Advertisement

DNA Methyltransferase Inhibitors: Development and Applications

  • Marie Lopez
  • Ludovic Halby
  • Paola B. Arimondo
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 945)

Abstract

As described in previous chapters of this book, DNA methylation is involved in numerous biological processes, and modulation of the activity of DNA methyltransferases (DNMTs) is a powerful strategy to modulate, restore, or reduce DNA methylation. In this chapter, we will present examples of inhibitors of DNMTs (DNMTi) and review the fields of applications of DNMTi mainly as therapeutic molecules, for example, in cancers, cardiovascular or neurological diseases, but also as bioengineering tools. Finally, the limits of currently available inhibitors will be discussed and the perspectives to discover improved DNMTi will be presented.

Keywords

Human Immunodeficiency Virus Methylation Level Promoter Methylation DNMT Inhibition Catalytic Pocket 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

5aza

5-azacytidine

5azadC

5-aza-2′-deoxycytidine

AD

Alzheimer’s disease

ALI

Acute lung injury

ALL

Acute lymphoblastic leukemia

ALS

Amyotrophic lateral sclerosis

AML

Acute myeloid leukemia

Ara-C

Cytarabine

ASMA

Alpha-smooth muscle actin

ATRA

All-trans retinoic acid

BBB

Blood–brain barrier

BDNF

Brain-derived neurotrophic factor

BM

Bone marrow

CMML

Chronic myelomonocytic leukemia

CNS

Central nervous system

COMT

Catechol-O-methyltransferase

CpG

Cytosine–guanine dinucleotide

CVD

Cardiovascular disease

DNMT

DNA methyltransferase

DNMTi

DNMT inhibitor

EC

Endothelial cells

EGCG

(-)-epigallocatechin-3-gallate

EMA

European Medicines Agency

ER

Estrogen receptor

ESC

Embryonic stem cells

FDA

US Food and Drug Administration

GABA

γ-aminobutyric acid

GAD

Glutamic acid decarboxylase

HCV

Hepatitis C virus

HDAC

Histone deacetylase

HDACi

HDAC inhibitor

HIV

Human immunodeficiency virus

HPV

Human papilloma virus

HTS

High-throughput screening

INFγ

Interferon-γ

IVF

In vitro fertilization

LPS

Lipopolysaccharide

LTP

Long-term potentiation

MDS

Myelodysplastic syndrome

MeCP2

Methyl-CpG-binding protein 2

mPFC

Medial prefrontal cortex

MSC

Mesenchymal stromal cells

NHL

Non-Hodgkin’s lymphomas

NMS

Neonatal maternal separation

NSC

Neuronal stem cell

PARP

Poly(ADP-ribose) polymerase

PARPi

PARP inhibitor

PD

Parkinson’s disease

PTSD

Post-traumatic stress disorder

SAH

S-adenosyl-L-homocysteine

SAHA

Suberoylanilide hydroxamic acid, vorinostat (Zolinza®)

SAM

S-adenosyl-L-methionine

SAR

Seasonal allergic rhinitis

SFRP4

Secreted frizzled-related protein

SHS

Secondhand smoke

Th

T-helper

TSA

Trichostatin A

TSG

Tumor suppressor gene

VPA

Valproic acid

XRCC1

X-ray repair cross-complementing protein

References

  1. Ahuja N, Easwaran H, Baylin SB. Harnessing the potential of epigenetic therapy to target solid tumors. J Clin Invest. 2014;124(1):56–63. doi: 10.1172/jci69736.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ahuja N, Sharma AR, Baylin SB. Epigenetic therapeutics: a new weapon in the war against cancer. Annu Rev Med. 2016;67(1):73–89. doi: 10.1146/annurev-med-111314-035900.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Aizawa SY. Yutaka. Valproate administration to mice increases hippocampal p21 expression by altering genomic DNA methylation. Neuroreport. 2015;26(15):915–20. doi: 10.1097/WNR.0000000000000448.PubMedCrossRefGoogle Scholar
  4. Akimoto K, Katakami H, Kim H-J, Ogawa E, Sano CM, Wada Y, et al. Epigenetic inheritance in rice plants. Ann Bot. 2007;100(2):205–17. doi: 10.1093/aob/mcm110.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet. 1999;23(2):185–8.PubMedCrossRefGoogle Scholar
  6. Arora P, Kim E-O, Jung JK, Jang KL. Hepatitis C virus core protein downregulates E-cadherin expression via activation of DNA methyltransferase 1 and 3b. Cancer Lett. 2008;261(2):244–52. http://dx.doi.org/10.1016/j.canlet.2007.11.033.
  7. Asgatay S, Champion C, Marloie G, Drujon T, Senamaud-Beaufort C, Ceccaldi A, et al. Synthesis and evaluation of analogues of N-phthaloyl-L-tryptophan (RG108) as inhibitors of DNA methyltransferase 1. J Med Chem. 2014;57(2):421–34. doi: 10.1021/jm401419p.PubMedCrossRefGoogle Scholar
  8. Aydin B, Hocaoglu N, Gidener S. Could decitabine treatment impair memory functions in humans? Med Hypotheses. 2012;79(5):639–41. http://dx.doi.org/10.1016/j.mehy.2012.07.042.
  9. Azad N, Zahnow CA, Rudin CM, Baylin SB. The future of epigenetic therapy in solid tumours—lessons from the past. Nat Rev Clin Oncol. 2013;10(5):256–66. doi: 10.1038/nrclinonc.2013.42.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Barbier E, Tapocik JD, Juergens N, Pitcairn C, Borich A, Schank JR, et al. DNA methylation in the medial prefrontal cortex regulates alcohol-induced behavior and plasticity. J Neurosci. 2015;35(15):6153–64. doi: 10.1523/jneurosci.4571-14.2015.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Baud MG, Leiser T, Haus P, Samlal S, Wong AC, Wood RJ, et al. Defining the mechanism of action and enzymatic selectivity of psammaplin A against its epigenetic targets. J Med Chem. 2012;55(4):1731–50. doi: 10.1021/jm2016182.PubMedCrossRefGoogle Scholar
  12. Beau J, Mahid N, Burda WN, Harrington L, Shaw LN, Mutka T, et al. Epigenetic tailoring for the production of anti-infective cytosporones from the Marine Fungus Leucostoma persoonii. Mar Drugs. 2012;10(4):762–74. doi: 10.3390/md10040762.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Benton M, Johnstone A, Eccles D, Harmon B, Hayes M, Lea R, et al. An analysis of DNA methylation in human adipose tissue reveals differential modification of obesity genes before and after gastric bypass and weight loss. Genome Biol. 2015;16(1):8.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Berni Canani R, Paparo L, Nocerino R, Cosenza L, Pezzella V, Di Costanzo M, et al. Differences in DNA methylation profile of Th1 and Th2 cytokine genes are associated with tolerance acquisition in children with IgE-mediated cow’s milk allergy. Clin Epigenet. 2015;7(1):38. doi: 10.1186/s13148-015-0070-8.CrossRefGoogle Scholar
  15. Blazkova J, Trejbalova K, Gondois-Rey F, Halfon P, Philibert P, Guiguen A, et al. CpG methylation controls reactivation of HIV from latency. PLoS Pathog. 2009;5(8):e1000554. doi: 10.1371/journal.ppat.1000554.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Boku S, Toda H, Nakagawa S, Kato A, Inoue T, Koyama T, et al. Neonatal maternal separation alters the capacity of adult neural precursor cells to differentiate into neurons via methylation of retinoic acid receptor gene promoter. Biol Psychiatry. 2015;77(4):335–44. http://dx.doi.org/10.1016/j.biopsych.2014.07.008.
  17. Bönsch D, Lenz B, Fiszer R, Frieling H, Kornhuber J, Bleich S. Lowered DNA methyltransferase (DNMT-3b) mRNA expression is associated with genomic DNA hypermethylation in patients with chronic alcoholism. J Neural Transm. 2006;113(9):1299–304. doi: 10.1007/s00702-005-0413-2.PubMedCrossRefGoogle Scholar
  18. Booij L, Wang D, Lévesque ML, Tremblay RE, Szyf M. Looking beyond the DNA sequence: the relevance of DNA methylation processes for the stress–diathesis model of depression. Philos Trans R Soc Lond B Biol Sci. 2013;368(1615). doi: 10.1098/rstb.2012.0251.
  19. Boothman DA, Briggle TV, Greer S. Exploitation of elevated pyrimidine deaminating enzymes for selective chemotherapy. Pharmacol Ther. 1989;42(1):65–88.PubMedCrossRefGoogle Scholar
  20. Bouchard L, Rabasa-Lhoret R, Faraj M, Lavoie M-È, Mill J, Pérusse L, et al. Differential epigenomic and transcriptomic responses in subcutaneous adipose tissue between low and high responders to caloric restriction. Am J Clin Nutr. 2010;91(2):309–20. doi: 10.3945/ajcn.2009.28085.PubMedCrossRefGoogle Scholar
  21. Brand S, Kesper DA, Teich R, Kilic-Niebergall E, Pinkenburg O, Bothur E, et al. DNA methylation of TH1/TH2 cytokine genes affects sensitization and progress of experimental asthma. J Allergy Clin Immunol. 2012;129(6):1602–10. doi: 10.1016/j.jaci.2011.12.963.PubMedCrossRefGoogle Scholar
  22. Brøns C, Jacobsen S, Nilsson E, Rönn T, Jensen CB, Storgaard H, et al. Deoxyribonucleic acid methylation and gene expression of PPARGC1A in human muscle is influenced by high-fat overfeeding in a birth-weight-dependent manner. J Clin Endocrinol Metab. 2010;95(6):3048–56. doi: 10.1210/jc.2009-2413.PubMedCrossRefGoogle Scholar
  23. Brook PO, Perry MM, Adcock IM, Durham AL. Epigenome-modifying tools in asthma. Epigenomics. 2015:[Epub ahead of print]. doi: 10.2217/epi.15.53.
  24. Brueckner B, Garcia Boy R, Siedlecki P, Musch T, Kliem HC, Zielenkiewicz P, et al. Epigenetic reactivation of tumor suppressor genes by a novel small-molecule inhibitor of human DNA methyltransferases. Cancer Res. 2005;65(14):6305–11. doi: 10.1158/0008-5472.can-04-2957.PubMedCrossRefGoogle Scholar
  25. Brueckner B, Rius M, Markelova MR, Fichtner I, Hals PA, Sandvold ML, et al. Delivery of 5-azacytidine to human cancer cells by elaidic acid esterification increases therapeutic drug efficacy. Mol Cancer Ther. 2010;9(5):1256–64. doi: 10.1158/1535-7163.MCT-09-1202.PubMedCrossRefGoogle Scholar
  26. Byun HM, Choi SH, Laird PW, Trinh B, Siddiqui MA, Marquez VE, et al. 2′-Deoxy-N4-[2-(4-nitrophenyl)ethoxycarbonyl]-5-azacytidine: a novel inhibitor of DNA methyltransferase that requires activation by human carboxylesterase 1. Cancer Lett. 2008;266(2):238–48. doi: 10.1016/j.canlet.2008.02.069.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Cameron EE, Bachman KE, Myohanen S, Herman JG, Baylin SB. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet. 1999;21(1):103–7.PubMedCrossRefGoogle Scholar
  28. Candelaria M, Herrera A, Labardini J, González-Fierro A, Trejo-Becerril C, Taja-Chayeb L, et al. Hydralazine and magnesium valproate as epigenetic treatment for myelodysplastic syndrome. Preliminary results of a phase-II trial. Ann Hematol. 2011;90(4):379–87. doi: 10.1007/s00277-010-1090-2.PubMedCrossRefGoogle Scholar
  29. Candelaria M, de la Cruz-Hernandez E, Taja-Chayeb L, Perez-Cardenas E, Trejo-Becerril C, Gonzalez-Fierro A, et al. DNA methylation-independent reversion of gemcitabine resistance by hydralazine in cervical cancer cells. PLoS One. 2012;7(3):e29181. doi: 10.1371/journal.pone.0029181.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Carnicella S, Kharazia V, Jeanblanc J, Janak PH, Ron D. GDNF is a fast-acting potent inhibitor of alcohol consumption and relapse. Proc Natl Acad Sci U S A. 2008;105(23):8114–9. doi: 10.1073/pnas.0711755105.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Castellano S, Kuck D, Sala M, Novellino E, Lyko F, Sbardella G. Constrained analogues of procaine as novel small molecule inhibitors of DNA methyltransferase-1. J Med Chem. 2008;51(7):2321–5. doi: 10.1021/jm7015705.PubMedCrossRefGoogle Scholar
  32. Castellano S, Kuck D, Viviano M, Yoo J, Lopez-Vallejo F, Conti P, et al. Synthesis and biochemical evaluation of Δ2-isoxazoline derivatives as DNA methyltransferase 1 inhibitors. J Med Chem. 2011;54(21):7663–77.PubMedCrossRefGoogle Scholar
  33. Ceccaldi A, Rajavelu A, Champion C, Rampon C, Jurkowska R, Jankevicius G, et al. C5-DNA methyltransferase inhibitors: from screening to effects on zebrafish embryo development. Chembiochem. 2011;12(9):1337–45.PubMedCrossRefGoogle Scholar
  34. Ceccaldi A, Rajavelu A, Ragozin S, Sénamaud-Beaufort C, Bashtrykov P, Testa N, et al. Identification of novel inhibitors of DNA methylation by screening of a chemical library. ACS Chem Biol. 2013;8(3):543–8.PubMedCrossRefGoogle Scholar
  35. Champion C, Guianvarc’h D, Sénamaud-Beaufort C, Jurkowska RZ, Jeltsch A, Ponger L, et al. Mechanistic insights on the inhibition of C5 DNA methyltransferases by zebularine. PLoS One. 2010;5(8):e12388. doi: 10.1371/journal.pone.0012388.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Chan KK, Giannini DD, Staroscik JA, Sadee W. 5-azacytidine hydrolysis kinetics measured by high-pressure liquid chromatography and 13C-NMR spectroscopy. J Pharm Sci. 1979;68(7):807–12. doi: 10.1002/jps.2600680705.PubMedCrossRefGoogle Scholar
  37. Chandel N, Ayasolla KS, Lan X, Sultana-Syed M, Chawla A, Lederman R, et al. Epigenetic modulation of human podocyte vitamin D receptor in HIV Milieu. J Mol Biol. 2015;427(20):3201–15. http://dx.doi.org/10.1016/j.jmb.2015.07.011.
  38. Chaturvedi P, Tyagi SC. Epigenetic mechanisms underlying cardiac degeneration and regeneration. Int J Cardiol. 2014;173(1):1–11. http://dx.doi.org/10.1016/j.ijcard.2014.02.008.
  39. Chen Y, Sharma RP, Costa RH, Costa E, Grayson DR. On the epigenetic regulation of the human reelin promoter. Nucleic Acids Res. 2002;30(13):2930–9. doi: 10.1093/nar/gkf401.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Chen C, Pan D, Deng AM, Huang F, Sun B-L, Yang R-G. DNA methyltransferases 1 and 3B are required for hepatitis C virus infection in cell culture. Virology. 2013;441(1):57–65. http://dx.doi.org/10.1016/j.virol.2013.03.005.
  41. Cheng JC, Matsen CB, Gonzales FA, Ye W, Greer S, Marquez VE, et al. Inhibition of DNA methylation and reactivation of silenced genes by zebularine. J Natl Cancer Inst. 2003;95(5):399–409.PubMedCrossRefGoogle Scholar
  42. Chestnut BA, Chang Q, Price A, Lesuisse C, Wong M, Martin LJ. Epigenetic regulation of motor neuron cell death through DNA methylation. J Neurosci. 2011;31(46):16619–36. doi: 10.1523/jneurosci.1639-11.2011.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Cho G-W, Noh M-Y, Kim HY, Koh S-H, Kim K-S, Kim SH. Bone marrow-derived stromal cells from amyotrophic lateral sclerosis patients have diminished stem cell capacity. Stem Cells Dev. 2010;19(7):1035–42. doi: 10.1089/scd.2009.0453.PubMedCrossRefGoogle Scholar
  44. Chuang JC, Yoo CB, Kwan JM, Li TWH, Liang G, Yang AS, et al. Comparison of biological effects of non-nucleoside DNA methylation inhibitors versus 5-aza-2′-deoxycytidine. Mol Cancer Ther. 2005;4(10):1515–20. doi: 10.1158/1535-7163.mct-05-0172.PubMedCrossRefGoogle Scholar
  45. Chuang JC, Warner SL, Vollmer D, Vankayalapati H, Redkar S, Bearss DJ, et al. S110, a 5-Aza-2′-deoxycytidine–containing dinucleotide, is an effective DNA methylation inhibitor in vivo and can reduce tumor growth. Mol Cancer Ther. 2010;9(5):1443–50. doi: 10.1158/1535-7163.mct-09-1048.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Cihak A. Biological effects of 5-azacytidine in eukaryotes. Oncology. 1974;30(5):405–22.PubMedCrossRefGoogle Scholar
  47. Cleveland DW, Rothstein JD. From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nat Rev Neurosci. 2001;2(11):806–19.PubMedCrossRefGoogle Scholar
  48. Clozel T, Yang S, Elstrom RL, Tam W, Martin P, Kormaksson M, et al. Mechanism-based epigenetic chemosensitization therapy of diffuse large B-cell lymphoma. Cancer Discov. 2013;3(9):1002–19. doi: 10.1158/2159-8290.cd-13-0117.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Constantinides PG, Jones PA, Gevers W. Functional striated muscle cells from non-myoblast precursors following 5-azacytidine treatment. Nature. 1977;267(5609):364–6.PubMedCrossRefGoogle Scholar
  50. Constantinides PG, Taylor SM, Jones PA. Phenotypic conversion of cultured mouse embryo cells by aza pyrimidine nucleosides. Dev Biol. 1978;66(1):57–71. http://dx.doi.org/10.1016/0012-1606(78)90273-7.
  51. Coppieters N, Dragunow M. Epigenetics in alzheimers disease: a focus on DNA modifications. Curr Pharm Des. 2011;17(31):3398–412. doi: 10.2174/138161211798072544#sthash.ZNP9Kotu.dpuf.PubMedCrossRefGoogle Scholar
  52. Coppieters N, Dieriks BV, Lill C, Faull RLM, Curtis MA, Dragunow M. Global changes in DNA methylation and hydroxymethylation in Alzheimer’s disease human brain. Neurobiol Aging. 2014;35(6):1334–44. http://dx.doi.org/10.1016/j.neurobiolaging.2013.11.031.
  53. Cornacchia E, Golbus J, Maybaum J, Strahler J, Hanash S, Richardson B. Hydralazine and procainamide inhibit T cell DNA methylation and induce autoreactivity. J Immunol. 1988;140(7):2197–200.PubMedGoogle Scholar
  54. Cortijo S, Wardenaar R, Colomé-Tatché M, Gilly A, Etcheverry M, Labadie K, et al. Mapping the epigenetic basis of complex traits. Science. 2014;343(6175):1145–8. doi: 10.1126/science.1248127.PubMedCrossRefGoogle Scholar
  55. Crescenti A, Solà R, Valls RM, Caimari A, del Bas JM, Anguera A, et al. Cocoa consumption alters the global DNA methylation of peripheral leukocytes in humans with cardiovascular disease risk factors: a randomized controlled trial. PLoS One. 2013;8(6):e65744. doi: 10.1371/journal.pone.0065744.PubMedPubMedCentralCrossRefGoogle Scholar
  56. D’Costa ZJ, Jolly C, Androphy EJ, Mercer A, Matthews CM, Hibma MH. Transcriptional repression of E-cadherin by human papillomavirus type 16 E6. PLoS One. 2012;7(11):e48954. doi: 10.1371/journal.pone.0048954.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Datta J, Ghoshal K, Denny WA, Gamage SA, Brooke DG, Phiasivongsa P, et al. A new class of quinoline-based DNA hypomethylating agents reactivates tumor suppressor genes by blocking DNA methyltransferase 1 activity and inducing its degradation. Cancer Res. 2009;69(10):4277–85. doi: 10.1158/0008-5472.can-08-3669.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Day JJ, Sweatt JD. DNA methylation and memory formation. Nat Neurosci. 2010;13(11):1319–23.PubMedPubMedCentralCrossRefGoogle Scholar
  59. De Jager PL, Srivastava G, Lunnon K, Burgess J, Schalkwyk LC, Yu L, et al. Alzheimer’s disease: early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci. Nat Neurosci. 2014;17(9):1156–63. doi: 10.1038/nn.3786. http://www.nature.com/neuro/journal/v17/n9/abs/nn.3786.html#supplementary-information.
  60. de la Cruz-Hernandez E, Perez-Cardenas E, Taja-Chayeb L, Chavez-Blanco A, Trejo-Becerril C, Trujillo J, et al. DNA demethylating activity of hydralazine in cancer cell lines. Life Sci Med Res. 2011;2011:LSMR-30.Google Scholar
  61. Desplats P, Spencer B, Coffee E, Patel P, Michael S, Patrick C, et al. α-synuclein sequesters Dnmt1 from the nucleus: a novel mechanism for epigenetic alterations in Lewy body diseases. J Biol Chem. 2011;286(11):9031–7. doi: 10.1074/jbc.C110.212589.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Ding L, Qiu L, Zhang J, Guo B. Camptothecin-induced cell proliferation inhibition and apoptosis enhanced by DNA methyltransferase inhibitor, 5-Aza-2′-deoxycytidine. Biol Pharm Bull. 2009;32(6):1105–8. doi: 10.1248/bpb.32.1105.PubMedCrossRefGoogle Scholar
  63. Dobbs KB, Rodriguez M, Sudano MJ, Ortega MS, Hansen PJ. Dynamics of DNA methylation during early development of the preimplantation bovine embryo. PLoS One. 2013;8(6):e66230. doi: 10.1371/journal.pone.0066230.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Drury JL, Chung WO. DNA methylation differentially regulates cytokine secretion in gingival epithelia in response to bacterial challenges. Pathog Dis. 2015;73(2):1–6. doi: 10.1093/femspd/ftu005.PubMedGoogle Scholar
  65. Duenas-Gonzalez A, Candelaria M, Perez-Plascencia C, Perez-Cardenas E, de la Cruz-Hernandez E, Herrera LA. Valproic acid as epigenetic cancer drug: preclinical, clinical and transcriptional effects on solid tumors. Cancer Treat Rev. 2008;34(3):206–22. http://dx.doi.org/10.1016/j.ctrv.2007.11.003.
  66. Dueñas-Gonzalez A, Coronel J, Cetina L, González-Fierro A, Chavez-Blanco A, Taja-Chayeb L. Hydralazine–valproate: a repositioned drug combination for the epigenetic therapy of cancer. Expert Opin Drug Metab Toxicol. 2014;10(10):1433–44. doi: 10.1517/17425255.2014.947263.PubMedCrossRefGoogle Scholar
  67. Dunn J, Qiu H, Kim S, Jjingo D, Hoffman R, Kim CW, et al. Flow-dependent epigenetic DNA methylation regulates endothelial gene expression and atherosclerosis. J Clin Invest. 2014;124(7):3187–99. doi: 10.1172/jci74792.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Erdmann A, Halby L, Fahy J, Arimondo PB. Targeting DNA methylation with small molecules: what’s next? J Med Chem. 2015;58(6):2569–83. doi: 10.1021/jm500843d.PubMedCrossRefGoogle Scholar
  69. Erdmann A, Guianvarc’h D, Arimondo PB. Structure-guided optimization of DNA methyltransferase inhibitors. In: Medina-Franco J, editor. Epi-informatics, discovery and development of small molecule epigenetic drugs and probes. 1st ed. Elsevier, Future Med Chem, Future Science Group. 2016;8(4):373–80.Google Scholar
  70. Ernst C, Deleva V, Deng X, Sequeira A, Pomarenski A, Klempan T, et al. Alternative splicing, methylation state, and expression profile of tropomyosin-related kinase B in the frontal cortex of suicide completers. Arch Gen Psychiatry. 2009;66(1):22–32. doi: 10.1001/archpsyc.66.1.22.PubMedCrossRefGoogle Scholar
  71. Esteller M. Epigenetics in cancer. N Engl J Med. 2008;358(11):1148–59. doi: 10.1056/NEJMra072067.PubMedCrossRefGoogle Scholar
  72. Evans JS, Hanka LJ. The in vivo activity of combinations of 5-azacytidine and cytidine on leukemia L-1210. Experientia. 1968;24(9):922–3.PubMedCrossRefGoogle Scholar
  73. Fagan RL, Cryderman DE, Kopelovich L, Wallrath LL, Brenner C. Laccaic Acid A is a direct, DNA-competitive inhibitor of DNA methyltransferase 1. J Biol Chem. 2013;288(33):23858–67.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Fahy J, Jeltsch A, Arimondo PB. DNA methyltransferase inhibitors in cancer: a chemical and therapeutic patent overview and selected clinical studies. Expert Opin Ther Pat. 2012;22(12):1427–42. doi: 10.1517/13543776.2012.729579.PubMedCrossRefGoogle Scholar
  75. Fandy TE, Herman JG, Kerns P, Jiemjit A, Sugar EA, Choi S-H, et al. Early epigenetic changes and DNA damage do not predict clinical response in an overlapping schedule of 5-azacytidine and entinostat in patients with myeloid malignancies. Blood. 2009;114(13):2764–73. doi: 10.1182/blood-2009-02-203547.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Fang J-Y, Mikovits JA, Bagni R, Petrow-Sadowski CL, Ruscetti FW. Infection of lymphoid cells by integration-defective human immunodeficiency virus type 1 increases De Novo methylation. J Virol. 2001;75(20):9753–61. doi: 10.1128/jvi.75.20.9753-9761.2001.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Fang MZ, Wang Y, Ai N, Hou Z, Sun Y, Lu H, et al. Tea polyphenol (−)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res. 2003;63(22):7563–70.PubMedGoogle Scholar
  78. Fang MZ, Chen D, Sun Y, Jin Z, Christman JK, Yang CS. Reversal of hypermethylation and reactivation of p16INK4a, RARβ, and MGMT genes by genistein and other isoflavones from Soy. Clin Cancer Res. 2005;11(19):7033–41. doi: 10.1158/1078-0432.ccr-05-0406.PubMedCrossRefGoogle Scholar
  79. Feng J, Zhou Y, Campbell SL, Le T, Li E, Sweatt JD, et al. Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat Neurosci. 2010;13(4):423–30. http://www.nature.com/neuro/journal/v13/n4/suppinfo/nn.2514_S1.html.
  80. Fernandez G, Zeichner S. Cell line-dependent variability in HIV activation employing DNMT inhibitors. Virol J. 2010;7(1):266. doi: 10.1186/1743-422X-7-266.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Finnegan EJ, Genger RK, Peacock WJ, Dennis ES. DNA methylation in plants. Annu Rev Plant Physiol Plant Mol Biol. 1998;49(1):223–47. doi: 10.1146/annurev.arplant.49.1.223.PubMedCrossRefGoogle Scholar
  82. Flotho C, Claus R, Batz C, Schneider M, Sandrock I, Ihde S, et al. The DNA methyltransferase inhibitors azacitidine, decitabine and zebularine exert differential effects on cancer gene expression in acute myeloid leukemia cells. Leukemia. 2009;23(6):1019–28. http://www.nature.com/leu/journal/v23/n6/suppinfo/leu2008397s1.html.
  83. Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A. 2005;102(30):10604–9. doi: 10.1073/pnas.0500398102.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Fraga HPF, Vieira LN, Caprestano CA, Steinmacher DA, Micke GA, Spudeit DA, et al. 5-Azacytidine combined with 2,4-D improves somatic embryogenesis of Acca sellowiana (O. Berg) Burret by means of changes in global DNA methylation levels. Plant Cell Rep. 2012;31(12):2165–76. doi: 10.1007/s00299-012-1327-8.PubMedCrossRefGoogle Scholar
  85. Friso S, Pizzolo F, Choi S-W, Guarini P, Castagna A, Ravagnani V, et al. Epigenetic control of 11 beta-hydroxysteroid dehydrogenase 2 gene promoter is related to human hypertension. Atherosclerosis. 2008;199(2):323–7. http://dx.doi.org/10.1016/j.atherosclerosis.2007.11.029.
  86. Gamage SA, Brooke DG, Redkar S, Datta J, Jacob ST, Denny WA. Structure-activity relationships for 4-anilinoquinoline derivatives as inhibitors of the DNA methyltransferase enzyme DNMT1. Bioorg Med Chem. 2013;21(11):3147–53. doi: 10.1016/j.bmc.2013.03.033.PubMedCrossRefGoogle Scholar
  87. Gervin K, Vigeland MD, Mattingsdal M, Hammerø M, Nygård H, Olsen AO, et al. DNA methylation and gene expression changes in monozygotic twins discordant for psoriasis: identification of epigenetically dysregulated genes. PLoS Genet. 2012;8(1):e1002454. doi: 10.1371/journal.pgen.1002454.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Graça I, Sousa EJ, Baptista T, Almeida M, Ramalho-Carvalho J, Palmeira C, et al. Anti-tumoral effect of the non-nucleoside DNMT inhibitor RG108 in human prostate cancer cells. Curr Pharm Des. 2014a;20(11):1803–11.PubMedCrossRefGoogle Scholar
  89. Graça I, Sousa EJ, Costa-Pinheiro P, Vieira FQ, Torres-Ferreira J, Martins MG, et al. Anti-neoplastic properties of hydralazine in prostate cancer. Oncotarget. 2014b;5(15):5950–64.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Grayson DR, Jia X, Chen Y, Sharma RP, Mitchell CP, Guidotti A, et al. Reelin promoter hypermethylation in schizophrenia. Proc Natl Acad Sci U S A. 2005;102(26):9341–6. doi: 10.1073/pnas.0503736102.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Gros C, Fleury L, Nahoum V, Faux C, Valente S, Labella D, et al. New insights on the mechanism of quinoline-based DNA methyltransferase inhibitors. J Biol Chem. 2015;290(10):6293–302. doi: 10.1074/jbc.M114.594671.PubMedCrossRefGoogle Scholar
  92. Guay S-P, Legare C, Houde A-A, Mathieu P, Bosse Y, Bouchard L. Acetylsalicylic acid, aging and coronary artery disease are associated with ABCA1 DNA methylation in men. Clin Epigenet. 2014;6(1):14.CrossRefGoogle Scholar
  93. Guidotti A, Auta J, Davis JM, DiGiorgi GV, Dwivedi Y, Grayson DR, et al. Decrease in Reelin and Glutamic Acid Decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study FREE. Arch Gen Psychiatry. 2000;57(11):1061–9. doi: 10.1001/archpsyc.57.11.1061.PubMedCrossRefGoogle Scholar
  94. Guidotti A, Dong E, Kundakovic M, Satta R, Grayson DR, Costa E. Characterization of the action of antipsychotic subtypes on valproate-induced chromatin remodeling. Trends Pharmacol Sci. 2009;30(2):55–60. http://dx.doi.org/10.1016/j.tips.2008.10.010.
  95. Guidotti A, Auta J, Chen Y, Davis JM, Dong E, Gavin DP, et al. Epigenetic GABAergic targets in schizophrenia and bipolar disorder. Neuropharmacology. 2011;60(7–8):1007–16. http://dx.doi.org/10.1016/j.neuropharm.2010.10.021.
  96. Guo H, Zhu P, Yan L, Li R, Hu B, Lian Y, et al. The DNA methylation landscape of human early embryos. Nature. 2014;511(7511):606–10. doi: 10.1038/nature13544, http://www.nature.com/nature/journal/v511/n7511/abs/nature13544.html#supplementary-information.
  97. Guy J, Gan J, Selfridge J, Cobb S, Bird A. Reversal of neurological defects in a mouse model of Rett Syndrome. Science. 2007;315(5815):1143–7. doi: 10.1126/science.1138389.PubMedCrossRefGoogle Scholar
  98. Halby L, Champion C, Sénamaud-Beaufort C, Ajjan S, Drujon T, Rajavelu A, et al. Rapid synthesis of New DNMT inhibitors derivatives of procainamide. Chembiochem. 2012;13(1):157–65.PubMedCrossRefGoogle Scholar
  99. Heinrich C, Nitta N, Flubacher A, Müller M, Fahrner A, Kirsch M, et al. Reelin deficiency and displacement of mature neurons, but not neurogenesis, underlie the formation of granule cell dispersion in the epileptic hippocampus. J Neurosci. 2006;26(17):4701–13. doi: 10.1523/jneurosci.5516-05.2006.PubMedCrossRefGoogle Scholar
  100. Horrillo A, Pezzolla D, Fraga MF, Aguilera Y, Salguero-Aranda C, Tejedo JR, et al. Zebularine regulates early stages of mESC differentiation: effect on cardiac commitment. Cell Death Dis. 2013;4:e570. doi: 10.1038/cddis.2013.88.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Hossain M, Healey M, Lee C, Poh W, Yerram S, Patel K, et al. DNA-intercalators causing rapid re-expression of methylated and silenced genes in cancer cells. Oncotarget. 2013;4(2):298–309.PubMedPubMedCentralCrossRefGoogle Scholar
  102. Issa J-PJ, Kantarjian HM. Targeting DNA methylation. Clin Cancer Res. 2009;15(12):3938–46. doi: 10.1158/1078-0432.ccr-08-2783.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Jafari S, Hosseini MS, Hajian M, Forouzanfar M, Jafarpour F, Abedi P, et al. Improved in vitro development of cloned bovine embryos using S-adenosylhomocysteine, a non-toxic epigenetic modifying reagent. Mol Reprod Dev. 2011;78(8):576–84. doi: 10.1002/mrd.21344.PubMedCrossRefGoogle Scholar
  104. Jones PA, Taylor SM. Cellular differentiation, cytidine analogs and DNA methylation. Cell. 1980;20(1):85–93. http://dx.doi.org/10.1016/0092-8674(80)90237-8.
  105. Jowaed A, Schmitt I, Kaut O, Wüllner U. Methylation regulates α-synuclein expression and is decreased in Parkinson’s disease patients’ brains. J Neurosci. 2010;30(18):6355–9. doi: 10.1523/jneurosci.6119-09.2010.PubMedCrossRefGoogle Scholar
  106. Juergens RA, Wrangle J, Vendetti FP, Murphy SC, Zhao M, Coleman B, et al. Combination epigenetic therapy has efficacy in patients with refractory advanced non-small cell lung cancer. Cancer Discov. 2011;1(7):OF1–10. doi: 10.1158/2159-8290.cd-11-0214.CrossRefGoogle Scholar
  107. Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest. 2006;116(7):1784–92. doi: 10.1172/jci29126.PubMedPubMedCentralCrossRefGoogle Scholar
  108. Kang H-J, Kim J-M, Lee J-Y, Kim S-Y, Bae K-Y, Kim S-W, et al. BDNF promoter methylation and suicidal behavior in depressive patients. J Affect Disord. 2013;151(2):679–85. http://dx.doi.org/10.1016/j.jad.2013.08.001.
  109. Kao Y-H, Chen Y-C, Chung C-C, Lien G-S, Chen S-A, Kuo C-C, et al. Heart failure and angiotensin II modulate atrial Pitx2c promotor methylation. Clin Exp Pharmacol Physiol. 2013;40(6):379–84. doi: 10.1111/1440-1681.12089.PubMedCrossRefGoogle Scholar
  110. Karahoca M, Momparler RL. Pharmacokinetic and pharmacodynamic analysis of 5-aza-2′-deoxycytidine (decitabine) in the design of its dose-schedule for cancer therapy. Clin Epigenet. 2013;5(1):3. doi: 10.1186/1868-7083-5-3.CrossRefGoogle Scholar
  111. Kilgore JA, Du X, Melito L, Wei S, Wang C, Chin HG, et al. Identification of DNMT1 selective antagonists using a novel scintillation proximity assay. J Biol Chem. 2013;288(27):19673–84. doi: 10.1074/jbc.M112.443895.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Kim J, Kim JY, Song KS, Lee YH, Seo JS, Jelinek J et al. Epigenetic changes in estrogen receptor β gene in atherosclerotic cardiovascular tissues and in-vitro vascular senescence. Biochim Biophys Acta Mol Basis Dis. 2007;1772(1):72–80. http://dx.doi.org/10.1016/j.bbadis.2006.10.004.
  113. Kim M, Long TI, Arakawa K, Wang R, Yu MC, Laird PW. DNA methylation as a biomarker for cardiovascular disease risk. PLoS One. 2010;5(3):e9692. doi: 10.1371/journal.pone.0009692.PubMedPubMedCentralCrossRefGoogle Scholar
  114. Kim HJ, Kim JH, Chie EK, Da Young P, Kim IA, Kim IH. DNMT (DNA methyltransferase) inhibitors radiosensitize human cancer cells by suppressing DNA repair activity. Radiat Oncol. 2012;7(1):39.PubMedPubMedCentralCrossRefGoogle Scholar
  115. Kim AY, Park YJ, Pan X, Shin KC, Kwak S-H, Bassas AF, et al. Obesity-induced DNA hypermethylation of the adiponectin gene mediates insulin resistance. Nat Commun. 2015;6:7585. doi: 10.1038/ncomms8585.PubMedPubMedCentralCrossRefGoogle Scholar
  116. Kinoshita T, Miura A, Choi Y, Kinoshita Y, Cao X, Jacobsen SE, et al. One-way control of FWA imprinting in Arabidopsis endosperm by DNA methylation. Science. 2004;303(5657):521–3. doi: 10.1126/science.1089835.PubMedCrossRefGoogle Scholar
  117. Kinoshita Y, Saze H, Kinoshita T, Miura A, Soppe WJJ, Koornneef M, et al. Control of FWA gene silencing in Arabidopsis thaliana by SINE-related direct repeats. Plant J. 2007;49(1):38–45. doi: 10.1111/j.1365-313X.2006.02936.x.PubMedCrossRefGoogle Scholar
  118. Kobow K, Jeske I, Hildebrandt M, Hauke J, Hahnen E, Buslei R, et al. Increased reelin promoter methylation is associated with granule cell dispersion in human temporal lobe epilepsy. J Neuropathol Exp Neurol. 2009;68(4):356–64. doi: 10.1097/NEN.0b013e31819ba737.PubMedCrossRefGoogle Scholar
  119. Kobow K, Kaspi A, Harikrishnan KN, Kiese K, Ziemann M, Khurana I, et al. Deep sequencing reveals increased DNA methylation in chronic rat epilepsy. Acta Neuropathol. 2013;126(5):741–56. doi: 10.1007/s00401-013-1168-8.PubMedPubMedCentralCrossRefGoogle Scholar
  120. Kohli A, Garcia M, Miller R, Maher C, Humblet O, Hammond S, et al. Secondhand smoke in combination with ambient air pollution exposure is associated with increased CpG methylation and decreased expression of IFN-γ in T effector cells and Foxp3 in T regulatory cells in children. Clin Epigenet. 2012;4(1):17.CrossRefGoogle Scholar
  121. Kondo H, Miura T, Wada KC, Takeno K. Induction of flowering by 5-azacytidine in some plant species: relationship between the stability of photoperiodically induced flowering and flower-inducing effect of DNA demethylation. Physiol Plant. 2007;131(3):462–9. doi: 10.1111/j.1399-3054.2007.00965.x.PubMedCrossRefGoogle Scholar
  122. Kovalchuk I, Walz P, Thomas J, Kovalchuk O. The increased expression of proteins involved in proliferation, DNA repair and DNA methylation in spleen of mice exposed to E. coli O157:H7 lipopolysaccharide. Environ Mol Mutagen. 2013;54(6):421–8. doi: 10.1002/em.21787.PubMedCrossRefGoogle Scholar
  123. Kuck D, Caulfield T, Lyko F, Medina-Franco JL. Nanaomycin A selectively inhibits DNMT3B and reactivates silenced tumor suppressor genes in human cancer cells. Mol Cancer Ther. 2010;9(11):3015–23. doi: 10.1158/1535-7163.mct-10-0609.PubMedCrossRefGoogle Scholar
  124. Kumar A, Darcis G, Van Lint C, Herbein G. Epigenetic control of HIV-1 post integration latency: implications for therapy. Clin Epigenet. 2015;7(1):103. doi: 10.1186/s13148-015-0137-6.CrossRefGoogle Scholar
  125. Kundakovic M, Chen Y, Costa E, Grayson DR. DNA methyltransferase inhibitors coordinately induce expression of the human reelin and glutamic acid decarboxylase 67 genes. Mol Pharmacol. 2007;71(3):644–53. doi: 10.1124/mol.106.030635.PubMedCrossRefGoogle Scholar
  126. Kwon N-H, Kim J-S, Lee J-Y, Oh M-J, Choi D-C. DNA methylation and the expression of IL-4 and IFN-γ promoter genes in patients with bronchial asthma. J Clin Immunol. 2008;28(2):139–46. doi: 10.1007/s10875-007-9148-1.PubMedCrossRefGoogle Scholar
  127. LaPlant Q, Vialou V, Covington HE, Dumitriu D, Feng J, Warren BL, et al. Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens. Nat Neurosci. 2010;13(9):1137–43. http://www.nature.com/neuro/journal/v13/n9/abs/nn.2619.html#supplementary-information.
  128. Lee BH, Yegnasubramanian S, Lin X, Nelson WG. Procainamide is a specific inhibitor of DNA methyltransferase 1. J Biol Chem. 2005a;280(49):40749–56. doi: 10.1074/jbc.M505593200.PubMedPubMedCentralCrossRefGoogle Scholar
  129. Lee WJ, Shim J-Y, Zhu BT. Mechanisms for the inhibition of DNA methyltransferases by tea catechins and bioflavonoids. Mol Pharmacol. 2005b;68(4):1018–30. doi: 10.1124/mol.104.008367.PubMedCrossRefGoogle Scholar
  130. Levenson JM, Roth TL, Lubin FD, Miller CA, Huang I-C, Desai P, et al. Evidence that DNA (cytosine-5) methyltransferase regulates synaptic plasticity in the Hippocampus. J Biol Chem. 2006;281(23):15763–73. doi: 10.1074/jbc.M511767200.PubMedCrossRefGoogle Scholar
  131. Lewis DA, Hashimoto T, Volk DW. Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci. 2005;6(4):312–24.PubMedCrossRefGoogle Scholar
  132. Li Y, Tollefsbol TO. Impact on DNA methylation in cancer prevention and therapy by bioactive dietary components. Curr Med Chem. 2010;17(20):2141–51. doi: 10.2174/092986710791299966.PubMedPubMedCentralCrossRefGoogle Scholar
  133. Li LH, Olin EJ, Buskirk HH, Reineke LM. Cytotoxicity and mode of action of 5-azacytidine on L1210 leukemia. Cancer Res. 1970;30(11):2760–9.PubMedGoogle Scholar
  134. Li C, Terashita Y, Tokoro M, Wakayama S, Wakayama T. Effect of DNA methyltransferase inhibitor, RG108, on in vitro development and ntES establishment rate in cloned mouse embryos. Reprod Fertil Dev. 2011;24:130. doi: 10.1071/RDv24n1Ab36.CrossRefGoogle Scholar
  135. Li W, Yu M, Luo S, Liu H, Gao Y, Wilson JX, et al. DNA methyltransferase mediates dose-dependent stimulation of neural stem cell proliferation by folate. J Nutr Biochem. 2013;24(7):1295–301. http://dx.doi.org/10.1016/j.jnutbio.2012.11.001.
  136. Li Y, Geng P, Jiang W, Wang Y, Yao J, Lin X, et al. Enhancement of radiosensitivity by 5-Aza-CdR through activation of G2/M checkpoint response and apoptosis in osteosarcoma cells. Tumor Biol. 2014;35(5):4831–9. doi: 10.1007/s13277-014-1634-5.CrossRefGoogle Scholar
  137. Lin T-S, Lee H, Chen R-A, Ho M-L, Lin C-Y, Chen Y-H, et al. An association of DNMT3b protein expression with P16INK4a promoter hypermethylation in non-smoking female lung cancer with human papillomavirus infection. Cancer Lett. 2005;226(1):77–84. http://dx.doi.org/10.1016/j.canlet.2004.12.031.
  138. Lin J, Haffner MC, Zhang Y, Lee BH, Brennen WN, Britton J, et al. Disulfiram is a DNA demethylating agent and inhibits prostate cancer cell growth. Prostate. 2011;71(4):333–43. doi: 10.1002/pros.21247.PubMedCrossRefGoogle Scholar
  139. Lin N, Qin S, Luo S, Cui S, Huang G, Zhang X. Homocysteine induces cytotoxicity and proliferation inhibition in neural stem cells via DNA methylation in vitro. FEBS J. 2014;281(8):2088–96. doi: 10.1111/febs.12764.PubMedCrossRefGoogle Scholar
  140. Liu Z, Xie Z, Jones W, Pavlovicz RE, Liu S, Yu J, et al. Curcumin is a potent DNA hypomethylation agent. Bioorg Med Chem Lett. 2009;19(3):706–9. http://dx.doi.org/10.1016/j.bmcl.2008.12.041.
  141. Lloyd CM, Hawrylowicz CM. Regulatory T cells in asthma. Immunity. 2009;31(3):438–49. doi: 10.1016/j.immuni.2009.08.007.PubMedPubMedCentralCrossRefGoogle Scholar
  142. Logrip ML, Janak PH, Ron D. Escalating ethanol intake is associated with altered corticostriatal BDNF expression. J Neurochem. 2009;109(5):1459–68. doi: 10.1111/j.1471-4159.2009.06073.x.PubMedPubMedCentralCrossRefGoogle Scholar
  143. Lovinsky-Desir S, Ridder R, Torrone D, Maher C, Narula S, Scheuerman M, et al. DNA methylation of the allergy regulatory gene interferon gamma varies by age, sex, and tissue type in asthmatics. Clin Epigenet. 2014;6(1):9.CrossRefGoogle Scholar
  144. Lund G, Andersson L, Lauria M, Lindholm M, Fraga MF, Villar-Garea A, et al. DNA methylation polymorphisms precede any histological sign of atherosclerosis in mice lacking apolipoprotein E. J Biol Chem. 2004;279(28):29147–54. doi: 10.1074/jbc.M403618200.PubMedCrossRefGoogle Scholar
  145. Luo S, Zhang X, Yu M, Yan H, Liu H, Wilson J, et al. Folic acid acts through DNA methyltransferases to induce the differentiation of neural stem cells into neurons. Cell Biochem Biophys. 2013;66(3):559–66. doi: 10.1007/s12013-012-9503-6.PubMedCrossRefGoogle Scholar
  146. Luzzi A, Morettini F, Gazaneo S, Mundo L, Onnis A, Mannucci S, et al. HIV-1 Tat induces DNMT over-expression through microRNA dysregulation in HIV-related non Hodgkin lymphomas. Infect Agent Cancer. 2014;9(1):41. doi: 10.1186/1750-9378-9-41.PubMedPubMedCentralCrossRefGoogle Scholar
  147. Lyst MJ, Bird A. Rett syndrome: a complex disorder with simple roots. Nat Rev Genet. 2015;16(5):261–75. doi: 10.1038/nrg3897.PubMedCrossRefGoogle Scholar
  148. Ma N, Chen W, Fan T, Tian Y, Zhang S, Zeng D, et al. Low temperature-induced DNA hypermethylation attenuates expression of RhAG, an AGAMOUS homolog, and increases petal number in rose (Rosa hybrida). BMC Plant Biol. 2015;15(1):237.PubMedPubMedCentralCrossRefGoogle Scholar
  149. Machnes ZM, Huang TCT, Chang PKY, Gill R, Reist N, Dezsi G, et al. DNA methylation mediates persistent epileptiform activity In vitro and In vivo. PLoS One. 2013;8(10):e76299. doi: 10.1371/journal.pone.0076299.PubMedPubMedCentralCrossRefGoogle Scholar
  150. Mastroeni D, Grover A, Delvaux E, Whiteside C, Coleman PD, Rogers J. Epigenetic changes in Alzheimer’s disease: decrements in DNA methylation. Neurobiol Aging. 2010;31(12):2025–37. http://dx.doi.org/10.1016/j.neurobiolaging.2008.12.005.
  151. Matoušová M, Votruba I, Otmar M, Tloušťová E, Günterová J, Mertlíková-Kaiserová H. 2′-deoxy-5,6-dihydro-5-azacytidine—a less toxic alternative of 2′-deoxy-5-azacytidine: A comparative study of hypomethylating potential. Epigenetics. 2011;6(6):769–76. doi: 10.4161/epi.6.6.16215.PubMedPubMedCentralCrossRefGoogle Scholar
  152. Matrisciano F, Tueting P, Dalal I, Kadriu B, Grayson DR, Davis JM, et al. Epigenetic modifications of GABAergic interneurons are associated with the schizophrenia-like phenotype induced by prenatal stress in mice. Neuropharmacology. 2013;68:184–94. http://dx.doi.org/10.1016/j.neuropharm.2012.04.013.
  153. Meadows JP, Guzman-Karlsson MC, Phillips S, Holleman C, Posey JL, Day JJ, et al. DNA methylation regulates neuronal glutamatergic synaptic scaling. Sci Signal. 2015;8(382):ra61. doi: 10.1126/scisignal.aab0715.
  154. Medina-Franco JL, López-Vallejo F, Kuck D, Lyko F. Natural products as DNA methyltransferase inhibitors: a computer-aided discovery approach. Mol Divers. 2011;15(2):293–304. doi: 10.1007/s11030-010-9262-5.PubMedCrossRefGoogle Scholar
  155. Melas PA, Rogdaki M, Lennartsson A, Björk K, Qi H, Witasp A, et al. Antidepressant treatment is associated with epigenetic alterations in the promoter of P11 in a genetic model of depression. Int J Neuropsychopharmacol. 2012;15(5):669–79. doi: 10.1017/s1461145711000940.PubMedCrossRefGoogle Scholar
  156. Miao C-g, Huang C, Huang Y, Yang Y-y, He X, Zhang L, et al. MeCP2 modulates the canonical Wnt pathway activation by targeting SFRP4 in rheumatoid arthritis fibroblast-like synoviocytes in rats. Cell Signal. 2013;25(3):598–608. http://dx.doi.org/10.1016/j.cellsig.2012.11.023.
  157. Mikovits JA, Young HA, Vertino P, Issa J-PJ, Pitha PM, Turcoski-Corrales S, et al. Infection with human immunodeficiency virus type 1 upregulates DNA methyltransferase, resulting in de novo methylation of the gamma interferon (IFN-γ) promoter and subsequent downregulation of IFN-γ production. Mol Cell Biol. 1998;18(9):5166–77. doi: 10.1128/mcb.18.9.5166.PubMedPubMedCentralCrossRefGoogle Scholar
  158. Miller CA, Sweatt JD. Covalent modification of DNA regulates memory formation. Neuron. 2007;53(6):857–69. http://dx.doi.org/10.1016/j.neuron.2007.02.022.
  159. Miller CA, Gavin CF, White JA, Parrish RR, Honasoge A, Yancey CR, et al. Cortical DNA methylation maintains remote memory. Nat Neurosci. 2010;13(6):664–6. http://www.nature.com/neuro/journal/v13/n6/abs/nn.2560.html#supplementary-information.
  160. Mitchnick KA, Creighton S, O'Hara M, Kalisch BE, Winters BD. Differential contributions of de novo and maintenance DNA methyltransferases to object memory processing in the rat hippocampus and perirhinal cortex – a double dissociation. Eur J Neurosci. 2015;41(6):773–86. doi: 10.1111/ejn.12819.PubMedCrossRefGoogle Scholar
  161. Momparler RL, Derse D. Kinetics of phosphorylation of 5-aza-2′-deoxyycytidine by deoxycytidine kinase. Biochem Pharmacol. 1979;28(8):1443–4.PubMedCrossRefGoogle Scholar
  162. Nature Editorials. Suicide watch. Nature. 2014;506:131.Google Scholar
  163. Nelson ED, Kavalali ET, Monteggia LM. Activity-dependent suppression of miniature neurotransmission through the regulation of DNA methylation. J Neurosci. 2008;28(2):395–406. doi: 10.1523/jneurosci.3796-07.2008.PubMedCrossRefGoogle Scholar
  164. Nestor CE, Barrenäs F, Wang H, Lentini A, Zhang H, Bruhn S, et al. DNA methylation changes separate allergic patients from healthy controls and may reflect altered CD4+ T-cell population structure. PLoS Genet. 2014;10(1):e1004059. doi: 10.1371/journal.pgen.1004059.PubMedPubMedCentralCrossRefGoogle Scholar
  165. Noh JS, Sharma RP, Veldic M, Salvacion AA, Jia X, Chen Y, et al. DNA methyltransferase 1 regulates reelin mRNA expression in mouse primary cortical cultures. Proc Natl Acad Sci U S A. 2005;102(5):1749–54. doi: 10.1073/pnas.0409648102.PubMedPubMedCentralCrossRefGoogle Scholar
  166. Notari RE, Deyoung JL. Kinetics and mechanisms of degradation of the antileukemic agent 5-azacytidine in aqueous solutions. J Pharm Sci. 1975;64(7):1148–57. doi: 10.1002/jps.2600640704.PubMedCrossRefGoogle Scholar
  167. Nutt DJ, King LA, Phillips LD. Drug harms in the UK: a multicriteria decision analysis. Lancet. 2010;376(9752):1558–65. doi: 10.1016/s0140-6736(10)61462-6.PubMedCrossRefGoogle Scholar
  168. Oh YS, Jeong S-G, Cho G-W. Anti-senescence effects of DNA methyltransferase inhibitor RG108 in human bone marrow mesenchymal stromal cells. Biotechnol Appl Biochem. 2015a:[Epub ahead of print]. http://dx.doi.org/10.1002/bab.393. doi: 10.1002/bab.1393.
  169. Oh YS, Kim SH, Cho G-W. Functional restoration of amyotrophic lateral sclerosis patient-derived mesenchymal stromal cells through inhibition of DNA methyltransferase. Cell Mol Neurobiol. 2015b. [Epub ahead of print] http://dx.doi.org/10.1007/s10571-015-0242-2. doi: 10.1007/s10571-015-0242-2.
  170. Orta ML, Höglund A, Calderón-Montaño JM, Domínguez I, Burgos-Morón E, Visnes T, et al. The PARP inhibitor Olaparib disrupts base excision repair of 5-aza-2′-deoxycytidine lesions. Nucleic Acids Res. 2014;42(14):9108–20. doi: 10.1093/nar/gku638.PubMedPubMedCentralCrossRefGoogle Scholar
  171. Park J, Jang KL. Hepatitis C virus represses E-cadherin expression via DNA methylation to induce epithelial to mesenchymal transition in human hepatocytes. Biochem Biophys Res Commun. 2014;446(2):561–7. http://dx.doi.org/10.1016/j.bbrc.2014.03.009.
  172. Parrish RR, Albertson AJ, Buckingham SC, Hablitz JJ, Mascia KL, Haselden WD, et al. status epilepticus triggers early and late alterations in brain-derived neurotrophic factor and NMDA glutamate receptor GRIN2B DNA methylation levels in the Hippocampus. Neuroscience. 2013;0:602–19. doi: 10.1016/j.neuroscience.2013.06.029.
  173. Paschos K, Smith P, Anderton E, Middeldorp JM, White RE, Allday MJ. Epstein-Barr virus latency in B cells leads to epigenetic repression and CpG methylation of the tumour suppressor gene Bim. PLoS Pathog. 2009;5(6):e1000492. doi: 10.1371/journal.ppat.1000492.PubMedPubMedCentralCrossRefGoogle Scholar
  174. Peat JR, Reik W. Incomplete methylation reprogramming in SCNT embryos. Nat Genet. 2012;44(9):965–6.PubMedCrossRefGoogle Scholar
  175. Penter L, Maier B, Frede U, Hackner B, Carell T, Hagemeier C, et al. A rapid screening system evaluates novel inhibitors of DNA methylation and suggests F-box proteins as potential therapeutic targets for high-risk neuroblastoma. Targeted Oncol. 2015. [Epub ahead of print]. doi: 10.1007/s11523-014-0354-5.
  176. Pereira R, Benedetti R, Pérez-Rodriguez S, Nebbioso A, GarcÃia-Rodriguez J, Carafa V, et al. Indole-Derived Psammaplin A analogues as epigenetic modulators with multiple inhibitory activities. J Med Chem. 2012;55(22):9467–91.PubMedCrossRefGoogle Scholar
  177. Philibert RA, Plume JM, Gibbons FX, Brody GH, Beach SRH. The impact of recent alcohol use on genome wide DNA methylation signatures. Front Genet. 2012;3:54. doi: 10.3389/fgene.2012.00054.PubMedPubMedCentralCrossRefGoogle Scholar
  178. Ponomarev I, Wang S, Zhang L, Harris RA, Mayfield RD. Gene coexpression networks in human brain identify epigenetic modifications in alcohol dependence. J Neurosci. 2012;32(5):1884–97. doi: 10.1523/jneurosci.3136-11.2012.PubMedPubMedCentralCrossRefGoogle Scholar
  179. Raffoux E, Cras A, Recher C, Boëlle P-Y, de Labarthe A, Turlure P, et al. Phase 2 clinical trial of 5-azacitidine, valproic acid, and all-trans retinoic acid in patients with high-risk acute myeloid leukemia or myelodysplastic syndrome. Oncotarget. 2010;1(1):34–42.PubMedPubMedCentralCrossRefGoogle Scholar
  180. Rilova E, Erdmann A, Gros C, Masson V, Aussagues Y, Poughon-Cassabois V, et al. Design, synthesis and biological evaluation of 4-amino-N-(4-aminophenyl)benzamide analogues of quinoline-based SGI-1027 as inhibitors of DNA methylation. ChemMedChem. 2014;9(3):590–601. doi: 10.1002/cmdc.201300420.PubMedPubMedCentralCrossRefGoogle Scholar
  181. Ronald PC. The molecular basis of disease resistance in rice. Plant Mol Biol. 1997;35(1–2):179–86. doi: 10.1023/a:1005750811983.PubMedCrossRefGoogle Scholar
  182. Roth TL, Lubin FD, Funk AJ, Sweatt JD. Lasting epigenetic influence of early-life adversity on the BDNF gene. Biol Psychiatry. 2009;65(9):760–9. doi: 10.1016/j.biopsych.2008.11.028.PubMedPubMedCentralCrossRefGoogle Scholar
  183. Runyon RS, Cachola LM, Rajeshuni N, Hunter T, Garcia M, Ahn R, et al. Asthma discordance in twins is linked to epigenetic modifications of T cells. PLoS One. 2012;7(11):e48796. doi: 10.1371/journal.pone.0048796.PubMedPubMedCentralCrossRefGoogle Scholar
  184. Saggioro D, Forino M, Chieco-Bianchi L. Transcriptional block of HTLV-I LTR by sequence-specific methylation. Virology. 1991;182(1):68–75. http://dx.doi.org/10.1016/0042-6822(91)90649-V.
  185. Saini M, Selokar NL, Agrawal H, Singla SK, Chauhan MS, Manik RS, et al. Treatment of buffalo (Bubalus bubalis) donor cells with trichostatin A and 5-aza-2′-deoxycytidine alters their growth characteristics, gene expression and epigenetic status and improves the in vitro developmental competence, quality and epigenetic status of cloned embryos. Reprod Fertil Dev. 2014. [Epub ahead of print]. doi: 10.1071/RD14176.
  186. Sales AJ, Biojone C, Terceti MS, Guimarães FS, Gomes MVM, Joca SRL. Antidepressant-like effect induced by systemic and intra-hippocampal administration of DNA methylation inhibitors. Br J Pharmacol. 2011;164(6):1711–21. doi: 10.1111/j.1476-5381.2011.01489.x.PubMedPubMedCentralCrossRefGoogle Scholar
  187. Sano H, Kamada I, Youssefian S, Katsumi M, Wabiko H. A single treatment of rice seedlings with 5-azacytidine induces heritable dwarfism and undermethylation of genomic DNA. Mol Gen Genet. 1990;220(3):441–7. doi: 10.1007/bf00391751.CrossRefGoogle Scholar
  188. Santi DV, Norment A, Garrett CE. Covalent bond formation between a DNA-cytosine methyltransferase and DNA containing 5-azacytosine. Proc Natl Acad Sci U S A. 1984;81(22):6993–7.PubMedPubMedCentralCrossRefGoogle Scholar
  189. Satta R, Maloku E, Zhubi A, Pibiri F, Hajos M, Costa E, et al. Nicotine decreases DNA methyltransferase 1 expression and glutamic acid decarboxylase 67 promoter methylation in GABAergic interneurons. Proc Natl Acad Sci U S A. 2008;105(42):16356–61. doi: 10.1073/pnas.0808699105.PubMedPubMedCentralCrossRefGoogle Scholar
  190. Savickiene J, Treigyte G, Jonusiene V, Bruzaite R, Borutinskaite V-V, Navakauskiene R. Epigenetic changes by zebularine leading to enhanced differentiation of human promyelocytic leukemia NB4 and KG1 cells. Mol Cell Biochem. 2012;359(1–2):245–61. doi: 10.1007/s11010-011-1019-7.PubMedCrossRefGoogle Scholar
  191. Scarpa S, Fuso A, D’Anselmi F, Cavallaro RA. Presenilin 1 gene silencing by S-adenosylmethionine: a treatment for Alzheimer disease?. FEBS Lett. 2003;541(1–3):145–8. http://dx.doi.org/10.1016/S0014-5793(03)00277-1.
  192. Schiano C, Vietri MT, Grimaldi V, Picascia A, De Pascale MR, Napoli C. Epigenetic-related therapeutic challenges in cardiovascular disease. Trends Pharmacol Sci. 2015;36(4):226–35. http://dx.doi.org/10.1016/j.tips.2015.02.005.
  193. Schubert HL, Blumenthal RM, Cheng X. Many paths to methyltransfer: a chronicle of convergence. Trends Biochem Sci. 2003;28(6):329–35. doi: 10.1016/s0968-0004(03)00090-2.PubMedPubMedCentralCrossRefGoogle Scholar
  194. Shahid SK, Kharitonov SA, Wilson NM, Bush A, Barnes PJ. Increased interleukin-4 and decreased interferon-γ in exhaled breath condensate of children with asthma. Am J Respir Crit Care Med. 2002;165(9):1290–3. doi: 10.1164/rccm.2108082.PubMedCrossRefGoogle Scholar
  195. Sheikhnejad G, Brank A, Christman JK, Goddard A, Alvarez E, Ford Jr H, et al. Mechanism of inhibition of DNA (cytosine C5)-methyltransferases by oligodeoxyribonucleotides containing 5,6-dihydro-5-azacytosine. J Mol Biol. 1999;285(5):2021–34. doi: 10.1006/jmbi.1998.2426.PubMedCrossRefGoogle Scholar
  196. Siedlecki P, Boy RG, Musch T, Brueckner B, Suhai S, Lyko F, et al. Discovery of two novel, small-molecule inhibitors of DNA methylation. J Med Chem. 2006;49(2):678–83. doi: 10.1021/jm050844z.PubMedCrossRefGoogle Scholar
  197. Silverman LR, Verma A, Odchimar-Reissig R, Leblanc A, Najfeld V, Gabrilove J, et al. A phase I trial of epigenetic modulators vorinostat, in combination with azacitidine (azaC) in patients with the myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML): a study of the New York Cancer Consortium [Abstract]. Blood (ASH Annual Meeting Abstracts). 2008;112:3656.Google Scholar
  198. Silverman LR, Holland J, Sandvold ML, Myhren F, Eriksen OH, inventors; Analogues d’azacytidine et leurs utilisations. 2009.Google Scholar
  199. Singh N, Dueñas-González A, Lyko F, Medina-Franco JL. Molecular modeling and molecular dynamics studies of hydralazine with human DNA methyltransferase 1. ChemMedChem. 2009a;4(5):792–9. doi: 10.1002/cmdc.200900017.PubMedCrossRefGoogle Scholar
  200. Singh RP, Shiue K, Schomberg D, Zhou FC. Cellular epigenetic modifications of neural stem cell differentiation. Cell Transplant. 2009b;18(10):1197–211. doi: 10.3727/096368909x12483162197204.PubMedPubMedCentralCrossRefGoogle Scholar
  201. Smith AK, Conneely KN, Kilaru V, Mercer KB, Weiss TE, Bradley B, et al. Differential immune system DNA methylation and cytokine regulation in post-traumatic stress disorder. Am J Med Genet B Neuropsychiatr Genet. 2011;156(6):700–8. doi: 10.1002/ajmg.b.31212.CrossRefGoogle Scholar
  202. Song Y, Zhang C. Hydralazine inhibits human cervical cancer cell growth in vitro in association with APC demethylation and re-expression. Cancer Chemother Pharmacol. 2009;63(4):605–13. doi: 10.1007/s00280-008-0773-z.PubMedCrossRefGoogle Scholar
  203. Sorm F, Piskala A, Cihak A, Vesely J. 5-Azacytidine, a new, highly effective cancerostatic. Experientia. 1964;20(4):202–3.PubMedCrossRefGoogle Scholar
  204. Stresemann C, Brueckner B, Musch T, Stopper H, Lyko F. Functional diversity of DNA methyltransferase inhibitors in human cancer cell lines. Cancer Res. 2006;66(5):2794–800. doi: 10.1158/0008-5472.can-05-2821.PubMedCrossRefGoogle Scholar
  205. Struck A-W, Thompson ML, Wong LS, Micklefield J. S-adenosyl-methionine-dependent methyltransferases: highly versatile enzymes in biocatalysis. Biosynthesis and other biotechnological applications. Chembiochem. 2012;13(18):2642–55.PubMedCrossRefGoogle Scholar
  206. Suh N, Pezzuto JM. Strawberry fields forever? Cancer Prev Res. 2012;5(1):30–3. doi: 10.1158/1940-6207.capr-11-0534.CrossRefGoogle Scholar
  207. Sun J, Awakawa T, Noguchi H, Abe I. Induced production of mycotoxins in an endophytic fungus from the medicinal plant Datura stramonium L. Bioorg Med Chem Lett. 2012;22(20):6397–400. http://dx.doi.org/10.1016/j.bmcl.2012.08.063.
  208. Sun H, Kennedy PJ, Nestler EJ. Epigenetics of the depressed brain: role of histone acetylation and methylation. Neuropsychopharmacology. 2013;38(1):124–37.PubMedCrossRefGoogle Scholar
  209. Sutcliffe JS, Nelson DL, Zhang F, Pieretti M, Caskey CT, Saxe D, et al. DNA methylation represses FMR-1 transcription in fragile X syndrome. Hum Mol Gen. 1992;1(6):397–400. doi: 10.1093/hmg/1.6.397.PubMedCrossRefGoogle Scholar
  210. Suzuki T, Tanaka R, Hamada S, Nakagawa H, Miyata N. Design, synthesis, inhibitory activity, and binding mode study of novel DNA methyltransferase 1 inhibitors. Bioorg Med Chem Lett. 2010;20(3):1124–7.PubMedCrossRefGoogle Scholar
  211. Szyf M. Prospects for the development of epigenetic drugs for CNS conditions. Nat Rev Drug Discov. 2015;14(7):461–74. doi: 10.1038/nrd4580.PubMedCrossRefGoogle Scholar
  212. Tabolacci E, Pietrobono R, Moscato U, Oostra BA, Chiurazzi P, Neri G. Differential epigenetic modifications in the FMR1 gene of the fragile X syndrome after reactivating pharmacological treatments. Eur J Hum Genet. 2005;13(5):641–8.PubMedCrossRefGoogle Scholar
  213. Taylor SM, Jones PA. Multiple new phenotypes induced in 10T12 and 3T3 cells treated with 5-azacytidine. Cell. 1979;17(4):771–9. http://dx.doi.org/10.1016/0092-8674(79)90317-9.
  214. Thangavel J, Malik AB, Elias HK, Rajasingh S, Simpson AD, Sundivakkam PK, et al. Combinatorial therapy with acetylation and methylation modifiers attenuates lung vascular hyperpermeability in endotoxemia-induced mouse inflammatory lung injury. Am J Pathol. 2014;184(8):2237–49. doi: 10.1016/j.ajpath.2014.05.008.PubMedPubMedCentralCrossRefGoogle Scholar
  215. Thangavel J, Samanta S, Rajasingh S, Barani B, Xuan Y-T, Dawn B, et al. Epigenetic modifiers reduce inflammation and modulate macrophage phenotype during endotoxemia-induced acute lung injury. J Cell Sci. 2015;128(16):3094–105. doi: 10.1242/jcs.170258.PubMedPubMedCentralCrossRefGoogle Scholar
  216. Tolg C, Sabha N, Cortese R, Panchal T, Ahsan A, Soliman A, et al. Uropathogenic E. coli infection provokes epigenetic downregulation of CDKN2A (p16INK4A) in uroepithelial cells. Lab Invest. 2011;91(6):825–36.PubMedCrossRefGoogle Scholar
  217. Tremolizzo L, Doueiri M-S, Dong E, Grayson DR, Davis J, Pinna G, et al. Valproate corrects the schizophrenia-like epigenetic behavioral modifications induced by methionine in mice. Biol Psychiatry. 2005;57(5):500–9. http://dx.doi.org/10.1016/j.biopsych.2004.11.046.
  218. Uchida S, Hara K, Kobayashi A, Otsuki K, Yamagata H, Hobara T, et al. Epigenetic status of Gdnf in the ventral striatum determines susceptibility and adaptation to daily stressful events. Neuron. 2011;69(2):359–72. http://dx.doi.org/10.1016/j.neuron.2010.12.023.
  219. Uddin M, Aiello AE, Wildman DE, Koenen KC, Pawelec G, de los Santos R, et al. Epigenetic and immune function profiles associated with posttraumatic stress disorder. Proc Natl Acad Sci U S A. 2010;107(20):9470–5. doi: 10.1073/pnas.0910794107.PubMedPubMedCentralCrossRefGoogle Scholar
  220. Valente S, Liu Y, Schnekenburger M, Zwergel C, Cosconati S, Gros C, et al. Selective non-nucleoside inhibitors of human DNA methyltransferases active in cancer including in cancer stem cells. J Med Chem. 2014;57(3):701–13. doi: 10.1021/jm4012627.PubMedPubMedCentralCrossRefGoogle Scholar
  221. van Bemmel DM, Brank AS, Eritja R, Marquez VE, Christman JK. DNA (Cytosine-C5) methyltransferase inhibition by oligodeoxyribonucleotides containing 2-(1H)-pyrimidinone (zebularine aglycon) at the enzymatic target site. Biochem Pharmacol. 2009;78(6):633–41. doi: 10.1016/j.bcp.2009.05.017.PubMedPubMedCentralCrossRefGoogle Scholar
  222. Van Lint C, Bouchat S, Marcello A. HIV-1 transcription and latency: an update. Retrovirology. 2013;10(1):67. doi: 10.1186/1742-4690-10-67.PubMedPubMedCentralCrossRefGoogle Scholar
  223. Veldic M, Caruncho HJ, Liu WS, Davis J, Satta R, Grayson DR, et al. DNA-methyltransferase 1 mRNA is selectively overexpressed in telencephalic GABAergic interneurons of schizophrenia brains. Proc Natl Acad Sci U S A. 2004;101(1):348–53. doi: 10.1073/pnas.2637013100.PubMedCrossRefGoogle Scholar
  224. Villar-Garea A, Fraga MF, Espada J, Esteller M. Procaine is a DNA-demethylating agent with growth-inhibitory effects in human cancer cells. Cancer Res. 2003;63(16):4984–9.PubMedGoogle Scholar
  225. Vyskot B, Koukalová B, Kovařík A, Sachambula L, Reynolds D, Bezděk M. Meiotic transmission of a hypomethylated repetitive DNA family in tobacco. Theor Appl Genetics. 1995;91(4):659–64. doi: 10.1007/bf00223294.CrossRefGoogle Scholar
  226. Wang X, Chao L, Jin G, Ma G, Zang Y, Sun J. Association between CpG island methylation of the WWOX gene and its expression in breast cancers. Tumor Biol. 2009;30(1):8–14.CrossRefGoogle Scholar
  227. Wang X, Sena Filho JG, Hoover AR, King JB, Ellis TK, Powell DR, et al. Chemical epigenetics alters the secondary metabolite composition of guttate excreted by an Atlantic-forest-soil-derived Penicillium citreonigrum. J Nat Prod. 2010a;73(5):942–8. doi: 10.1021/np100142h.
  228. Wang X, Zhu H, Snieder H, Su S, Munn D, Harshfield G, et al. Obesity related methylation changes in DNA of peripheral blood leukocytes. BMC Med. 2010b;8:87. doi: 10.1186/1741-7015-8-87.
  229. Wang L, Zhang Y, Li R, Chen Y, Pan X, Li G, et al. 5-aza-2′-deoxycytidine enhances the radiosensitivity of breast cancer cells. Cancer Biother Radiopharm. 2013a;28(1):34–44. doi: 10.1089/cbr.2012.1170.PubMedCrossRefGoogle Scholar
  230. Wang Y, Wang X, Li R, Yang Z-F, Wang Y-Z, Gong X-L, et al. A DNA methyltransferase inhibitor, 5-Aza-2′-deoxycytidine, exacerbates neurotoxicity and upregulates Parkinson’s disease-related genes in dopaminergic neurons. CNS Neurosci Ther. 2013b;19(3):183–90. doi: 10.1111/cns.12059.PubMedCrossRefGoogle Scholar
  231. Warnault V, Darcq E, Levine A, Barak S, Ron D. Chromatin remodeling [mdash] a novel strategy to control excessive alcohol drinking. Transl Psychiatry. 2013;3:e231. doi: 10.1038/tp.2013.4.PubMedPubMedCentralCrossRefGoogle Scholar
  232. Watanabe A, Yamada Y, Yamanaka S. Epigenetic regulation in pluripotent stem cells: a key to breaking the epigenetic barrier. Philos Trans R Soc B Biol Sci. 2013;368(1609):20120292. doi: 10.1098/rstb.2012.0292.CrossRefGoogle Scholar
  233. Watson CJ, Collier P, Tea I, Neary R, Watson JA, Robinson C, et al. Hypoxia-induced epigenetic modifications are associated with cardiac tissue fibrosis and the development of a myofibroblast-like phenotype. Hum Mol Gen. 2014;23(8):2176–88. doi: 10.1093/hmg/ddt614.PubMedCrossRefGoogle Scholar
  234. White GP, Hollams EM, Yerkovich ST, Bosco A, Holt BJ, Bassami MR, et al. CpG methylation patterns in the IFNγ promoter in naive T cells: Variations during Th1 and Th2 differentiation and between atopics and non-atopics. Pediatr Allergy Immunol. 2006;17(8):557–64. doi: 10.1111/j.1399-3038.2006.00465.x.PubMedCrossRefGoogle Scholar
  235. Winders BR, Schwartz RH, Bruniquel D. A distinct region of the murine IFN-γ promoter is hypomethylated from early T cell development through mature naive and Th1 cell differentiation, but is hypermethylated in Th2 cells. J Immunol. 2004;173(12):7377–84. doi: 10.4049/jimmunol.173.12.7377.PubMedCrossRefGoogle Scholar
  236. Xiang L, Dong W, Wang R, Wei J, Qiu G, Cen J, et al. All-trans retinoic acid enhances the effect of 5-aza-2′-deoxycytidine on p16INK4a demethylation, and the two drugs synergistically activate retinoic acid receptor β gene expression in the human erythroleukemia K562 cell line. Oncol Lett. 2014;8(1):117–22. doi: 10.3892/ol.2014.2133.PubMedPubMedCentralGoogle Scholar
  237. Xiao D, Dasgupta C, Chen M, Zhang K, Buchholz J, Xu Z, et al. Inhibition of DNA methylation reverses norepinephrine-induced cardiac hypertrophy in rats. Cardiovasc Res. 2014;101(3):373–82. doi: 10.1093/cvr/cvt264.PubMedCrossRefGoogle Scholar
  238. Xu W, Li Z, Yu B, He X, Shi J, Zhou R, et al. Effects of DNMT1 and HDAC inhibitors on gene-specific methylation reprogramming during porcine somatic cell nuclear transfer. PLoS One. 2013;8(5):e64705. doi: 10.1371/journal.pone.0064705.PubMedPubMedCentralCrossRefGoogle Scholar
  239. Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med. 2002;8(11):1288–95. http://www.nature.com/nm/journal/v8/n11/suppinfo/nm788_S1.html.
  240. Yang H, Hoshino K, Sanchez-Gonzalez B, Kantarjian H, Garcia-Manero G. Antileukemia activity of the combination of 5-aza-2′-deoxycytidine with valproic acid. Leukemia Res. 2005;29(7):739–48. http://dx.doi.org/10.1016/j.leukres.2004.11.022.
  241. Yang D, Torres CM, Bardhan K, Zimmerman M, McGaha TL, Liu K. Decitabine and vorinostat cooperate to sensitize colon carcinoma cells to Fas ligand-induced apoptosis In vitro and tumor suppression in vivo. J Immunol. 2012;188(9):4441–9. doi: 10.4049/jimmunol.1103035.PubMedPubMedCentralCrossRefGoogle Scholar
  242. Yang P-M, Lin Y-T, Shun C-T, Lin S-H, Wei T-T, Chuang S-H, et al. Zebularine inhibits tumorigenesis and stemness of colorectal cancer via p53-dependent endoplasmic reticulum stress. Sci Rep. 2013;3:3219. doi: 10.1038/srep03219, http://www.nature.com/articles/srep03219#supplementary-information.
  243. Yie Y, Zhao S, Tang Q, Zheng F, Wu J, Yang L, et al. Ursolic acid inhibited growth of hepatocellular carcinoma HepG2 cells through AMPKalpha-mediated reduction of DNA methyltransferase 1. Mol Cell Biochem. 2015;402(1–2):63–74. doi: 10.1007/s11010-014-2314-x.PubMedCrossRefGoogle Scholar
  244. Yin L, Chung WO. Epigenetic regulation of human β-defensin 2 and CC chemokine ligand 20 expression in gingival epithelial cells in response to oral bacteria. Mucosal Immunol. 2011;4(4):409–19. doi: 10.1038/mi.2010.83.PubMedPubMedCentralCrossRefGoogle Scholar
  245. Yin L-J, Zhang Y, Lv P-P, He W-H, Wu Y-T, Liu A-X, et al. Insufficient maintenance DNA methylation is associated with abnormal embryonic development. BMC Med. 2012;10(1):26. doi: 10.1186/1741-7015-10-26.PubMedPubMedCentralCrossRefGoogle Scholar
  246. Yogelzang NJ, Herndon 2nd JE, Cirrincione C, Harmon DC, Antman KH, Corson JM, et al. Dihydro-5-azacytidine in malignant mesothelioma. A phase II trial demonstrating activity accompanied by cardiac toxicity. Cancer and Leukemia Group B. Cancer. 1997;79(11):2237–42.PubMedCrossRefGoogle Scholar
  247. Yoo CB, Jeong S, Egger G, Liang G, Phiasivongsa P, Tang C, et al. Delivery of 5-aza-2′-deoxycytidine to cells using oligodeoxynucleotides. Cancer Res. 2007;67(13):6400–8. doi: 10.1158/0008-5472.CAN-07-0251.PubMedCrossRefGoogle Scholar
  248. Yoo J, Choi S, Medina-Franco JL. Molecular modeling studies of the novel inhibitors of DNA methyltransferases SGI-1027 and CBC12: implications for the mechanism of inhibition of DNMTs. PLoS One. 2013;8(4):e62152. doi: 10.1371/journal.pone.0062152.PubMedPubMedCentralCrossRefGoogle Scholar
  249. Yu Q, Zhou B, Zhang Y, Nguyen ET, Du J, Glosson NL, et al. DNA methyltransferase 3a limits the expression of interleukin-13 in T helper 2 cells and allergic airway inflammation. Proc Natl Acad Sci U S A. 2012;109(2):541–6. doi: 10.1073/pnas.1103803109.PubMedCrossRefGoogle Scholar
  250. Zaina S, Heyn H, Carmona FJ, Varol N, Sayols S, Condom E, et al. DNA methylation Map of human atherosclerosis. Circ Cardiovasc Genet. 2014;7(5):692–700. doi: 10.1161/circgenetics.113.000441.PubMedCrossRefGoogle Scholar
  251. Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SWL, Chen H, et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis. Cell. 2006;126(6):1189–201. http://dx.doi.org/10.1016/j.cell.2006.08.003.
  252. Zhao Q, Fan J, Hong W, Li L, Wu M. Inhibition of cancer cell proliferation by 5-fluoro-2′-deoxycytidine, a DNA methylation inhibitor, through activation of DNA damage response pathway. Springerplus. 2012;1(1):65.PubMedPubMedCentralCrossRefGoogle Scholar
  253. Zhao S, Wu J, Zheng F, Tang Q, Yang L, Li L, et al. β-elemene inhibited expression of DNA methyltransferase 1 through activation of ERK1/2 and AMPKalpha signalling pathways in human lung cancer cells: the role of Sp1. J Cell Mol Med. 2015;19(3):630–41. doi: 10.1111/jcmm.12476.PubMedPubMedCentralCrossRefGoogle Scholar
  254. Zhubi A, Veldic M, Puri NV, Kadriu B, Caruncho H, Loza I, et al. An upregulation of DNA-methyltransferase 1 and 3a expressed in telencephalic GABAergic neurons of schizophrenia patients is also detected in peripheral blood lymphocytes. Schizophr Res. 2009;111(1–3):115–22. http://dx.doi.org/10.1016/j.schres.2009.03.020.
  255. Zilberman D, Gehring M, Tran RK, Ballinger T, Henikoff S. Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet. 2007;39(1):61–9. http://www.nature.com/ng/journal/v39/n1/suppinfo/ng1929_S1.html.
  256. Zovkic IB, Sweatt JD. Epigenetic mechanisms in learned fear: implications for PTSD. Neuropsychopharmacol Rev. 2013;38(1):77–93.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Marie Lopez
    • 1
  • Ludovic Halby
    • 1
  • Paola B. Arimondo
    • 1
  1. 1.CNRS FRE3600 Epigenetic Targeting of Cancer ETaC – 3Toulouse Cedex 1France

Personalised recommendations