylation impacts gene expression and ensures hypoxic survival of Mycobacterium tuberculosis. PLoS Pathog. 2013;9(7):e1003419.PubMedPubMedCentralCrossRefGoogle Scholar
  116. Srikhanta YN, Dowideit SJ, Edwards JL, Falsetta ML, Wu HJ, Harrison OB, Fox KL, Seib KL, Maguire TL, Wang AH, Maiden MC, Grimmond SM, Apicella MA, Jennings MP. Phasevarions mediate random switching of gene expression in pathogenic Neisseria. PLoS Pathog. 2009;5(4):e1000400.PubMedPubMedCentralCrossRefGoogle Scholar
  117. Srikhanta YN, Fox KL, Jennings MP. The phasevarion: phase variation of type III DNA methyltransferases controls coordinated switching in multiple genes. Nat Rev Microbiol. 2010;8(3):196–206.PubMedCrossRefGoogle Scholar
  118. Srikhanta YN, Maguire TL, Stacey KJ, Grimmond SM, Jennings MP. The phasevarion: a genetic system controlling coordinated, random switching of expression of multiple genes. Proc Natl Acad Sci U S A. 2005;102(15):5547–51.PubMedPubMedCentralCrossRefGoogle Scholar
  119. Stephens C, Reisenauer A, Wright R, Shapiro L. A cell cycle-regulated bacterial DNA methyltransferase is essential for viability. Proc Natl Acad Sci U S A. 1996;93(3):1210–4.PubMedPubMedCentralCrossRefGoogle Scholar
  120. Sternberg N, Sauer B, Hoess R, Abremski K. Bacteriophage P1 cre gene and its regulatory region. Evidence for multiple promoters and for regulation by DNA methylation. J Mol Biol. 1986;187(2):197–212.PubMedCrossRefGoogle Scholar
  121. Tavazoie S, Church GM. Quantitative whole-genome analysis of DNA-protein interactions by in vivo methylase protection in E. coli. Nat Biotechnol. 1998;16(6):566–71.PubMedCrossRefGoogle Scholar
  122. Torreblanca J, Casadesus J. DNA adenine methylase mutants of Salmonella typhimurium and a novel dam-regulated locus. Genetics. 1996;144(1):15–26.PubMedPubMedCentralGoogle Scholar
  123. Urig S, Gowher H, Hermann A, Beck C, Fatemi M, Humeny A, Jeltsch A. The Escherichia coli dam DNA methyltransferase modifies DNA in a highly processive reaction. J Mol Biol. 2002;319(5):1085–96.PubMedCrossRefGoogle Scholar
  124. van der Woude M, Braaten B, Low D. Epigenetic phase variation of the pap operon in Escherichia coli. Trends Microbiol. 1996;4(1):5–9.PubMedCrossRefGoogle Scholar
  125. van der Woude M, Hale WB, Low DA. Formation of DNA methylation patterns: nonmethylated GATC sequences in gut and pap operons. J Bacteriol. 1998;180(22):5913–20.PubMedPubMedCentralGoogle Scholar
  126. van der Woude MW. Re-examining the role and random nature of phase variation. FEMS Microbiol Lett. 2006;254(2):190–7.PubMedCrossRefGoogle Scholar
  127. van der Woude MW. Phase variation: how to create and coordinate population diversity. Curr Opin Microbiol. 2011;14(2):205–11.PubMedCrossRefGoogle Scholar
  128. van der Woude MW, Bäumler AJ. Phase and antigenic variation in bacteria. Clin Microbiol Rev. 2004;17(3):581–611.PubMedPubMedCentralCrossRefGoogle Scholar
  129. Vanyushin BF, Belozersky AN, Kokurina NA, Kadirova DX. 5-methylcytosine and 6-methylamino-purine in bacterial DNA. Nature. 1968;218(5146):1066–7.PubMedCrossRefGoogle Scholar
  130. Vanyushin BF, Buryanov YI, Belozersky AN. Distribution of N6-methyladenine in DNA of T2 phage and its host Escherichia coli B. Nat New Biol. 1971;230(1):25–7.PubMedCrossRefGoogle Scholar
  131. Vasu K, Nagaraja V. Diverse functions of restriction-modification systems in addition to cellular defense. Microbiol Mol Biol Rev. 2013;77(1):53–72.PubMedPubMedCentralCrossRefGoogle Scholar
  132. Waldminghaus T, Skarstad K. The Escherichia coli SeqA protein. Plasmid. 2009;61(3):141–50.PubMedCrossRefGoogle Scholar
  133. Waldron DE, Owen P, Dorman CJ. Competitive interaction of the OxyR DNA-binding protein and the Dam methylase at the antigen 43 gene regulatory region in Escherichia coli. Mol Microbiol. 2002;44(2):509–20.PubMedCrossRefGoogle Scholar
  134. Wallecha A, Correnti J, Munster V, van der Woude M. Phase variation of Ag43 is independent of the oxidation state of OxyR. J Bacteriol. 2003;185(7):2203–9.PubMedPubMedCentralCrossRefGoogle Scholar
  135. Wallecha A, Munster V, Correnti J, Chan T, van der Woude M. Dam- and OxyR-dependent phase variation of agN43: essential elements and evidence for a new role of DNA methylation. J Bacteriol. 2002;184(12):3338–47.PubMedPubMedCentralCrossRefGoogle Scholar
  136. Wang MX, Church GM. A whole genome approach to in vivo DNA-protein interactions in E. coli. Nature. 1992;360(6404):606–10.PubMedCrossRefGoogle Scholar
  137. Watson Jr ME, Jarisch J, Smith AL. Inactivation of deoxyadenosine methyltransferase (dam) attenuates Haemophilus influenzae virulence. Mol Microbiol. 2004;53(2):651–64.PubMedCrossRefGoogle Scholar
  138. Wilson GG, Murray NE. Restriction and modification systems. Annu Rev Genet. 1991;25:585–627. doi: 10.1146/ Scholar
  139. Wion D, Casadesus J. N6-methyl-adenine: an epigenetic signal for DNA-protein interactions. Nat Rev Microbiol. 2006;4(3):183–92.PubMedPubMedCentralCrossRefGoogle Scholar
  140. Wright R, Stephens C, Shapiro L. The CcrM DNA methyltransferase is widespread in the alpha subdivision of proteobacteria, and its essential functions are conserved in Rhizobium meliloti and Caulobacter crescentus. J Bacteriol. 1997;179(18):5869–77.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Departamento de GenéticaUniversidad de SevillaSevilleSpain

Personalised recommendations