N6-Methyladenine: A Conserved and Dynamic DNA Mark

  • Zach Klapholz O’Brown
  • Eric Lieberman GreerEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 945)


Chromatin, consisting of deoxyribonucleic acid (DNA) wrapped around histone proteins, facilitates DNA compaction and allows identical DNA codes to confer many different cellular phenotypes. This biological versatility is accomplished in large part by posttranslational modifications to histones and chemical modifications to DNA. These modifications direct the cellular machinery to expand or compact specific chromatin regions and mark regions of the DNA as important for cellular functions. While each of the four bases that make up DNA can be modified (Iyer et al. 2011), this chapter will focus on methylation of the sixth position on adenines (6mA), as this modification has been poorly characterized in recently evolved eukaryotes, but shows promise as a new conserved layer of epigenetic regulation. 6mA was previously thought to be restricted to unicellular organisms, but recent work has revealed its presence in metazoa. Here, we will briefly describe the history of 6mA, examine its evolutionary conservation, and evaluate the current methods for detecting 6mA. We will discuss the enzymes that bind and regulate this mark and finally examine known and potential functions of 6mA in eukaryotes.


Unicellular Eukaryote Daughter Strand GATC Site Adenine Methylation Specific Sequence Context 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank S. Burger, N. O’Brown, and E. Pollina for critical reading of the manuscript. We thank C. He for helpful discussions. The work from the Greer laboratory is supported by a grant from the NIH (AG043550). Z.K.O. is supported by 5T32HD7466-19.


  1. Aas PA, Otterlei M, Falnes PO, Vagbo CB, Skorpen F, Akbari M, et al. Human and bacterial oxidative demethylases repair alkylation damage in both RNA and DNA. Nature. 2003;421(6925):859–63. doi: 10.1038/nature01363.PubMedCrossRefGoogle Scholar
  2. Achwal CW, Iyer CA, Chandra HS. Immunochemical evidence for the presence of 5mC, 6mA and 7mG in human, Drosophila and mealybug DNA. FEBS Lett. 1983;158(2):353–8.PubMedCrossRefGoogle Scholar
  3. Adams RL, McKay EL, Craig LM, Burdon RH. Methylation of mosquito DNA. Biochim Biophys Acta. 1979;563(1):72–81.PubMedCrossRefGoogle Scholar
  4. Allamane S, Jourdes P, Ratel D, Vicat JM, Dupre I, Laine M, et al. Bacterial DNA methylation and gene transfer efficiency. Biochem Biophys Res Commun. 2000;276(3):1261–4. doi: 10.1006/bbrc.2000.3603.PubMedCrossRefGoogle Scholar
  5. Allan BW, Beechem JM, Lindstrom WM, Reich NO. Direct real time observation of base flipping by the EcoRI DNA methyltransferase. J Biol Chem. 1998;273(4):2368–73.PubMedCrossRefGoogle Scholar
  6. Ammermann D, Steinbruck G, Baur R, Wohlert H. Methylated bases in the DNA of the ciliate Stylonychia mytilus. Eur J Cell Biol. 1981;24(1):154–6.PubMedGoogle Scholar
  7. Aravind L, Zhang D, Iyer LM. The TET/JBP family of nucleic acid base-modifying 2-oxoglutarate and iron-dependent dioxygenases. In: Hausinger R, Schofield C, editors. 2-oxoglutarate-dependent oxygenases. Royal Society of Chemistry; 2015;3(12);289.Google Scholar
  8. Babinger P, Kobl I, Mages W, Schmitt R. A link between DNA methylation and epigenetic silencing in transgenic Volvox carteri. Nucleic Acids Res. 2001;29(6):1261–71.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bakker A, Smith DW. Methylation of GATC sites is required for precise timing between rounds of DNA replication in Escherichia coli. J Bacteriol. 1989;171(10):5738–42.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Batista PJ, Molinie B, Wang J, Qu K, Zhang J, Li L, et al. m(6)A RNA modification controls cell fate transition in mammalian embryonic stem cells. Cell Stem Cell. 2014;15(6):707–19. doi: 10.1016/j.stem.2014.09.019.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Berdis AJ, Lee I, Coward JK, Stephens C, Wright R, Shapiro L, et al. A cell cycle-regulated adenine DNA methyltransferase from Caulobacter crescentus processively methylates GANTC sites on hemimethylated DNA. Proc Natl Acad Sci U S A. 1998;95(6):2874–9.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bestor TH. The DNA, methyltransferases of mammals. Hum Mol Genet. 2000;9(16):2395–402.PubMedCrossRefGoogle Scholar
  13. Bestor T, Laudano A, Mattaliano R, Ingram V. Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases. J Mol Biol. 1988;203(4):971–83.PubMedCrossRefGoogle Scholar
  14. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16(1):6–21. doi: 10.1101/gad.947102.PubMedCrossRefGoogle Scholar
  15. Bird AP, Southern EM. Use of restriction enzymes to study eukaryotic DNA methylation: I. The methylation pattern in ribosomal DNA from Xenopus laevis. J Mol Biol. 1978;118(1):27–47.PubMedCrossRefGoogle Scholar
  16. Bodi Z, Zhong S, Mehra S, Song J, Graham N, Li H, et al. Adenosine methylation in Arabidopsis mRNA is associated with the 3′ end and reduced levels cause developmental defects. Front Plant Sci. 2012;3:48. doi: 10.3389/fpls.2012.00048.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Boye E, Lobner-Olesen A. The role of dam methyltransferase in the control of DNA replication in E. coli. Cell. 1990;62(5):981–9.PubMedCrossRefGoogle Scholar
  18. Breiling A, Lyko F. Epigenetic regulatory functions of DNA modifications: 5-methylcytosine and beyond. Epigenetics Chromatin. 2015;8:24. doi: 10.1186/s13072-015-0016-6.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Brendler T, Abeles A, Austin S. A protein that binds to the P1 origin core and the oriC 13mer region in a methylation-specific fashion is the product of the host seqA gene. EMBO J. 1995;14(16):4083–9.PubMedPubMedCentralGoogle Scholar
  20. Bromberg S, Pratt K, Hattman S. Sequence specificity of DNA adenine methylase in the protozoan Tetrahymena thermophila. J Bacteriol. 1982;150(2):993–6.PubMedPubMedCentralGoogle Scholar
  21. Campbell JL, Kleckner N. E. coli oriC and the dnaA gene promoter are sequestered from dam methyltransferase following the passage of the chromosomal replication fork. Cell. 1990;62(5):967–79.PubMedCrossRefGoogle Scholar
  22. Capowski EE, Wells JM, Harrison GS, Karrer KM. Molecular analysis of N6-methyladenine patterns in Tetrahymena thermophila nuclear DNA. Mol Cell Biol. 1989;9(6):2598–605.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Capuano F, Mulleder M, Kok R, Blom HJ, Ralser M. Cytosine DNA methylation is found in Drosophila melanogaster but absent in Saccharomyces cerevisiae, Schizosaccharomyces pombe, and other yeast species. Anal Chem. 2014;86(8):3697–702. doi: 10.1021/ac500447w.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Casadesus J, Low D. Epigenetic gene regulation in the bacterial world. Microbiol Mol Biol Rev. 2006;70(3):830–56. doi: 10.1128/MMBR.00016-06.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Chen K, Luo GZ, He C. High-resolution mapping of N(6)-methyladenosine in transcriptome and genome using a photo-crosslinking-assisted strategy. Methods Enzymol. 2015;560:161–85. doi: 10.1016/bs.mie.2015.03.012.PubMedCrossRefGoogle Scholar
  26. Cheng SC, Herman G, Modrich P. Extent of equilibrium perturbation of the DNA helix upon enzymatic methylation of adenine residues. J Biol Chem. 1985;260(1):191–4.PubMedGoogle Scholar
  27. Chiang PK, Gordon RK, Tal J, Zeng GC, Doctor BP, Pardhasaradhi K, et al. S-Adenosylmethionine and methylation. FASEB J. 1996;10(4):471–80.PubMedGoogle Scholar
  28. Clancy MJ, Shambaugh ME, Timpte CS, Bokar JA. Induction of sporulation in Saccharomyces cerevisiae leads to the formation of N6-methyladenosine in mRNA: a potential mechanism for the activity of the IME4 gene. Nucleic Acids Res. 2002;30(20):4509–18.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Collier J, McAdams HH, Shapiro L. A DNA methylation ratchet governs progression through a bacterial cell cycle. Proc Natl Acad Sci U S A. 2007;104(43):17111–6. doi: 10.1073/pnas.0708112104.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Collins M, Myers RM. Alterations in DNA helix stability due to base modifications can be evaluated using denaturing gradient gel electrophoresis. J Mol Biol. 1987;198(4):737–44.PubMedCrossRefGoogle Scholar
  31. Cummings DJ, Tait A, Goddard JM. Methylated bases in DNA from Paramecium aurelia. Biochim Biophys Acta. 1974;374(1):1–11.PubMedCrossRefGoogle Scholar
  32. Degnen ST, Morris NR. Deoxyribonucleic acid methylation and development in Caulobacter bacteroides. J Bacteriol. 1973;116(1):48–53.PubMedPubMedCentralGoogle Scholar
  33. Delk AS, Rabinowitz JC. Biosynthesis of ribosylthymine in the transfer RNA of Streptococcus faecalis: a folate-dependent methylation not involving S-adenosylmethionine. Proc Natl Acad Sci U S A. 1975;72(2):528–30.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Delk AS, Romeo JM, Nagle Jr DP, Rabinowitz JC. Biosynthesis of ribothymidine in the transfer RNA of Streptococcus faecalis and Bacillus subtilis. A methylation of RNA involving 5,10-methylenetetrahydrofolate. J Biol Chem. 1976;251(23):7649–56.PubMedGoogle Scholar
  35. Deng X, Chen K, Luo GZ, Weng X, Ji Q, Zhou T, et al. Widespread occurrence of N6-methyladenosine in bacterial mRNA. Nucleic Acids Res. 2015;43(13):6557–67. doi: 10.1093/nar/gkv596.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Diekmann S. DNA methylation can enhance or induce DNA curvature. EMBO J. 1987;6(13):4213–7.PubMedPubMedCentralGoogle Scholar
  37. Dohno C, Shibata T, Nakatani K. Discrimination of N6-methyl adenine in a specific DNA sequence. Chem Commun (Camb). 2010;46(30):5530–2. doi: 10.1039/c0cc00172d.CrossRefGoogle Scholar
  38. Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 2012;485(7397):201–6. doi: 10.1038/nature11112.PubMedCrossRefGoogle Scholar
  39. Drozdz M, Piekarowicz A, Bujnicki JM, Radlinska M. Novel non-specific DNA adenine methyltransferases. Nucleic Acids Res. 2012;40(5):2119–30. doi: 10.1093/nar/gkr1039.PubMedCrossRefGoogle Scholar
  40. Du J, Zhong X, Bernatavichute YV, Stroud H, Feng S, Caro E, et al. Dual binding of chromomethylase domains to H3K9me2-containing nucleosomes directs DNA methylation in plants. Cell. 2012;151(1):167–80. doi: 10.1016/j.cell.2012.07.034.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Duncan T, Trewick SC, Koivisto P, Bates PA, Lindahl T, Sedgwick B. Reversal of DNA alkylation damage by two human dioxygenases. Proc Natl Acad Sci U S A. 2002;99(26):16660–5. doi: 10.1073/pnas.262589799.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Dunn DB, Smith JD. Occurrence of a new base in the deoxyribonucleic acid of a strain of Bacterium coli. Nature. 1955;175(4451):336–7.PubMedCrossRefGoogle Scholar
  43. Dunn DB, Smith JD. The occurrence of 6-methylaminopurine in deoxyribonucleic acids. Biochem J. 1958;68(4):627–36.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Ehrlich M, Gama-Sosa MA, Huang LH, Midgett RM, Kuo KC, McCune RA, et al. Amount and distribution of 5-methylcytosine in human DNA from different types of tissues of cells. Nucleic Acids Res. 1982;10(8):2709–21.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Ehrlich M, Gama-Sosa MA, Carreira LH, Ljungdahl LG, Kuo KC, Gehrke CW. DNA methylation in thermophilic bacteria: N4-methylcytosine, 5-methylcytosine, and N6-methyladenine. Nucleic Acids Res. 1985;13(4):1399–412.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Ehrlich M, Wilson GG, Kuo KC, Gehrke CW. N4-methylcytosine as a minor base in bacterial DNA. J Bacteriol. 1987;169(3):939–43.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Engel JD, von Hippel PH. D(M6ATP) as a probe of the fidelity of base incorporation into polynucleotides by Escherichia coli DNA polymerase I. J Biol Chem. 1978a;253(3):935–9.PubMedGoogle Scholar
  48. Engel JD, von Hippel PH. Effects of methylation on the stability of nucleic acid conformations. Studies at the polymer level. J Biol Chem. 1978b;253(3):927–34.PubMedGoogle Scholar
  49. Falnes PO, Johansen RF, Seeberg E. AlkB-mediated oxidative demethylation reverses DNA damage in Escherichia coli. Nature. 2002;419(6903):178–82. doi: 10.1038/nature01048.PubMedCrossRefGoogle Scholar
  50. Fazakerley GV, Guy A, Teoule R, Quignard E, Guschlbauer W. A proton 2D-NMR study of an oligodeoxyribonucleotide containing N6-methyladenine:d(GGm6ATATCC). Biochimie. 1985;67(7–8):819–22.PubMedCrossRefGoogle Scholar
  51. Fazakerley GV, Quignard E, Teoule R, Guy A, Guschlbauer W. A two-dimensional 1H-NMR study of the dam methylase site: comparison between the hemimethylated GATC sequence, its unmethylated analogue and a hemimethylated CATG sequence. The sequence dependence of methylation upon base-pair lifetimes. Eur J Biochem. 1987;167(3):397–404.PubMedCrossRefGoogle Scholar
  52. Fazakerley GV, Gabarro-Arpa J, Lebret M, Guy A, Guschlbauer W. The GTm6AC sequence is overwound and bent. Nucleic Acids Res. 1989;17(7):2541–56.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Fedeles BI, Singh V, Delaney JC, Li D, Essigmann JM. The AlkB family of Fe(II)/alpha-ketoglutarate-dependent dioxygenases: repairing nucleic acid alkylation damage and beyond. J Biol Chem. 2015;290(34):20734–42. doi: 10.1074/jbc.R115.656462.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Fleissner E, Borek E. A new enzyme of RNA synthesis: RNA methylase. Proc Natl Acad Sci U S A. 1962;48:1199–203.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Flusberg BA, Webster DR, Lee JH, Travers KJ, Olivares EC, Clark TA, et al. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Methods. 2010;7(6):461–5. doi: 10.1038/nmeth.1459.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Fu Y, Jia G, Pang X, Wang RN, Wang X, Li CJ, et al. FTO-mediated formation of N6-hydroxymethyladenosine and N6-formyladenosine in mammalian RNA. Nat Commun. 2013;4:1798. doi: 10.1038/ncomms2822.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Fu Y, Luo GZ, Chen K, Deng X, Yu M, Han D, et al. N(6)-methyldeoxyadenosine marks active transcription start sites in chlamydomonas. Cell. 2015;161(4):879–92. doi: 10.1016/j.cell.2015.04.010.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Fujikawa N, Kurumizaka H, Nureki O, Tanaka Y, Yamazoe M, Hiraga S, et al. Structural and biochemical analyses of hemimethylated DNA binding by the SeqA protein. Nucleic Acids Res. 2004;32(1):82–92. doi: 10.1093/nar/gkh173.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Gama-Sosa MA, Midgett RM, Slagel VA, Githens S, Kuo KC, Gehrke CW, et al. Tissue-specific differences in DNA methylation in various mammals. Biochim Biophys Acta. 1983;740(2):212–9.PubMedCrossRefGoogle Scholar
  60. Geier GE, Modrich P. Recognition sequence of the dam methylase of Escherichia coli K12 and mode of cleavage of Dpn I endonuclease. J Biol Chem. 1979;254(4):1408–13.PubMedGoogle Scholar
  61. Gerken T, Girard CA, Tung YC, Webby CJ, Saudek V, Hewitson KS, et al. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science (New York, NY). 2007;318(5855):1469–72. doi: 10.1126/science.1151710.CrossRefGoogle Scholar
  62. Glickman BW. Spontaneous mutagenesis in Escherichia coli strains lacking 6-methyladenine residues in their DNA: an altered mutational spectrum in dam- mutants. Mutat Res. 1979;61(2):153–62.PubMedCrossRefGoogle Scholar
  63. Glickman B, van den Elsen P, Radman M. Induced mutagenesis in dam- mutants of Escherichia coli: a role for 6-methyladenine residues in mutation avoidance. Mol Gen Genet. 1978;163(3):307–12.PubMedCrossRefGoogle Scholar
  64. Goedecke K, Pignot M, Goody RS, Scheidig AJ, Weinhold E. Structure of the N6-adenine DNA methyltransferase M.TaqI in complex with DNA and a cofactor analog. Nat Struct Biol. 2001;8(2):121–5. doi: 10.1038/84104.PubMedCrossRefGoogle Scholar
  65. Gold M, Hurwitz J. The enzymatic methylation of ribonucleic acid and deoxyribonucleic acid. V. Purification and properties of the deoxyribonucleic acid-methylating activity of Escherichia Coli. J Biol Chem. 1964;239:3858–65.PubMedGoogle Scholar
  66. Gold M, Hurwitz J, Anders M. The enzymatic methylation of RNA and DNA. Biochem Biophys Res Commun. 1963;11:107–14.PubMedCrossRefGoogle Scholar
  67. Gommers-Ampt JH, Borst P. Hypermodified bases in DNA. FASEB J. 1995;9(11):1034–42.PubMedGoogle Scholar
  68. Gommers-Ampt JH, Van Leeuwen F, de Beer AL, Vliegenthart JF, Dizdaroglu M, Kowalak JA, et al. beta-D-glucosyl-hydroxymethyluracil: a novel modified base present in the DNA of the parasitic protozoan T. brucei. Cell. 1993;75(6):1129–36.PubMedCrossRefGoogle Scholar
  69. Gorovsky MA, Hattman S, Pleger GL. (6 N)methyl adenine in the nuclear DNA of a eucaryote, Tetrahymena pyriformis. J Cell Biol. 1973;56(3):697–701.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Graham MW, Larkin PJ. Adenine methylation at dam sites increases transient gene expression in plant cells. Transgenic Res. 1995;4(5):324–31.PubMedCrossRefGoogle Scholar
  71. Greer EL, Beese-Sims SE, Brookes E, Spadafora R, Zhu Y, Rothbart SB, et al. A histone methylation network regulates transgenerational epigenetic memory in C. elegans. Cell Rep. 2014;7(1):113–26. doi: 10.1016/j.celrep.2014.02.044.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Greer EL, Becker B, Latza C, Antebi A, Shi Y. Mutation of C. elegans demethylase spr-5 extends transgenerational longevity. Cell Res. 2016;26(2):229–38. doi: 10.1038/cr.2015.148.Google Scholar
  73. Greer EL, Blanco MA, Gu L, Sendinc E, Liu J, Aristizabal-Corrales D, et al. DNA Methylation on N(6)-Adenine in C. elegans. Cell. 2015b;161(4):868–78. doi: 10.1016/j.cell.2015.04.005.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Grosjean H. Nucleic acids are not boring long polymers of only four types of nucleotides: a guided tour. In: Grosjean H, editor. DNA and RNA modi cation enzymes: structure, mechanism, function and evolution. New York: CRC Press; 2009. p. 1–18.Google Scholar
  75. Grosjean H. RNA modification: the Golden Period 1995–2015. RNA. 2015;21(4):625–6. doi: 10.1261/rna.049866.115.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Guarne A, Zhao Q, Ghirlando R, Yang W. Insights into negative modulation of E. coli replication initiation from the structure of SeqA-hemimethylated DNA complex. Nat Struct Biol. 2002;9(11):839–43. doi: 10.1038/nsb857.PubMedGoogle Scholar
  77. Hagerman KR, Hagerman PJ. Helix rigidity of DNA: the meroduplex as an experimental paradigm. J Mol Biol. 1996;260(2):207–23. doi: 10.1006/jmbi.1996.0393.PubMedCrossRefGoogle Scholar
  78. Hassel M, Cornelius MG, Vom Brocke J, Schmeiser HH. Total nucleotide analysis of Hydra DNA and RNA by MEKC with LIF detection and 32P-postlabeling. Electrophoresis. 2010;31(2):299–302. doi: 10.1002/elps.200900458.PubMedCrossRefGoogle Scholar
  79. Hattman S, Kenny C, Berger L, Pratt K. Comparative study of DNA methylation in three unicellular eucaryotes. J Bacteriol. 1978;135(3):1156–7.PubMedPubMedCentralGoogle Scholar
  80. Heindell HC, Liu A, Paddock GV, Studnicka GM, Salser WA. The primary sequence of rabbit alpha-globin mRNA. Cell. 1978;15(1):43–54.PubMedCrossRefGoogle Scholar
  81. Hongay CF, Orr-Weaver TL. Drosophila Inducer of MEiosis 4 (IME4) is required for Notch signaling during oogenesis. Proc Natl Acad Sci U S A. 2011;108(36):14855–60. doi: 10.1073/pnas.1111577108.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Horton JR, Liebert K, Hattman S, Jeltsch A, Cheng X. Transition from nonspecific to specific DNA interactions along the substrate-recognition pathway of dam methyltransferase. Cell. 2005;121(3):349–61. doi: 10.1016/j.cell.2005.02.021.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Horton JR, Liebert K, Bekes M, Jeltsch A, Cheng X. Structure and substrate recognition of the Escherichia coli DNA adenine methyltransferase. J Mol Biol. 2006;358(2):559–70. doi: 10.1016/j.jmb.2006.02.028.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Hotchkiss RD. The quantitative separation of purines, pyrimidines, and nucleosides by paper chromatography. J Biol Chem. 1948;175(1):315–32.PubMedGoogle Scholar
  85. Huang W, Xiong J, Yang Y, Liu SM, Yuan BF, Feng YQ. Determination of DNA adenine methylation in genomes of mammals and plants by liquid chromatography/mass spectrometry. Royal Soc Chem Adv. 2015;5:64046–54.Google Scholar
  86. Ito S, D’Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature. 2010;466(7310):1129–33. doi: 10.1038/nature09303.PubMedPubMedCentralCrossRefGoogle Scholar
  87. Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science (New York, NY). 2011;333(6047):1300–3. doi: 10.1126/science.1210597.CrossRefGoogle Scholar
  88. Iyer LM, Abhiman S, Aravind L. Natural history of eukaryotic DNA methylation systems. Prog Mol Biol Transl Sci. 2011;101:25–104. doi: 10.1016/B978-0-12-387685-0.00002-0.PubMedCrossRefGoogle Scholar
  89. Jabbari K, Caccio S, Pais de Barros JP, Desgres J, Bernardi G. Evolutionary changes in CpG and methylation levels in the genome of vertebrates. Gene. 1997;205(1–2):109–18.PubMedCrossRefGoogle Scholar
  90. Jackson JP, Lindroth AM, Cao X, Jacobsen SE. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature. 2002;416(6880):556–60. doi: 10.1038/nature731.PubMedCrossRefGoogle Scholar
  91. Janulaitis A, Klimasauskas S, Petrusyte M, Butkus V. Cytosine modification in DNA by BcnI methylase yields N4-methylcytosine. FEBS Lett. 1983;161(1):131–4.PubMedCrossRefGoogle Scholar
  92. Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. 2011;7(12):885–7. doi: 10.1038/nchembio.687.PubMedPubMedCentralCrossRefGoogle Scholar
  93. Johnson TB, Coghill RD. The discovery of 5-methyl-cytosine in tuberculinic acid, the nucleic acid of the Tubercle bacillus. J Am Chem Soc. 1925;47:2838–44.CrossRefGoogle Scholar
  94. Johnson LM, Bostick M, Zhang X, Kraft E, Henderson I, Callis J, et al. The SRA methyl-cytosine-binding domain links DNA and histone methylation. Curr Biol. 2007;17(4):379–84. doi: 10.1016/j.cub.2007.01.009.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13(7):484–92. doi: 10.1038/nrg3230.PubMedCrossRefGoogle Scholar
  96. Kakutani T, Munakata K, Richards EJ, Hirochika H. Meiotically and mitotically stable inheritance of DNA hypomethylation induced by ddm1 mutation of Arabidopsis thaliana. Genetics. 1999;151(2):831–8.PubMedPubMedCentralGoogle Scholar
  97. Kamat SS, Fan H, Sauder JM, Burley SK, Shoichet BK, Sali A, et al. Enzymatic deamination of the epigenetic base N-6-methyladenine. J Am Chem Soc. 2011;133(7):2080–3. doi: 10.1021/ja110157u.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Karrer KM, VanNuland TA. Methylation of adenine in the nuclear DNA of Tetrahymena is internucleosomal and independent of histone H1. Nucleic Acids Res. 2002;30(6):1364–70.PubMedPubMedCentralCrossRefGoogle Scholar
  99. Katz DJ, Edwards TM, Reinke V, Kelly WG. A C. elegans LSD1 demethylase contributes to germline immortality by reprogramming epigenetic memory. Cell. 2009;137(2):308–20.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Kornberg A, Zimmerman SB, Kornberg SR, Josse J. Enzymatic synthesis of deoxyribonucleic acid. Influence of bacteriophage T2 on the synthetic pathway in host cells. Proc Natl Acad Sci U S A. 1959;45(6):772–85.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Kornberg SR, Zimmerman SB, Kornberg A. Glucosylation of deoxyribonucleic acid by enzymes from bacteriophage-infected Escherichia coli. J Biol Chem. 1961;236:1487–93.PubMedGoogle Scholar
  102. Kozdon JB, Melfi MD, Luong K, Clark TA, Boitano M, Wang S, et al. Global methylation state at base-pair resolution of the Caulobacter genome throughout the cell cycle. Proc Natl Acad Sci U S A. 2013;110(48):E4658–67. doi: 10.1073/pnas.1319315110.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Koziol MJ, Bradshaw CR, Allen GE, Costa AS, Frezza C, Gurdon JB. Identification of methylated deoxyadenosines in vertebrates reveals diversity in DNA modifications. Nat Struct Mol Biol. 2016;23(1):24–30. doi: 10.1038/nsmb.3145.PubMedCrossRefGoogle Scholar
  104. Krais AM, Cornelius MG, Schmeiser HH. Genomic N(6)-methyladenine determination by MEKC with LIF. Electrophoresis. 2010;31(21):3548–51. doi: 10.1002/elps.201000357.PubMedCrossRefGoogle Scholar
  105. Lahue RS, Su SS, Modrich P. Requirement for d(GATC) sequences in Escherichia coli mutHLS mismatch correction. Proc Natl Acad Sci U S A. 1987;84(6):1482–6.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Letunic I, Bork P. Interactive tree of life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Res. 2011;39(Web Server issue):W475–8. doi: 10.1093/nar/gkr201.Google Scholar
  107. Lichtsteiner S, Schibler U. A glycosylated liver-specific transcription factor stimulates transcription of the albumin gene. Cell. 1989;57(7):1179–87.PubMedCrossRefGoogle Scholar
  108. Lindahl T, Nyberg B. Heat-induced deamination of cytosine residues in deoxyribonucleic acid. Biochemistry. 1974;13(16):3405–10.PubMedCrossRefGoogle Scholar
  109. Linn S, Arber W. Host specificity of DNA produced by Escherichia coli, X. In vitro restriction of phage fd replicative form. Proc Natl Acad Sci U S A. 1968;59(4):1300–6.PubMedPubMedCentralCrossRefGoogle Scholar
  110. Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. 2014;10(2):93–5. doi: 10.1038/nchembio.1432.PubMedCrossRefGoogle Scholar
  111. Low DA, Weyand NJ, Mahan MJ. Roles of DNA adenine methylation in regulating bacterial gene expression and virulence. Infect Immun. 2001;69(12):7197–204. doi: 10.1128/IAI.69.12.7197-7204.2001.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Lu M, Campbell JL, Boye E, Kleckner N. SeqA: a negative modulator of replication initiation in E. coli. Cell. 1994;77(3):413–26.PubMedCrossRefGoogle Scholar
  113. Luo GZ, Blanco MA, Greer EL, He C, Shi Y. DNA N-methyladenine: a new epigenetic mark in eukaryotes? Nat Rev. 2015;16(12):705–10. doi: 10.1038/nrm4076.CrossRefGoogle Scholar
  114. Luria SE, Human ML. A nonhereditary, host-induced variation of bacterial viruses. J Bacteriol. 1952;64(4):557–69.PubMedPubMedCentralGoogle Scholar
  115. Lyko F, Ramsahoye BH, Jaenisch R. DNA methylation in Drosophila melanogaster. Nature. 2000;408(6812):538–40. doi: 10.1038/35046205.PubMedCrossRefGoogle Scholar
  116. Machnicka MA, Milanowska K, Osman Oglou O, Purta E, Kurkowska M, Olchowik A, et al. MODOMICS: a database of RNA modification pathways--2013 update. Nucleic Acids Res. 2013;41(Database issue):D262–7. doi: 10.1093/nar/gks1007.PubMedCrossRefGoogle Scholar
  117. Macon JB, Wolfenden R. 1-Methyladenosine. Dimroth rearrangement and reversible reduction. Biochemistry. 1968;7(10):3453–8.PubMedCrossRefGoogle Scholar
  118. Malagnac F, Bartee L, Bender J. An Arabidopsis SET domain protein required for maintenance but not establishment of DNA methylation. EMBO J. 2002;21(24):6842–52.PubMedPubMedCentralCrossRefGoogle Scholar
  119. Malygin EG, Lindstrom Jr WM, Schlagman SL, Hattman S, Reich NO. Pre-steady state kinetics of bacteriophage T4 dam DNA-[N(6)-adenine] methyltransferase: interaction with native (GATC) or modified sites. Nucleic Acids Res. 2000;28(21):4207–11.PubMedPubMedCentralCrossRefGoogle Scholar
  120. Marinus MG. Adenine methylation of Okazaki fragments in Escherichia coli. J Bacteriol. 1976;128(3):853–4.PubMedPubMedCentralGoogle Scholar
  121. Marinus MG, Lobner-Olesen A. DNA methylation. Ecosal Plus. 2014;6(1). doi: 10.1128/ecosalplus.ESP-0003-2013.
  122. Marinus MG, Morris NR. Isolation of deoxyribonucleic acid methylase mutants of Escherichia coli K-12. J Bacteriol. 1973;114(3):1143–50.PubMedPubMedCentralGoogle Scholar
  123. Marinus MG, Morris NR. Biological function for 6-methyladenine residues in the DNA of Escherichia coli K12. J Mol Biol. 1974;85(2):309–22.PubMedCrossRefGoogle Scholar
  124. Martin C, Zhang Y. Mechanisms of epigenetic inheritance. Curr Opin Cell Biol. 2007;19(3):266–72. S0955-0674(07)00054-3 [pii]. doi: 10.1016/ Scholar
  125. Mason SF. Purine Studies. Part II. The Ultra-violet absorption spectra of some mono- and poly-substituted purines. J Chem Soc. 1954:2071–81.Google Scholar
  126. McClelland M. Selection against dam methylation sites in the genomes of DNA of enterobacteriophages. J Mol Evol. 1984;21(4):317–22.PubMedCrossRefGoogle Scholar
  127. Meselson M, Yuan R. DNA restriction enzyme from E. coli. Nature. 1968;217(5134):1110–4.PubMedCrossRefGoogle Scholar
  128. Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell. 2012;149(7):1635–46. doi: 10.1016/j.cell.2012.05.003.PubMedPubMedCentralCrossRefGoogle Scholar
  129. Mills JB, Hagerman PJ. Origin of the intrinsic rigidity of DNA. Nucleic Acids Res. 2004;32(13):4055–9. doi: 10.1093/nar/gkh740.PubMedPubMedCentralCrossRefGoogle Scholar
  130. Montero LM, Filipski J, Gil P, Capel J, Martinez-Zapater JM, Salinas J. The distribution of 5-methylcytosine in the nuclear genome of plants. Nucleic Acids Res. 1992;20(12):3207–10.PubMedPubMedCentralCrossRefGoogle Scholar
  131. Murchie AI, Lilley DM. Base methylation and local DNA helix stability. Effect on the kinetics of cruciform extrusion. J Mol Biol. 1989;205(3):593–602.PubMedCrossRefGoogle Scholar
  132. Murray NE. 2001 Fred Griffith review lecture. Immigration control of DNA in bacteria: self versus non-self. Microbiology. 2002;148(Pt 1):3–20. doi: 10.1099/00221287-148-1-3.PubMedCrossRefGoogle Scholar
  133. Nikolskaya II, Lopatina NG, Chaplygina NM, Debov SS. The host specificity system in Escherichia coli SK. Mol Cell Biochem. 1976;13(2):79–87.PubMedCrossRefGoogle Scholar
  134. Nikolskaya II, Lopatina NG, Debov SS. On heterogeneity of DNA methylases from Escherichia coli SK cells. Mol Cell Biochem. 1981;35(1):3–10.PubMedCrossRefGoogle Scholar
  135. Niu Y, Zhao X, Wu YS, Li MM, Wang XJ, Yang YG. N6-methyl-adenosine (m6A) in RNA: an old modification with a novel epigenetic function. Genomics Proteomics Bioinformatics. 2013;11(1):8–17. doi: 10.1016/j.gpb.2012.12.002.PubMedCrossRefGoogle Scholar
  136. Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99(3):247–57.PubMedCrossRefGoogle Scholar
  137. Parfrey LW, Lahr DJ, Knoll AH, Katz LA. Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc Natl Acad Sci U S A. 2011;108(33):13624–9. doi: 10.1073/pnas.1110633108.PubMedPubMedCentralCrossRefGoogle Scholar
  138. Peng S, Padva A, LeBreton PR. Ultraviolet photoelectron studies of biological purines: the valence electronic structure of adenine. Proc Natl Acad Sci U S A. 1976;73(9):2966–8.PubMedPubMedCentralCrossRefGoogle Scholar
  139. Pogolotti Jr AL, Ono A, Subramaniam R, Santi DV. On the mechanism of DNA-adenine methylase. J Biol Chem. 1988;263(16):7461–4.PubMedGoogle Scholar
  140. Pomraning KR, Smith KM, Freitag M. Genome-wide high throughput analysis of DNA methylation in eukaryotes. Methods. 2009;47(3):142–50. doi: 10.1016/j.ymeth.2008.09.022.PubMedCrossRefGoogle Scholar
  141. Posfai G, Szybalski W. A simple method for locating methylated bases in DNA using class-IIS restriction enzymes. Gene. 1988;74(1):179–81.PubMedCrossRefGoogle Scholar
  142. Pratt K, Hattman S. Nucleosome phasing in Tetrahymena macronuclei. J Protozool. 1983;30(3):592–8.PubMedCrossRefGoogle Scholar
  143. Privat E, Sowers LC. Photochemical deamination and demethylation of 5-methylcytosine. Chem Res Toxicol. 1996;9(4):745–50. doi: 10.1021/tx950182o.PubMedCrossRefGoogle Scholar
  144. Proffitt JH, Davie JR, Swinton D, Hattman S. 5-Methylcytosine is not detectable in Saccharomyces cerevisiae DNA. Mol Cell Biol. 1984;4(5):985–8.PubMedPubMedCentralCrossRefGoogle Scholar
  145. Pukkila PJ, Peterson J, Herman G, Modrich P, Meselson M. Effects of high levels of DNA adenine methylation on methyl-directed mismatch repair in Escherichia coli. Genetics. 1983;104(4):571–82.PubMedPubMedCentralGoogle Scholar
  146. Quignard E, Fazakerley GV, Teoule R, Guy A, Guschlbauer W. Consequences of methylation on the amino group of adenine. A proton two-dimensional NMR study of d(GGATATCC) and d(GGm6ATATCC). Eur J Biochem. 1985;152(1):99–105.PubMedCrossRefGoogle Scholar
  147. Rae PM. Hydroxymethyluracil in eukaryote DNA: a natural feature of the pyrrophyta (dinoflagellates). Science (New York, NY). 1976;194(4269):1062–4.CrossRefGoogle Scholar
  148. Rae PM, Spear BB. Macronuclear DNA of the hypotrichous ciliate Oxytricha fallax. Proc Natl Acad Sci U S A. 1978;75(10):4992–6.PubMedPubMedCentralCrossRefGoogle Scholar
  149. Razin A, Razin S. Methylated bases in mycoplasmal DNA. Nucleic Acids Res. 1980;8(6):1383–90.PubMedPubMedCentralCrossRefGoogle Scholar
  150. Reich NO, Mashhoon N. Kinetic mechanism of the EcoRI DNA methyltransferase. Biochemistry. 1991;30(11):2933–9.PubMedCrossRefGoogle Scholar
  151. Robbins-Manke JL, Zdraveski ZZ, Marinus M, Essigmann JM. Analysis of global gene expression and double-strand-break formation in DNA adenine methyltransferase- and mismatch repair-deficient Escherichia coli. J Bacteriol. 2005;187(20):7027–37. doi: 10.1128/JB.187.20.7027-7037.2005.PubMedPubMedCentralCrossRefGoogle Scholar
  152. Roberts D, Hoopes BC, McClure WR, Kleckner N. IS10 transposition is regulated by DNA adenine methylation. Cell. 1985;43(1):117–30.PubMedCrossRefGoogle Scholar
  153. Rogers JC, Rogers SW. Comparison of the effects of N6-methyldeoxyadenosine and N5-methyldeoxycytosine on transcription from nuclear gene promoters in barley. Plant J. 1995;7(2):221–33.PubMedCrossRefGoogle Scholar
  154. Rogers SD, Rogers ME, Saunders G, Holt G. Isolation of mutants sensitive to 2-aminopurine and alkylating agents and evidence for the role of DNA methylation in Penicillium chrysogenum. Curr Genet. 1986;10(7):557–60.PubMedCrossRefGoogle Scholar
  155. Romanov GA, Vanyushin BF. Methylation of reiterated sequences in mammalian DNAs. Effects of the tissue type, age, malignancy and hormonal induction. Biochim Biophys Acta. 1981;653(2):204–18.PubMedCrossRefGoogle Scholar
  156. Russell DW, Hirata RK. The detection of extremely rare DNA modifications. Methylation in dam- and hsd- Escherichia coli strains. J Biol Chem. 1989;264(18):10787–94.PubMedGoogle Scholar
  157. Saparbaev M, Laval J. Excision of hypoxanthine from DNA containing dIMP residues by the Escherichia coli, yeast, rat, and human alkylpurine DNA glycosylases. Proc Natl Acad Sci U S A. 1994;91(13):5873–7.PubMedPubMedCentralCrossRefGoogle Scholar
  158. Sarnacki SH, Castaneda Mdel R, Noto Llana M, Giacomodonato MN, Valvano MA, Cerquetti MC. Dam methylation participates in the regulation of PmrA/PmrB and RcsC/RcsD/RcsB two component regulatory systems in Salmonella enterica serovar Enteritidis. PLoS One. 2013;8(2):e56474. doi: 10.1371/journal.pone.0056474.PubMedPubMedCentralCrossRefGoogle Scholar
  159. Sater MR, Lamelas A, Wang G, Clark TA, Roltgen K, Mane S, et al. DNA methylation assessed by SMRT sequencing is linked to mutations in Neisseria meningitidis isolates. PLoS One. 2015;10(12):e0144612. doi: 10.1371/journal.pone.0144612.PubMedPubMedCentralCrossRefGoogle Scholar
  160. Sedgwick B, Bates PA, Paik J, Jacobs SC, Lindahl T. Repair of alkylated DNA: recent advances. DNA Repair (Amst). 2007;6(4):429–42. doi: 10.1016/j.dnarep.2006.10.005.CrossRefGoogle Scholar
  161. Seisenberger S, Andrews S, Krueger F, Arand J, Walter J, Santos F, et al. The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol Cell. 2012;48(6):849–62. doi: 10.1016/j.molcel.2012.11.001.PubMedPubMedCentralCrossRefGoogle Scholar
  162. Shapiro R, Klein RS. The deamination of cytidine and cytosine by acidic buffer solutions. Mutagenic implications. Biochemistry. 1966;5(7):2358–62.PubMedCrossRefGoogle Scholar
  163. Shen L, Song CX, He C, Zhang Y. Mechanism and function of oxidative reversal of DNA and RNA methylation. Annu Rev Biochem. 2014;83:585–614. doi: 10.1146/annurev-biochem-060713-035513.PubMedPubMedCentralCrossRefGoogle Scholar
  164. Slater S, Wold S, Lu M, Boye E, Skarstad K, Kleckner N. E. coli SeqA protein binds oriC in two different methyl-modulated reactions appropriate to its roles in DNA replication initiation and origin sequestration. Cell. 1995;82(6):927–36.PubMedCrossRefGoogle Scholar
  165. Smith JD, Arber W, Kuhnlein U. Host specificity of DNA produced by Escherichia coli. XIV. The role of nucleotide methylation in in vivo B-specific modification. J Mol Biol. 1972;63(1):1–8.PubMedCrossRefGoogle Scholar
  166. Srivastava R, Gopinathan KP, Ramakrishnan T. Deoxyribonucleic acid methylation in mycobacteria. J Bacteriol. 1981;148(2):716–9.PubMedPubMedCentralGoogle Scholar
  167. Stein R, Gruenbaum Y, Pollack Y, Razin A, Cedar H. Clonal inheritance of the pattern of DNA methylation in mouse cells. Proc Natl Acad Sci U S A. 1982;79(1):61–5.PubMedPubMedCentralCrossRefGoogle Scholar
  168. Stephens C, Reisenauer A, Wright R, Shapiro L. A cell cycle-regulated bacterial DNA methyltransferase is essential for viability. Proc Natl Acad Sci U S A. 1996;93(3):1210–4.PubMedPubMedCentralCrossRefGoogle Scholar
  169. Sternglanz H, Bugg CE. Conformation of N6-methyladenine, a base involved in DNA modification: restriction processes. Science (New York, NY). 1973;182(4114):833–4.CrossRefGoogle Scholar
  170. Su SS, Modrich P. Escherichia coli mutS-encoded protein binds to mismatched DNA base pairs. Proc Natl Acad Sci U S A. 1986;83(14):5057–61.PubMedPubMedCentralCrossRefGoogle Scholar
  171. Sugimoto K, Takeda S, Hirochika H. Transcriptional activation mediated by binding of a plant GATA-type zinc finger protein AGP1 to the AG-motif (AGATCCAA) of the wound-inducible Myb gene NtMyb2. Plant J. 2003;36(4):550–64.PubMedCrossRefGoogle Scholar
  172. Sun Q, Huang S, Wang X, Zhu Y, Chen Z, Chen D. N(6) -methyladenine functions as a potential epigenetic mark in eukaryotes. Bioessays. 2015;37(11):1155–62. doi: 10.1002/bies.201500076.PubMedCrossRefGoogle Scholar
  173. Sundheim O, Talstad VA, Vagbo CB, Slupphaug G, Krokan HE. AlkB demethylases flip out in different ways. DNA Repair (Amst). 2008;7(11):1916–23. doi: 10.1016/j.dnarep.2008.07.015.CrossRefGoogle Scholar
  174. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science (New York, NY). 2009;324(5929):930–5. doi: 10.1126/science.1170116.CrossRefGoogle Scholar
  175. Tawa R, Ueno S, Yamamoto K, Yamamoto Y, Sagisaka K, Katakura R, et al. Methylated cytosine level in human liver DNA does not decline in aging process. Mech Ageing Dev. 1992;62(3):255–61.PubMedCrossRefGoogle Scholar
  176. Theil EC, Zamenhof S. Studies on 6-methylaminopurine (6-methyladenine) in bacterial deoxyribonucleic acid. J Biol Chem. 1963;238:3058–64.PubMedGoogle Scholar
  177. Trewick SC, Henshaw TF, Hausinger RP, Lindahl T, Sedgwick B. Oxidative demethylation by Escherichia coli AlkB directly reverts DNA base damage. Nature. 2002;419(6903):174–8. doi: 10.1038/nature00908.PubMedCrossRefGoogle Scholar
  178. Tronche F, Rollier A, Bach I, Weiss MC, Yaniv M. The rat albumin promoter: cooperation with upstream elements is required when binding of APF/HNF1 to the proximal element is partially impaired by mutation or bacterial methylation. Mol Cell Biol. 1989;9(11):4759–66.PubMedPubMedCentralCrossRefGoogle Scholar
  179. Tsuchiya H, Matsuda T, Harashima H, Kamiya H. Cytokine induction by a bacterial DNA-specific modified base. Biochem Biophys Res Commun. 2005;326(4):777–81. doi: 10.1016/j.bbrc.2004.11.115.PubMedCrossRefGoogle Scholar
  180. Unger G, Venner H. Remarks on minor bases in spermatic desoxyribonucleic acid. Hoppe Seylers Z Physiol Chem. 1966;344(4):280–3.PubMedCrossRefGoogle Scholar
  181. Urbonavicius J, Skouloubris S, Myllykallio H, Grosjean H. Identification of a novel gene encoding a flavin-dependent tRNA:m5U methyltransferase in bacteria--evolutionary implications. Nucleic Acids Res. 2005;33(13):3955–64. doi: 10.1093/nar/gki703.PubMedPubMedCentralCrossRefGoogle Scholar
  182. Urig S, Gowher H, Hermann A, Beck C, Fatemi M, Humeny A, et al. The Escherichia coli dam DNA methyltransferase modifies DNA in a highly processive reaction. J Mol Biol. 2002;319(5):1085–96. doi: 10.1016/S0022-2836(02)00371-6.PubMedCrossRefGoogle Scholar
  183. van den Born E, Omelchenko MV, Bekkelund A, Leihne V, Koonin EV, Dolja VV, et al. Viral AlkB proteins repair RNA damage by oxidative demethylation. Nucleic Acids Res. 2008;36(17):5451–61. doi: 10.1093/nar/gkn519.PubMedPubMedCentralCrossRefGoogle Scholar
  184. Van Etten JL, Schuster AM, Girton L, Burbank DE, Swinton D, Hattman S. DNA methylation of viruses infecting a eukaryotic Chlorella-like green alga. Nucleic Acids Res. 1985;13(10):3471–8.PubMedPubMedCentralCrossRefGoogle Scholar
  185. Vanyushin BF, Belozersky AN, Kokurina NA, Kadirova DX. 5-methylcytosine and 6-methylamino-purine in bacterial DNA. Nature. 1968;218(5146):1066–7.PubMedCrossRefGoogle Scholar
  186. Vanyushin BF, Tkacheva SG, Belozersky AN. Rare bases in animal DNA. Nature. 1970;225(5236):948–9.PubMedCrossRefGoogle Scholar
  187. von Freiesleben U, Rasmussen KV, Schaechter M. SeqA limits DnaA activity in replication from oriC in Escherichia coli. Mol Microbiol. 1994;14(4):763–72.CrossRefGoogle Scholar
  188. Wagner I, Capesius I. Determination of 5-methylcytosine from plant DNA by high-performance liquid chromatography. Biochim Biophys Acta. 1981;654(1):52–6.PubMedCrossRefGoogle Scholar
  189. Wallecha A, Munster V, Correnti J, Chan T, van der Woude M. Dam- and OxyR-dependent phase variation of agn43: essential elements and evidence for a new role of DNA methylation. J Bacteriol. 2002;184(12):3338–47.PubMedPubMedCentralCrossRefGoogle Scholar
  190. Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 2014;505(7481):117–20. doi: 10.1038/nature12730.PubMedCrossRefGoogle Scholar
  191. Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, et al. N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell. 2015;161(6):1388–99. doi: 10.1016/j.cell.2015.05.014.PubMedPubMedCentralCrossRefGoogle Scholar
  192. Weber M, Davies JJ, Wittig D, Oakeley EJ, Haase M, Lam WL, et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet. 2005;37(8):853–62. doi: 10.1038/ng1598.PubMedCrossRefGoogle Scholar
  193. Wei YF, Carter KC, Wang RP, Shell BK. Molecular cloning and functional analysis of a human cDNA encoding an Escherichia coli AlkB homolog, a protein involved in DNA alkylation damage repair. Nucleic Acids Res. 1996;24(5):931–7.PubMedPubMedCentralCrossRefGoogle Scholar
  194. Willis DB, Granoff A. Frog virus 3 DNA is heavily methylated at CpG sequences. Virology. 1980;107(1):250–7.PubMedCrossRefGoogle Scholar
  195. Wion D, Casadesus J. N6-methyl-adenine: an epigenetic signal for DNA-protein interactions. Nat Rev Microbiol. 2006;4(3):183–92. doi: 10.1038/nrmicro1350.PubMedPubMedCentralCrossRefGoogle Scholar
  196. Wold S, Boye E, Slater S, Kleckner N, Skarstad K. Effects of purified SeqA protein on oriC-dependent DNA replication in vitro. EMBO J. 1998;17(14):4158–65. doi: 10.1093/emboj/17.14.4158.PubMedPubMedCentralCrossRefGoogle Scholar
  197. Wu JC, Santi DV. Kinetic and catalytic mechanism of HhaI methyltransferase. J Biol Chem. 1987;262(10):4778–86.PubMedGoogle Scholar
  198. Wu TP, Wang T, Seetin MG, Lai Y, Zhu S, Lin K, et al. DNA methylation on N-adenine in mammalian embryonic stem cells. Nature. 2016. doi: 10.1038/nature17640.Google Scholar
  199. Wyatt GR. Occurrence of 5-methylcytosine in nucleic acids. Nature. 1950;166(4214):237–8.PubMedCrossRefGoogle Scholar
  200. Wyatt GR, Cohen SS. A new pyrimidine base from bacteriophage nucleic acids. Nature. 1952;170(4338):1072–3.PubMedCrossRefGoogle Scholar
  201. Yamaki H, Ohtsubo E, Nagai K, Maeda Y. The oriC unwinding by dam methylation in Escherichia coli. Nucleic Acids Res. 1988;16(11):5067–73.PubMedPubMedCentralCrossRefGoogle Scholar
  202. Yang CG, Yi C, Duguid EM, Sullivan CT, Jian X, Rice PA, et al. Crystal structures of DNA/RNA repair enzymes AlkB and ABH2 bound to dsDNA. Nature. 2008;452(7190):961–5. doi: 10.1038/nature06889.PubMedPubMedCentralCrossRefGoogle Scholar
  203. Yoder JA, Soman NS, Verdine GL, Bestor TH. DNA (cytosine-5)-methyltransferases in mouse cells and tissues. Studies with a mechanism-based probe. J Mol Biol. 1997;270(3):385–95. doi: 10.1006/jmbi.1997.1125.PubMedCrossRefGoogle Scholar
  204. Yue Y, Liu J, He C. RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation. Genes Dev. 2015;29(13):1343–55. doi: 10.1101/gad.262766.115.PubMedPubMedCentralCrossRefGoogle Scholar
  205. Yuki H, Kawasaki H, Imayuki A, Yajima T. Determination of 6-methyladenine in DNA by high-performance liquid chromatography. J Chromatogr. 1979;168(2):489–94.PubMedCrossRefGoogle Scholar
  206. Zaleski P, Wojciechowski M, Piekarowicz A. The role of Dam methylation in phase variation of Haemophilus influenzae genes involved in defence against phage infection. Microbiology. 2005;151(Pt 10):3361–9. doi: 10.1099/mic.0.28184-0.PubMedCrossRefGoogle Scholar
  207. Zelinkova E, Paulicek M, Zelinka J. Modification methylase M. Sau3239I from Streptomyces aureofaciens 3239. FEBS Lett. 1990;271(1–2):147–8.PubMedCrossRefGoogle Scholar
  208. Zhang G, Huang H, Liu D, Cheng Y, Liu X, Zhang W, et al. N(6)-methyladenine DNA modification in Drosophila. Cell. 2015;161(4):893–906. doi: 10.1016/j.cell.2015.04.018.PubMedCrossRefGoogle Scholar
  209. Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell. 2013;49(1):18–29. doi: 10.1016/j.molcel.2012.10.015.PubMedCrossRefGoogle Scholar
  210. Zhou J, Wan J, Gao X, Zhang X, Jaffrey SR, Qian SB. Dynamic m(6)A mRNA methylation directs translational control of heat shock response. Nature. 2015;526(7574):591–4. doi: 10.1038/nature15377.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Zach Klapholz O’Brown
    • 1
    • 2
  • Eric Lieberman Greer
    • 1
    • 2
    Email author
  1. 1.Division of Newborn MedicineBoston Children’s HospitalBostonUSA
  2. 2.Department of PediatricsHarvard Medical SchoolBostonUSA

Personalised recommendations