Advertisement

Proteins That Read DNA Methylation

  • Takashi Shimbo
  • Paul A. WadeEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 945)

Abstract

Covalent modification of DNA via deposition of a methyl group at the 5′ position on cytosine residues alters the chemical groups available for interaction in the major groove of DNA. The information content inherent in this modification alters the affinity and the specificity of DNA binding; some proteins favor interaction with methylated DNA, and others disfavor it. Molecular recognition of cytosine methylation by proteins often initiates sequential regulatory events which impact gene expression and chromatin structure. The known methyl-DNA-binding proteins have unique domains responsible for DNA methylation recognition: (1) the methyl-CpG-binding domain (MBD), (2) the C2H2 zinc finger domain, and (3) the SET- and RING finger-associated (SRA) domain. Structural analyses have revealed that each domain has a characteristic methylated DNA-binding pattern, and this difference in the recognition mechanism renders the DNA methylation mark able to transmit complicated biological information. Recent genetic and genomic studies have revealed novel functions of methyl-DNA-binding proteins. These emerging data have also provided glimpses into how methyl-DNA-binding proteins possess unique features and, presumably, functions. In this review, we summarize structural and biochemical analyses elucidating the mechanism for recognition of DNA methylation and correlate this information with emerging genomic and functional data.

Keywords

Embryonic Stem Cell NuRD Complex P120 Catenin Uterine Serous Carcinoma C2H2 Zinc Finger Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors gratefully acknowledge the members of the Wade laboratory for many useful discussions throughout the completion of this work and A. Jeltsch for providing the structural views shown in Figs. 2 and 3. This work was supported by the Intramural Research Program of the National Institute of Environmental Health Sciences, NIH (ES101965 to P.A.W.).

References

  1. Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet. 1999;23(2):185–8.PubMedCrossRefGoogle Scholar
  2. Arita K, Ariyoshi M, Tochio H, Nakamura Y, Shirakawa M. Recognition of hemi-methylated DNA by the SRA protein UHRF1 by a base-flipping mechanism. Nature. 2008;455(7214):818–21.PubMedCrossRefGoogle Scholar
  3. Avvakumov GV, Walker JR, Xue S, Li Y, Duan S, Bronner C, et al. Structural basis for recognition of hemi-methylated DNA by the SRA domain of human UHRF1. Nature. 2008;455(7214):822–5.PubMedCrossRefGoogle Scholar
  4. Baubec T, Ivánek R, Lienert F, Schübeler D. Methylation-dependent and-independent genomic targeting principles of the MBD protein family. Cell. 2013;153(2):480–92.PubMedCrossRefGoogle Scholar
  5. Baymaz H, Fournier A, Laget S, Ji Z, Jansen PW, Smits AH, et al. MBD5 and MBD6 interact with the human PR-DUB complex through their methyl-CpG-binding domain. Proteomics. 2014;14(19):2179–89.PubMedCrossRefGoogle Scholar
  6. Bertone P, Hendrich B, Silva JC. Mbd3 and deterministic reprogramming. bioRxiv. 2015:013904.Google Scholar
  7. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16(1):6–21.PubMedCrossRefGoogle Scholar
  8. Bostick M, Kim JK, Estève P-O, Clark A, Pradhan S, Jacobsen SE. UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science. 2007;317(5845):1760–4.PubMedCrossRefGoogle Scholar
  9. Buck-Koehntop BA, Stanfield RL, Ekiert DC, Martinez-Yamout MA, Dyson HJ, Wilson IA, et al. Molecular basis for recognition of methylated and specific DNA sequences by the zinc finger protein Kaiso. Proc Natl Acad Sci. 2012;109(38):15229–34.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Chen RZ, Akbarian S, Tudor M, Jaenisch R. Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat Genet. 2001;27(3):327–31.PubMedCrossRefGoogle Scholar
  11. Chen X, Xu H, Yuan P, Fang F, Huss M, Vega VB, et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell. 2008;133(6):1106–17.PubMedCrossRefGoogle Scholar
  12. Clouaire T, de las Heras JI, Merusi C, Stancheva I. Recruitment of MBD1 to target genes requires sequence-specific interaction of the MBD domain with methylated DNA. Nucleic Acids Res. 2010;38(14):4620–34.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Cramer JM, Scarsdale JN, Walavalkar NM, Buchwald WA, Ginder GD, Williams DC. Probing the dynamic distribution of bound states for methylcytosine-binding domains on DNA. J Biol Chem. 2014;289(3):1294–302.PubMedCrossRefGoogle Scholar
  14. Cukier HN, Lee JM, Ma D, Young JI, Mayo V, Butler BL, et al. The expanding role of MBD genes in autism: identification of a MECP2 duplication and novel alterations in MBD5, MBD6, and SETDB1. Autism Res. 2012;5(6):385–97.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Daniel JM, Reynolds AB. The catenin p120(ctn) interacts with Kaiso, a novel BTB/POZ domain zinc finger transcription factor. Mol Cell Biol. 1999;19(5):3614–23.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Daniel JM, Spring CM, Crawford HC, Reynolds AB, Baig A. The p120ctn-binding partner Kaiso is a bi-modal DNA-binding protein that recognizes both a sequence-specific consensus and methylated CpG dinucleotides. Nucleic Acids Res. 2002;30(13):2911–9.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Domcke S, Bardet AF, Ginno PA, Hartl D, Burger L, Schübeler D. Competition between DNA methylation and transcription factors determines binding of NRF1. Nature. 2015;528:575–79.Google Scholar
  18. dos Santos RL, Tosti L, Radzisheuskaya A, Caballero IM, Kaji K, Hendrich B, et al. MBD3/NuRD facilitates induction of pluripotency in a context-dependent manner. Cell Stem Cell. 2014;15(1):102–10.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Du Y, Liu B, Guo F, Xu G, Ding Y, Liu Y, et al. The essential role of Mbd5 in the regulation of somatic growth and glucose homeostasis in mice. PLoS One. 2012;7(10):e47358.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Feng Q, Zhang Y. The MeCP1 complex represses transcription through preferential binding, remodeling, and deacetylating methylated nucleosomes. Genes Dev. 2001;15(7):827–32.PubMedPubMedCentralGoogle Scholar
  21. Fraga MF, Ballestar E, Montoya G, Taysavang P, Wade PA, Esteller M. The affinity of different MBD proteins for a specific methylated locus depends on their intrinsic binding properties. Nucleic Acids Res. 2003;31(6):1765–74.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Fujita N, Takebayashi S-i, Okumura K, Kudo S, Chiba T, Saya H, et al. Methylation-mediated transcriptional silencing in euchromatin by methyl-CpG binding protein MBD1 isoforms. Mol Cell Biol. 1999;19(9):6415–26.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Fujita N, Shimotake N, Ohki I, Chiba T, Saya H, Shirakawa M, et al. Mechanism of transcriptional regulation by methyl-CpG binding protein MBD1. Mol Cell Biol. 2000;20(14):5107–18.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Gabel HW, Kinde B, Stroud H, Gilbert CS, Harmin DA, Kastan NR, et al. Disruption of DNA-methylation-dependent long gene repression in Rett syndrome. Nature. 2015;522(7554):89–93.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Gelato KA, Tauber M, Ong MS, Winter S, Hiragami-Hamada K, Sindlinger J, et al. Accessibility of different histone H3-binding domains of UHRF1 is allosterically regulated by phosphatidylinositol 5-phosphate. Mol Cell. 2014;54(6):905–19.PubMedCrossRefGoogle Scholar
  26. Georgel PT, Horowitz-Scherer RA, Adkins N, Woodcock CL, Wade PA, Hansen JC. Chromatin compaction by human MeCP2 assembly of novel secondary chromatin structures in the absence of DNA methylation. J Biol Chem. 2003;278(34):32181–8.PubMedCrossRefGoogle Scholar
  27. Ghosh RP, Horowitz-Scherer RA, Nikitina T, Shlyakhtenko LS, Woodcock CL. MeCP2 binds cooperatively to its substrate and competes with histone H1 for chromatin binding sites. Mol Cell Biol. 2010;30(19):4656–70.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Gnanapragasam MN, Scarsdale JN, Amaya ML, Webb HD, Desai MA, Walavalkar NM, et al. p66α–MBD2 coiled-coil interaction and recruitment of Mi-2 are critical for globin gene silencing by the MBD2–NuRD complex. Proc Natl Acad Sci. 2011;108(18):7487–92.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Guy J, Hendrich B, Holmes M, Martin JE, Bird A. A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat Genet. 2001;27(3):322–6.PubMedCrossRefGoogle Scholar
  30. Hashimoto H, Horton JR, Zhang X, Bostick M, Jacobsen SE, Cheng X. The SRA domain of UHRF1 flips 5-methylcytosine out of the DNA helix. Nature. 2008;455(7214):826–9.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Hashimoto H, Liu Y, Upadhyay AK, Chang Y, Howerton SB, Vertino PM, et al. Recognition and potential mechanisms for replication and erasure of cytosine hydroxymethylation. Nucleic Acids Res. 2012a;40(11):4841–9.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Hashimoto H, Zhang X, Cheng X. Excision of thymine and 5-hydroxymethyluracil by the MBD4 DNA glycosylase domain: structural basis and implications for active DNA demethylation. Nucleic Acids Res. 2012b;40(17):8276–84.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Hashimoto H, Olanrewaju YO, Zheng Y, Wilson GG, Zhang X, Cheng X. Wilms tumor protein recognizes 5-carboxylcytosine within a specific DNA sequence. Genes Dev. 2014;28(20):2304–13.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Hendrich B, Bird A. Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol Cell Biol. 1998;18(11):6538–47.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Hendrich B, Tweedie S. The methyl-CpG binding domain and the evolving role of DNA methylation in animals. Trends Genet. 2003;19(5):269–77.PubMedCrossRefGoogle Scholar
  36. Hendrich B, Hardeland U, Ng H-H, Jiricny J, Bird A. The thymine glycosylase MBD4 can bind to the product of deamination at methylated CpG sites. Nature. 1999;401(6750):301–4.PubMedCrossRefGoogle Scholar
  37. Hendrich B, Guy J, Ramsahoye B, Wilson VA, Bird A. Closely related proteins MBD2 and MBD3 play distinctive but interacting roles in mouse development. Genes Dev. 2001;15(6):710–23.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Ho KL, McNae IW, Schmiedeberg L, Klose RJ, Bird AP, Walkinshaw MD. MeCP2 binding to DNA depends upon hydration at methyl-CpG. Mol Cell. 2008;29(4):525–31.PubMedCrossRefGoogle Scholar
  39. Hopfner R, Mousli M, Jeltsch J-M, Voulgaris A, Lutz Y, Marin C, et al. ICBP90, a novel human CCAAT binding protein, involved in the regulation of topoisomerase IIα expression. Cancer Res. 2000;60(1):121–8.PubMedGoogle Scholar
  40. Hu L, Li Z, Wang P, Lin Y, Xu Y. Crystal structure of PHD domain of UHRF1 and insights into recognition of unmodified histone H3 arginine residue 2. Cell Res. 2011;21(9):1374–8.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Hu S, Wan J, Su Y, Song Q, Zeng Y, Nguyen HN, et al. DNA methylation presents distinct binding sites for human transcription factors. Elife. 2013;2:e00726.PubMedPubMedCentralGoogle Scholar
  42. Jørgensen HF, Ben-Porath I, Bird AP. Mbd1 is recruited to both methylated and nonmethylated CpGs via distinct DNA binding domains. Mol Cell Biol. 2004;24(8):3387–95.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Kaji K, Caballero IM, MacLeod R, Nichols J, Wilson VA, Hendrich B. The NuRD component Mbd3 is required for pluripotency of embryonic stem cells. Nat Cell Biol. 2006;8(3):285–92.PubMedCrossRefGoogle Scholar
  44. Katz JP, Perreault N, Goldstein BG, Lee CS, Labosky PA, Yang VW, et al. The zinc-finger transcription factor Klf4 is required for terminal differentiation of goblet cells in the colon. Development. 2002;129(11):2619–28.PubMedPubMedCentralGoogle Scholar
  45. Klose RJ, Sarraf SA, Schmiedeberg L, McDermott SM, Stancheva I, Bird AP. DNA binding selectivity of MeCP2 due to a requirement for A/T sequences adjacent to methyl-CpG. Mol Cell. 2005;19(5):667–78.PubMedCrossRefGoogle Scholar
  46. Koh D-I, Han D, Ryu H, Choi W-I, Jeon B-N, Kim M-K, et al. KAISO, a critical regulator of p53-mediated transcription of CDKN1A and apoptotic genes. Proc Natl Acad Sci. 2014;111(42):15078–83.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Koh D-I, An H, Kim M-Y, Jeon B-N, Choi S-H, Hur SS, et al. Transcriptional activation of APAF1 by KAISO (ZBTB33) and p53 is attenuated by RelA/p65. Biochim Biophys Acta. 2015;1849(9):1170–8.PubMedCrossRefGoogle Scholar
  48. Kohli RM, Zhang Y. TET enzymes, TDG and the dynamics of DNA demethylation. Nature. 2013;502(7472):472–9.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Kriaucionis S, Tahiliani M. Expanding the epigenetic landscape: novel modifications of cytosine in genomic DNA. Cold Spring Harb Perspect Biol. 2014;6(10):a018630.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Laget S, Joulie M, Le Masson F, Sasai N, Christians E, Pradhan S, et al. The human proteins MBD5 and MBD6 associate with heterochromatin but they do not bind methylated DNA. PLoS One. 2010;5(8):e11982.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Le Guezennec X, Vermeulen M, Brinkman AB, Hoeijmakers WA, Cohen A, Lasonder E, et al. MBD2/NuRD and MBD3/NuRD, two distinct complexes with different biochemical and functional properties. Mol Cell Biol. 2006;26(3):843–51.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Lewis JD, Meehan RR, Henzel WJ, Maurer-Fogy I, Jeppesen P, Klein F, et al. Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell. 1992;69(6):905–14.PubMedCrossRefGoogle Scholar
  53. Li X, Ito M, Zhou F, Youngson N, Zuo X, Leder P, et al. A maternal-zygotic effect gene, Zfp57, maintains both maternal and paternal imprints. Dev Cell. 2008;15(4):547–57.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Liu Y, Toh H, Sasaki H, Zhang X, Cheng X. An atomic model of Zfp57 recognition of CpG methylation within a specific DNA sequence. Genes Dev. 2012;26(21):2374–9.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Liu X, Gao Q, Li P, Zhao Q, Zhang J, Li J, et al. UHRF1 targets DNMT1 for DNA methylation through cooperative binding of hemi-methylated DNA and methylated H3K9. Nat Commun. 2013a;4:1563.PubMedCrossRefGoogle Scholar
  56. Liu Y, Zhang X, Blumenthal RM, Cheng X. A common mode of recognition for methylated CpG. Trends Biochem Sci. 2013b;38(4):177–83.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Liu Y, Olanrewaju YO, Zheng Y, Hashimoto H, Blumenthal RM, Zhang X, et al. Structural basis for Klf4 recognition of methylated DNA. Nucleic Acids Res. 2014;42(8):4859–67.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Lu Y, Loh Y-H, Li H, Cesana M, Ficarro SB, Parikh JR, et al. Alternative splicing of MBD2 supports self-renewal in human pluripotent stem cells. Cell Stem Cell. 2014;15(1):92–101.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Luo M, Ling T, Xie W, Sun H, Zhou Y, Zhu Q, et al. NuRD blocks reprogramming of mouse somatic cells into pluripotent stem cells. Stem Cells. 2013;31(7):1278–86.PubMedCrossRefGoogle Scholar
  60. Mackay DJ, Callaway JL, Marks SM, White HE, Acerini CL, Boonen SE, et al. Hypomethylation of multiple imprinted loci in individuals with transient neonatal diabetes is associated with mutations in ZFP57. Nat Genet. 2008;40(8):949–51.PubMedCrossRefGoogle Scholar
  61. Meehan RR, Lewis JD, McKay S, Kleiner EL, Bird AP. Identification of a mammalian protein that binds specifically to DNA containing methylated CpGs. Cell. 1989;58(3):499–507.PubMedCrossRefGoogle Scholar
  62. Meehan R, Lewis JD, Bird AP. Characterization of MeCP2, a vertebrate DNA binding protein with affinity for methylated DNA. Nucleic Acids Res. 1992;20(19):5085–92.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Millar CB, Guy J, Sansom OJ, Selfridge J, MacDougall E, Hendrich B, et al. Enhanced CpG mutability and tumorigenesis in MBD4-deficient mice. Science. 2002;297(5580):403–5.PubMedCrossRefGoogle Scholar
  64. Mori T, Li Y, Hata H, Ono K, Kochi H. NIRF, a novel RING finger protein, is involved in cell-cycle regulation. Biochem Biophys Res Commun. 2002;296(3):530–6.PubMedCrossRefGoogle Scholar
  65. Mudbhary R, Hoshida Y, Chernyavskaya Y, Jacob V, Villanueva A, Fiel MI, et al. UHRF1 overexpression drives DNA hypomethylation and hepatocellular carcinoma. Cancer Cell. 2014;25(2):196–209.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Nady N, Lemak A, Walker JR, Avvakumov GV, Kareta MS, Achour M, et al. Recognition of multivalent histone states associated with heterochromatin by UHRF1 protein. J Biol Chem. 2011;286(27):24300–11.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Nan X, Meehan RR, Bird A. Dissection of the methyl-CpG binding domain from the chromosomal protein MeCP2. Nucleic Acids Res. 1993;21(21):4886–92.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Ng H-H, Zhang Y, Hendrich B, Johnson CA, Turner BM, Erdjument-Bromage H, et al. MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nat Genet. 1999;23(1):58–61.PubMedCrossRefGoogle Scholar
  69. Ohki I, Shimotake N, Fujita N, Jee J-G, Ikegami T, Nakao M, et al. Solution structure of the methyl-CpG binding domain of human MBD1 in complex with methylated DNA. Cell. 2001;105(4):487–97.PubMedCrossRefGoogle Scholar
  70. Otani J, Arita K, Kato T, Kinoshita M, Kimura H, Suetake I, et al. Structural basis of the versatile DNA recognition ability of the methyl-CpG binding domain of methyl-CpG binding domain protein 4. J Biol Chem. 2013;288(9):6351–62.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Pavletich NP, Pabo CO. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science. 1991;252(5007):809–17.PubMedCrossRefGoogle Scholar
  72. Pichler G, Wolf P, Schmidt CS, Meilinger D, Schneider K, Frauer C, et al. Cooperative DNA and histone binding by Uhrf2 links the two major repressive epigenetic pathways. J Cell Biochem. 2011;112(9):2585–93.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Prokhortchouk A, Hendrich B, Jørgensen H, Ruzov A, Wilm M, Georgiev G, et al. The p120 catenin partner Kaiso is a DNA methylation-dependent transcriptional repressor. Genes Dev. 2001;15(13):1613–8.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Prokhortchouk A, Sansom O, Selfridge J, Caballero IM, Salozhin S, Aithozhina D, et al. Kaiso-deficient mice show resistance to intestinal cancer. Mol Cell Biol. 2006;26(1):199–208.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Quenneville S, Verde G, Corsinotti A, Kapopoulou A, Jakobsson J, Offner S, et al. In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions. Mol Cell. 2011;44(3):361–72.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Rais Y, Zviran A, Geula S, Gafni O, Chomsky E, Viukov S, et al. Deterministic direct reprogramming of somatic cells to pluripotency. Nature. 2013;502(7469):65–70.PubMedCrossRefGoogle Scholar
  77. Rajakumara E, Wang Z, Ma H, Hu L, Chen H, Lin Y, et al. PHD finger recognition of unmodified histone H3R2 links UHRF1 to regulation of euchromatic gene expression. Mol Cell. 2011;43(2):275–84.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Riccio A, Aaltonen LA, Godwin AK, Loukola A, Percesepe A, Salovaara R, et al. The DNA repair gene MBD4 (MED1) is mutated in human carcinomas with microsatellite instability. Nat Genet. 1999;23(3):266–8.PubMedCrossRefGoogle Scholar
  79. Rothbart SB, Krajewski K, Nady N, Tempel W, Xue S, Badeaux AI, et al. Association of UHRF1 with methylated H3K9 directs the maintenance of DNA methylation. Nat Struct Mol Biol. 2012;19(11):1155–60.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Saito M, Ishikawa F. The mCpG-binding domain of human MBD3 does not bind to mCpG but interacts with NuRD/Mi2 components HDAC1 and MTA2. J Biol Chem. 2002;277(38):35434–9.PubMedCrossRefGoogle Scholar
  81. Scarsdale JN, Webb HD, Ginder GD, Williams DC. Solution structure and dynamic analysis of chicken MBD2 methyl binding domain bound to a target-methylated DNA sequence. Nucleic Acids Res. 2011;39(15):6741–52.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Schübeler D. Function and information content of DNA methylation. Nature. 2015;517(7534):321–6.PubMedCrossRefGoogle Scholar
  83. Segre JA, Bauer C, Fuchs E. Klf4 is a transcription factor required for establishing the barrier function of the skin. Nat Genet. 1999;22(4):356–60.PubMedCrossRefGoogle Scholar
  84. Sharif J, Muto M, Takebayashi S-i, Suetake I, Iwamatsu A, Endo TA, et al. The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature. 2007;450(7171):908–12.PubMedCrossRefGoogle Scholar
  85. Shields JM, Yang VW. Identification of the DNA sequence that interacts with the gut-enriched Krüppel-like factor. Nucleic Acids Res. 1998;26(3):796–802.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Skene PJ, Illingworth RS, Webb S, Kerr AR, James KD, Turner DJ, et al. Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state. Mol Cell. 2010;37(4):457–68.PubMedPubMedCentralCrossRefGoogle Scholar
  87. Song J, Teplova M, Ishibe-Murakami S, Patel DJ. Structure-based mechanistic insights into DNMT1-mediated maintenance DNA methylation. Science. 2012;335(6069):709–12.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Soubry A, Staes K, Parthoens E, Noppen S, Stove C, Bogaert P, et al. The transcriptional repressor Kaiso localizes at the mitotic spindle and is a constituent of the pericentriolar material. PLoS One. 2010;5(2):e9203.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Stoll R, Lee BM, Debler EW, Laity JH, Wilson IA, Dyson HJ, et al. Structure of the Wilms tumor suppressor protein zinc finger domain bound to DNA. J Mol Biol. 2007;372(5):1227–45.PubMedCrossRefGoogle Scholar
  90. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324(5929):930–5.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.PubMedCrossRefGoogle Scholar
  92. Talkowski ME, Rosenfeld JA, Blumenthal I, Pillalamarri V, Chiang C, Heilbut A, et al. Sequencing chromosomal abnormalities reveals neurodevelopmental loci that confer risk across diagnostic boundaries. Cell. 2012;149(3):525–37.PubMedPubMedCentralCrossRefGoogle Scholar
  93. Tate PH, Bird AP. Effects of DNA methylation on DNA-binding proteins and gene expression. Curr Opin Genet Dev. 1993;3(2):226–31.PubMedCrossRefGoogle Scholar
  94. von Kries JP, Buhrmester H, Strätling WH. A matrix/scaffold attachment region binding protein: identification, purification, and mode of binding. Cell. 1991;64(1):123–35.CrossRefGoogle Scholar
  95. Wade PA, Gegonne A, Jones PL, Ballestar E, Aubry F, Wolffe AP. Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation. Nat Genet. 1999;23(1):62–6.PubMedCrossRefGoogle Scholar
  96. Walavalkar NM, Cramer JM, Buchwald WA, Scarsdale JN, Williams DC. Solution structure and intramolecular exchange of methyl-cytosine binding domain protein 4 (MBD4) on DNA suggests a mechanism to scan for mCpG/TpG mismatches. Nucleic Acids Res. 2014;42(17):11218–32.PubMedPubMedCentralCrossRefGoogle Scholar
  97. Weitzel JM, Buhrmester H, Strätling WH. Chicken MAR-binding protein ARBP is homologous to rat methyl-CpG-binding protein MeCP2. Mol Cell Biol. 1997;17(9):5656–66.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Wong E, Yang K, Kuraguchi M, Werling U, Avdievich E, Fan K, et al. Mbd4 inactivation increases C → T transition mutations and promotes gastrointestinal tumor formation. Proc Natl Acad Sci. 2002;99(23):14937–42.PubMedPubMedCentralCrossRefGoogle Scholar
  99. Yildirim O, Li R, Hung J-H, Chen PB, Dong X, Ee L-S, et al. Mbd3/NURD complex regulates expression of 5-hydroxymethylcytosine marked genes in embryonic stem cells. Cell. 2011;147(7):1498–510.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Yoon H-G, Chan DW, Reynolds AB, Qin J, Wong J. N-CoR mediates DNA methylation-dependent repression through a methyl CpG binding protein Kaiso. Mol Cell. 2003;12(3):723–34.PubMedCrossRefGoogle Scholar
  101. Zhang Y, Ng H-H, Erdjument-Bromage H, Tempst P, Bird A, Reinberg D. Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev. 1999;13(15):1924–35.PubMedPubMedCentralCrossRefGoogle Scholar
  102. Zhang J, Gao Q, Li P, Liu X, Jia Y, Wu W, et al. S phase-dependent interaction with DNMT1 dictates the role of UHRF1 but not UHRF2 in DNA methylation maintenance. Cell Res. 2011;21(12):1723–39.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Zhao S, Choi M, Overton JD, Bellone S, Roque DM, Cocco E, et al. Landscape of somatic single-nucleotide and copy-number mutations in uterine serous carcinoma. Proc Natl Acad Sci. 2013;110(8):2916–21.PubMedPubMedCentralCrossRefGoogle Scholar
  104. Zhou T, Xiong J, Wang M, Yang N, Wong J, Zhu B, et al. Structural basis for hydroxymethylcytosine recognition by the SRA domain of UHRF2. Mol Cell. 2014;54(5):879–86.PubMedCrossRefGoogle Scholar
  105. Zuo X, Sheng J, Lau H-T, McDonald CM, Andrade M, Cullen DE, et al. Zinc finger protein ZFP57 requires its co-factor to recruit DNA methyltransferases and maintains DNA methylation imprint in embryonic stem cells via its transcriptional repression domain. J Biol Chem. 2012;287(3):2107–18.PubMedCrossRefGoogle Scholar
  106. Zviran A, Rais Y, Mor N, Novershtern N, Hanna JH. Mbd3/NuRD is a key inhibitory module during the induction and maintenance of Naïve Pluripotency. bioRxiv. 2015:013961.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Epigenetics and Stem Cell Biology LaboratoryNational Institute of Environmental Health SciencesDurhamUSA

Personalised recommendations