DNA Labeling Using DNA Methyltransferases

  • Miglė Tomkuvienė
  • Edita Kriukienė
  • Saulius KlimašauskasEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 945)


DNA methyltransferases (MTases) uniquely combine the ability to recognize and covalently modify specific target sequences in DNA using the ubiquitous cofactor S-adenosyl-L-methionine (AdoMet). Although DNA methylation plays important roles in biological signaling, the transferred methyl group is a poor reporter and is highly inert to further biocompatible derivatization. To unlock the biotechnological power of these enzymes, two major types of cofactor AdoMet analogs were developed that permit targeted MTase-directed attachment of larger moieties containing functional or reporter groups onto DNA. One such approach (named sequence-specific methyltransferase-induced labeling, SMILing) uses reactive aziridine or N-mustard mimics of the cofactor AdoMet, which render targeted coupling of a whole cofactor molecule to the target DNA. The second approach (methyltransferase-directed transfer of activated groups, mTAG) uses AdoMet analogs with a sulfonium-bound extended side chain replacing the methyl group, which permits MTase-directed covalent transfer of the activated side chain alone. As the enlarged cofactors are not always compatible with the active sites of native MTases, steric engineering of the active site has been employed to optimize their alkyltransferase activity. In addition to the described cofactor analogs, recently discovered atypical reactions of DNA cytosine-5 MTases involving non-cofactor-like compounds can also be exploited for targeted derivatization and labeling of DNA. Altogether, these approaches offer new powerful tools for sequence-specific covalent DNA labeling, which not only pave the way to developing a variety of useful techniques in DNA research, diagnostics, and nanotechnologies but have already proven practical utility for optical DNA mapping and epigenome studies.


Methionine Adenosyltransferases Adenine Ring Reporter Group Atypical Reaction Target Cytosine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by grants from the National Institutes of Health (HG007200) and the Research Council of Lithuania (MIP-45/2013).


  1. Artyukhin AB, Woo YH. DNA extraction method with improved efficiency and specificity using DNA methyltransferase and “click” chemistry. Anal Biochem. 2012;425(2):169–74.Google Scholar
  2. Blum G, Islam K, Luo M. Bioorthogonal profiling of protein methylation (BPPM) using an azido analog of S-adenosyl-L-methionine. Curr Protoc Chem Biol. 2013;5(1):45–66.PubMedPubMedCentralGoogle Scholar
  3. Bock C, Walter J, Paulsen M, Lengauer T. Inter-individual variation of DNA methylation and its implications for large-scale epigenome mapping. Nucleic Acids Res. 2008;36(10):e55.Google Scholar
  4. Bothwell IR, Islam K, Chen Y, Zheng W, Blum G, Deng H, et al. Se-adenosyl-L-selenomethionine cofactor analogue as a reporter of protein methylation. J Am Chem Soc. 2012;134(36):14905–12.Google Scholar
  5. Bothwell IR, Luo M. Large-scale, protection-free synthesis of Se-adenosyl-L-selenomethionine analogues and their application as cofactor surrogates of methyltransferases. Org Lett. 2014;16(11):3056–9.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Braun G, Diechtierow M, Wilkinson S, Schmidt F, Huben M, Weinhold E, et al. Enzyme-directed positioning of nanoparticles on large DNA templates. Bioconjug Chem. 2008;19(2):476–9.CrossRefPubMedGoogle Scholar
  7. Chittaboina S, Xie F, Wang Q. One-pot synthesis of triazole-linked glycoconjugates. Tetrahedron Lett. 2005;46(13):2331–6.CrossRefGoogle Scholar
  8. Comstock LR, Rajski SR. Conversion of DNA methyltransferases into azidonucleosidyl transferases via synthetic cofactors. Nucleic Acids Res. 2005a;33(5):1644–52.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Comstock LR, Rajski SR. Methyltransferase-directed DNA strand scission. J Am Chem Soc. 2005b;127(41):14136–7.CrossRefPubMedGoogle Scholar
  10. Dalhoff C, Lukinavičius G, Klimašauskas S, Weinhold E. Direct transfer of extended groups from synthetic cofactors by DNA methyltransferases. Nat Chem Biol. 2006a;2(1):31–2.CrossRefPubMedGoogle Scholar
  11. Dalhoff C, Lukinavičius G, Klimašauskas S, Weinhold E. Synthesis of S-adenosyl-L-methionine analogs and their use for sequence-specific transalkylation of DNA by methyltransferases. Nat Protoc. 2006b;1(4):1879–86.CrossRefPubMedGoogle Scholar
  12. Du Y, Hendrick CE, Frye KS, Comstock LR. Fluorescent DNA labeling by N-mustard analogues of S-adenosyl-L-methionine. Chembiochem. 2012;13(15):2225–33.CrossRefPubMedGoogle Scholar
  13. Falanga A, Galdiero M, Galdiero S. Membranotropic cell penetrating peptides: the outstanding journey. Int J Mol Sci. 2015;16(10):25323–37.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Gerasimaitė R, Vilkaitis G, Klimašauskas S. A directed evolution design of a GCG-specific DNA hemimethylase. Nucleic Acids Res. 2009;37(21):7332–41.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Gommers-Ampt JH, Borst P. Hypermodified bases in DNA. FASEB J. 1995;9(11):1034–42.PubMedGoogle Scholar
  16. Grunwald A, Dahan M, Giesbertz A, Nilsson A, Nyberg LK, Weinhold E, et al. Bacteriophage strain typing by rapid single molecule analysis. Nucleic Acids Res. 2015;43(18):e117.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Guo H, Wang R, Zheng W, Chen Y, Blum G, Deng H, et al. Profiling substrates of protein arginine N-methyltransferase 3 with S-adenosyl-L-methionine analogues. ACS Chem Biol. 2014;9(2):476–84.CrossRefPubMedGoogle Scholar
  18. Harris RA, Wang T, Coarfa C, Nagarajan RP, Hong C, Downey SL, et al. Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications. Nat Biotechnol. 2010;28(10):1097–105.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hymbaugh Bergman SJ, Comstock LR. N-mustard analogs of S-adenosyl-L-methionine as biochemical probes of protein arginine methylation. Bioorg Med Chem. 2015;23(15):5050–5.CrossRefPubMedGoogle Scholar
  20. Holstein JM, Schulz D, Rentmeister A. Bioorthogonal site-specific labeling of the 5′-cap structure in eukaryotic mRNAs. Chem Commun (Camb). 2014;50(34):4478–81.CrossRefGoogle Scholar
  21. Islam K, Bothwell I, Chen Y, Sengelaub C, Wang R, Deng H, et al. Bioorthogonal profiling of protein methylation using azido derivative of S-adenosyl-L-methionine. J Am Chem Soc. 2012;134(13):5909–15.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Islam K, Chen Y, Wu H, Bothwell IR, Blum GJ, Zeng H, et al. Defining efficient enzyme-cofactor pairs for bioorthogonal profiling of protein methylation. Proc Natl Acad Sci U S A. 2013;110(42):16778–83.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Islam K, Zheng W, Yu H, Deng H, Luo M. Expanding cofactor repertoire of protein lysine methyltransferase for substrate labeling. ACS Chem Biol. 2011;6(7):679–84.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Janib SM, Moses AS, MacKay JA. Imaging and drug delivery using theranostic nanoparticles. Adv Drug Deliv Rev. 2010;62(11):1052–63.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13(7):484–92.CrossRefPubMedGoogle Scholar
  26. Kim S, Gottfried A, Lin RR, Dertinger T, Kim AS, Chung S, et al. Enzymatically incorporated genomic tags for optical mapping of DNA-binding proteins. Angew Chem Int Ed Engl. 2012;51(15):3578–81.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kriaucionis S, Heintz N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science. 2009;324(5929):929–30.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kriukienė E, Liutkevičiūtė Z, Klimašauskas S. 5-Hydroxymethylcytosine--the elusive epigenetic mark in mammalian DNA. Chem Soc Rev. 2012;41(21):6916–30.Google Scholar
  29. Kriukienė E, Labrie V, Khare T, Urbanavičiūtė G, Lapinaitė A, Koncevičius K, et al. DNA unmethylome profiling by covalent capture of CpG sites. Nat Commun. 2013;4:2190.PubMedGoogle Scholar
  30. Kunkel F, Lurz R, Weinhold E. A 7-deazaadenosylaziridine cofactor for sequence-specific labeling of DNA by the DNA cytosine-C5 methyltransferase M. HhaI. Molecules. 2015;20(11):20805–22.CrossRefPubMedGoogle Scholar
  31. Lam ET, Hastie A, Lin C, Ehrlich D, Das SK, Austin MD, et al. Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly. Nat Biotechnol. 2012;30(8):771–6.CrossRefPubMedGoogle Scholar
  32. Lee BW, Sun HG, Zang T, Kim BJ, Alfaro JF, Zhou ZS. Enzyme-catalyzed transfer of a ketone group from an S-adenosylmethionine analogue: a tool for the functional analysis of methyltransferases. J Am Chem Soc. 2010;132(11):3642–3.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Levy-Sakin M, Ebenstein Y. Beyond sequencing: optical mapping of DNA in the age of nanotechnology and nanoscopy. Curr Opin Biotechnol. 2013;24(4):690–8.CrossRefPubMedGoogle Scholar
  34. Liutkevičiūtė Z, Kriukienė E, Grigaitytė I, Masevičius V, Klimašauskas S. Methyltransferase-directed derivatization of 5-hydroxymethylcytosine in DNA. Angew Chem Int Ed Engl. 2011;50(9):2090–3.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Liutkevičiūtė Z, Kriukienė E, Ličytė J, Rudytė M, Urbanavičiūtė G, Klimašauskas S. Direct decarboxylation of 5-carboxylcytosine by DNA C5-methyltransferases. J Am Chem Soc. 2014;136(16):5884–7.CrossRefPubMedGoogle Scholar
  36. Liutkevičiūtė Z, Lukinavičius G, Masevičius V, Daujotytė D, Klimašauskas S. Cytosine-5-methyltransferases add aldehydes to DNA. Nat Chem Biol. 2009;5(6):400–2.CrossRefPubMedGoogle Scholar
  37. Lukinavičius G, Lapienė V, Stasevskij Z, Dalhoff C, Weinhold E, Klimašauskas S. Targeted labeling of DNA by methyltransferase-directed transfer of activated groups (mTAG). J Am Chem Soc. 2007;129(10):2758–9.CrossRefPubMedGoogle Scholar
  38. Lukinavičius G, Lapinaitė A, Urbanavičiūtė G, Gerasimaitė R, Klimašauskas S. Engineering the DNA cytosine-5 methyltransferase reaction for sequence-specific labeling of DNA. Nucleic Acids Res. 2012;40(22):11594–602.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Lukinavičius G, Tomkuvienė M, Masevičius V, Klimašauskas S. Enhanced chemical stability of adomet analogues for improved methyltransferase-directed labeling of DNA. ACS Chem Biol. 2013;8(6):1134–9.CrossRefPubMedGoogle Scholar
  40. Mai V, Comstock LR. Synthesis of an azide-bearing N-mustard analogue of S-adenosyl-L-methionine. J Org Chem. 2011;76(24):10319–24.CrossRefPubMedGoogle Scholar
  41. Masevičius V, Nainytė M, Klimašauskas S. Synthesis of S-adenosyl-L-methionine analogs with extended transferable groups for methyltransferase-directed labeling of DNA and RNA. Curr Protoc Nucleic Acid Chem. 2016;64:1.36.1–1.36.13.CrossRefGoogle Scholar
  42. Motorin Y, Burhenne J, Teimer R, Koynov K, Willnow S, Weinhold E, et al. Expanding the chemical scope of RNA:methyltransferases to site-specific alkynylation of RNA for click labeling. Nucleic Acids Res. 2011;39(5):1943–52.CrossRefPubMedGoogle Scholar
  43. Neely RK, Dedecker P, Hotta JI, Urbanavičiūtė G, Klimašauskas S, Hofkens J. DNA fluorocode: a single molecule, optical map of DNA with nanometre resolution. Chem Sci. 2010;1:453–60.CrossRefGoogle Scholar
  44. Pastor WA, Pape UJ, Huang Y, Henderson HR, Lister R, Ko M, et al. Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature. 2011;473(7347):394–7.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Peters W, Willnow S, Duisken M, Kleine H, Macherey T, Duncan KE, et al. Enzymatic site-specific functionalization of protein methyltransferase substrates with alkynes for click labeling. Angew Chem Int Ed Engl. 2010;49(30):5170–3.CrossRefPubMedGoogle Scholar
  46. Pignot M, Siethoff C, Linscheid M, Weinhold E. Coupling of a Nucleoside with DNA by a Methyltransferase. Angew Chem Int Ed Engl. 1998;37(20):2888–91.CrossRefGoogle Scholar
  47. Pljevaljčić G, Pignot M, Weinhold E. Design of a new fluorescent cofactor for DNA methyltransferases and sequence-specific labeling of DNA. J Am Chem Soc. 2003;125(12):3486–92.CrossRefPubMedGoogle Scholar
  48. Pljevaljčić G, Schmidt F, Scheidig AJ, Lurz R, Weinhold E. Quantitative labeling of long plasmid DNA with nanometer precision. Chembiochem. 2007;8(13):1516–9.CrossRefPubMedGoogle Scholar
  49. Pljevaljčić G, Schmidt F, Weinhold E. Sequence-specific methyltransferase-induced labeling of DNA (SMILing DNA). Chembiochem. 2004;5(3):265–9.CrossRefPubMedGoogle Scholar
  50. Plotnikova A, Osipenko A, Masevičius V, Vilkaitis G, Klimašauskas S. Selective covalent labeling of miRNA and siRNA duplexes using HEN1 methyltransferase. J Am Chem Soc. 2014;136(39):13550–3.CrossRefPubMedGoogle Scholar
  51. Prescher JA, Bertozzi CR. Chemistry in living systems. Nat Chem Biol. 2005;1(1):13–21.CrossRefPubMedGoogle Scholar
  52. Ramadan M, Bremner-Hay NK, Carlson SA, Comstock LR. Synthesis and evaluation of N6-substituted azide- and alkyne-bearing N-mustard analogs of S-adenosyl-l-methionine. Tetrahedron. 2014;70(34):5291–7.CrossRefGoogle Scholar
  53. Schlenk F, Dainko JL. The S-n-propyl analogue of S-adenosylmethionine. Biochim Biophys Acta. 1975;385(2):312–23.CrossRefPubMedGoogle Scholar
  54. Schmidt FH, Huben M, Gider B, Renault F, Teulade-Fichou MP, Weinhold E. Sequence-specific Methyltransferase-Induced Labelling (SMILing) of plasmid DNA for studying cell transfection. Bioorg Med Chem. 2008;16(1):40–8.CrossRefPubMedGoogle Scholar
  55. Schulz D, Holstein JM, Rentmeister A. A chemo-enzymatic approach for site-specific modification of the RNA cap. Angew Chem Int Ed Engl. 2013;52(30):7874–8.CrossRefPubMedGoogle Scholar
  56. Schumacher A, Kapranov P, Kaminsky Z, Flanagan J, Assadzadeh A, Yau P, et al. Microarray-based DNA methylation profiling: technology and applications. Nucleic Acids Res. 2006;34(2):528–42.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Serva S, Lagunavičius A. Direct conjugation of peptides and 5-hydroxymethylcytosine in DNA. Bioconjug Chem. 2015;26(6):1008–12.CrossRefPubMedGoogle Scholar
  58. Singh S, Zhang J, Huber TD, Sunkara M, Hurley K, Goff RD, et al. Facile chemoenzymatic strategies for the synthesis and utilization of S-adenosyl-(L)-methionine analogues. Angew Chem Int Ed Engl. 2014;53(15):3965–9.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Song CX, Szulwach KE, Fu Y, Dai Q, Yi C, Li X, et al. Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat Biotechnol. 2011;29(1):68–72.CrossRefPubMedGoogle Scholar
  60. Stecher H, Tengg M, Ueberbacher BJ, Remler P, Schwab H, Griengl H, et al. Biocatalytic Friedel-Crafts alkylation using non-natural cofactors. Angew Chem Int Ed Engl. 2009;48(50):9546–8.CrossRefPubMedGoogle Scholar
  61. Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet. 2008;9(6):465–76.CrossRefPubMedGoogle Scholar
  62. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324(5929):930–5.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Teague B, Waterman MS, Goldstein S, Potamousis K, Zhou S, Reslewic S, et al. High-resolution human genome structure by single-molecule analysis. Proc Natl Acad Sci U S A. 2010;107(24):10848–53.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Tomkuvienė M, Clouet-d’Orval B, Černiauskas I, Weinhold E, Klimašauskas S. Programmable sequence-specific click-labeling of RNA using archaeal box C/D RNP methyltransferases. Nucleic Acids Res. 2012;40(14):6765–73.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Townsend AP, Roth S, Williams HEL, Stylianou E, Thomas NR. New S-Adenosyl-l-methionine Analogues: synthesis and reactivity studies. Org Lett. 2009;11(14):2976–9.CrossRefPubMedGoogle Scholar
  66. Vranken C, Deen J, Dirix L, Stakenborg T, Dehaen W, Leen V, et al. Super-resolution optical DNA Mapping via DNA methyltransferase-directed click chemistry. Nucleic Acids Res. 2014;42(7):e50.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Wang R, Islam K, Liu Y, Zheng W, Tang H, Lailler N, et al. Profiling genome-wide chromatin methylation with engineered posttranslation apparatus within living cells. J Am Chem Soc. 2013;135(3):1048–56.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Wang R, Zheng W, Yu H, Deng H, Luo M. Labeling substrates of protein arginine methyltransferase with engineered enzymes and matched S-adenosyl-L-methionine analogues. J Am Chem Soc. 2011;133(20):7648–51.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Weber M, Davies JJ, Wittig D, Oakeley EJ, Haase M, Lam WL, et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet. 2005;37(8):853–62.CrossRefPubMedGoogle Scholar
  70. Weier HU, Wang M, Mullikin JC, Zhu Y, Cheng JF, Greulich KM, et al. Quantitative DNA fiber mapping. Hum Mol Genet. 1995;4(10):1903–10.CrossRefPubMedGoogle Scholar
  71. Weller RL, Rajski SR. DNA methyltransferase-moderated click chemistry. Org Lett. 2005;7(11):2141–4.CrossRefPubMedGoogle Scholar
  72. Weller RL, Rajski SR. Design, synthesis, and preliminary biological evaluation of a DNA methyltransferase-directed alkylating agent. Chembiochem. 2006;7(2):243–5.CrossRefPubMedGoogle Scholar
  73. Wilkinson S, Diechtierow M, Estabrook RA, Schmidt F, Huben M, Weinhold E, et al. Molecular scale architecture: engineered three- and four-way junctions. Bioconjug Chem. 2008;19(2):470–5.CrossRefPubMedGoogle Scholar
  74. Willnow S, Martin M, Luscher B, Weinhold E. A selenium-based click AdoMet analogue for versatile substrate labeling with wild-type protein methyltransferases. Chembiochem. 2012;13(8):1167–73.CrossRefPubMedGoogle Scholar
  75. Winter JM, Chiou G, Bothwell IR, Xu W, Garg NK, Luo M, et al. Expanding the structural diversity of polyketides by exploring the cofactor tolerance of an inline methyltransferase domain. Org Lett. 2013;15(14):3774–7.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Zhang C, Weller RL, Thorson JS, Rajski SR. Natural product diversification using a non-natural cofactor analogue of S-adenosyl-L-methionine. J Am Chem Soc. 2006;128(9):2760–1.CrossRefPubMedGoogle Scholar
  77. Zhang L, Szulwach KE, Hon GC, Song CX, Park B, Yu M, et al. Tet-mediated covalent labelling of 5-methylcytosine for its genome-wide detection and sequencing. Nat Commun. 2013;4:1517.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Zohar H, Muller SJ. Labeling DNA for single-molecule experiments: methods of labeling internal specific sequences on double-stranded DNA. Nanoscale. 2011;3(8):3027–39.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Miglė Tomkuvienė
    • 1
  • Edita Kriukienė
    • 1
  • Saulius Klimašauskas
    • 1
    Email author
  1. 1.Institute of BiotechnologyVilnius UniversityVilniusLithuania

Personalised recommendations