Mechanisms and Biological Roles of DNA Methyltransferases and DNA Methylation: From Past Achievements to Future Challenges

  • Renata Z. JurkowskaEmail author
  • Albert JeltschEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 945)


DNA methylation and DNA methyltransferases (MTases) – the enzymes that introduce the methylation mark into the DNA – have been studied for almost 70 years. In this chapter, we review key developments in the field that led to our current understanding of the structures and mechanisms of DNA MTases and the essential biological role of DNA methylation, including the discovery of DNA methylation and DNA MTases, the cloning and sequence analysis of bacterial and eukaryotic MTases, and the elucidation of their structure, mechanism, and regulation. We describe genetic studies that contributed greatly to the evolving views on the role of DNA methylation in human development and diseases, the invention of methods for the genome-wide analysis of DNA methylation, and the biochemical identification of DNA MTases and the family of TET enzymes, which are involved in DNA demethylation. We finish by highlighting critical questions for the next years of research in the field.


Amino Acid Motif Replication Focus PWWP Domain Methylation Substrate Tumor Suppressor Gene Promoter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.





High-pressure liquid chromatography


DNA methyltransferase

RM system

Restriction/modification system

SMRT sequencing

Single-molecule real-time sequencing

TET enzyme

Ten-eleven translocation enzyme


Thin-layer chromatography


  1. Arber W, Dussoix D. Host specificity of DNA produced by Escherichia coli. I. Host controlled modification of bacteriophage lambda. J Mol Biol. 1962;5:18–36.PubMedCrossRefGoogle Scholar
  2. Arber W, Linn S. DNA modification and restriction. Annu Rev Biochem. 1969;38:467–500.PubMedCrossRefGoogle Scholar
  3. Baylin SB. The cancer epigenome: its origins, contributions to tumorigenesis, and translational implications. Proc Am Thorac Soc. 2012;9(2):64–5.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Baylin SB, Hoppener JW, de Bustros A, Steenbergh PH, Lips CJ, Nelkin BD. DNA methylation patterns of the calcitonin gene in human lung cancers and lymphomas. Cancer Res. 1986;46(6):2917–22.PubMedGoogle Scholar
  5. Bergman Y, Cedar H. DNA methylation dynamics in health and disease. Nat Struct Mol Biol. 2013;20(3):274–81.PubMedCrossRefGoogle Scholar
  6. Bestor T, Laudano A, Mattaliano R, Ingram V. Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases. J Mol Biol. 1988;203(4):971–83.PubMedCrossRefGoogle Scholar
  7. Bird AP. DNA methylation and the frequency of CpG in animal DNA. Nucleic Acids Res. 1980;8(7):1499–504.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bird A, Taggart M, Frommer M, Miller OJ, Macleod D. A fraction of the mouse genome that is derived from islands of nonmethylated, CpG-rich DNA. Cell. 1985;40(1):91–9.PubMedCrossRefGoogle Scholar
  9. Bostick M, Kim JK, Esteve PO, Clark A, Pradhan S, Jacobsen SE. UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science. 2007;317(5845):1760–4.PubMedCrossRefGoogle Scholar
  10. Bourc’his D, Bestor TH. Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature. 2004;431(7004):96–9.PubMedCrossRefGoogle Scholar
  11. Bourc’his D, Xu GL, Lin CS, Bollman B, Bestor TH. Dnmt3L and the establishment of maternal genomic imprints. Science. 2001;294(5551):2536–9.PubMedCrossRefGoogle Scholar
  12. Boyer HW. DNA restriction and modification mechanisms in bacteria. Annu Rev Microbiol. 1971;25:153–76.PubMedCrossRefGoogle Scholar
  13. Browne MJ, Turnbull JF, McKay EL, Adams RL, Burdon RH. The sequence specificity of a mammalian DNA methylase. Nucleic Acids Res. 1977;4(4):1039–45.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bujnicki JM. Sequence permutations in the molecular evolution of DNA methyltransferases. BMC Evol Biol. 2002;2:3.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Cheng X. Structure and function of DNA methyltransferases. Annu Rev Biophys Biomol Struct. 1995;24:293–318.PubMedCrossRefGoogle Scholar
  16. Cheng X, Kumar S, Posfai J, Pflugrath JW, Roberts RJ. Crystal structure of the HhaI DNA methyltransferase complexed with S-adenosyl-L-methionine. Cell. 1993;74(2):299–307.PubMedCrossRefGoogle Scholar
  17. Chuang LS, Ian HI, Koh TW, Ng HH, Xu G, Li BF. Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1. Science. 1997;277(5334):1996–2000.PubMedCrossRefGoogle Scholar
  18. Clark SJ, Harrison J, Paul CL, Frommer M. High sensitivity mapping of methylated cytosines. Nucleic Acids Res. 1994;22(15):2990–7.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD, et al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature. 2008;452(7184):215–9.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Deplus R, Blanchon L, Rajavelu A, Boukaba A, Defrance M, Luciani J, et al. Regulation of DNA methylation patterns by CK2-mediated phosphorylation of Dnmt3a. Cell Rep. 2014;8(3):743–53.PubMedCrossRefGoogle Scholar
  21. Dhayalan A, Rajavelu A, Rathert P, Tamas R, Jurkowska RZ, Ragozin S, et al. The Dnmt3a PWWP domain reads histone 3 lysine 36 trimethylation and guides DNA methylation. J Biol Chem. 2010;285(34):26114–20.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Dunn DB, Smith JD. Occurrence of a new base in the deoxyribonucleic acid of a strain of Bacterium coli. Nature. 1955;175(4451):336–7.PubMedCrossRefGoogle Scholar
  23. Ehrlich M, Wang RY. 5-Methylcytosine in eukaryotic DNA. Science. 1981;212(4501):1350–7.PubMedCrossRefGoogle Scholar
  24. Esteve PO, Chang Y, Samaranayake M, Upadhyay AK, Horton JR, Feehery GR, et al. A methylation and phosphorylation switch between an adjacent lysine and serine determines human DNMT1 stability. Nat Struct Mol Biol. 2011;18(1):42–8.PubMedCrossRefGoogle Scholar
  25. Fahy J, Jeltsch A, Arimondo PB. DNA methyltransferase inhibitors in cancer: a chemical and therapeutic patent overview and selected clinical studies. Expert Opin Ther Pat. 2012;22(12):1427–42.PubMedCrossRefGoogle Scholar
  26. Feinberg AP, Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature. 1983;301(5895):89–92.PubMedCrossRefGoogle Scholar
  27. Flusberg BA, Webster DR, Lee JH, Travers KJ, Olivares EC, Clark TA, et al. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Methods. 2010;7(6):461–5.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A. 1992;89(5):1827–31.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Gama-Sosa MA, Slagel VA, Trewyn RW, Oxenhandler R, Kuo KC, Gehrke CW, et al. The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Res. 1983;11(19):6883–94.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Goedecke K, Pignot M, Goody RS, Scheidig AJ, Weinhold E. Structure of the N6-adenine DNA methyltransferase M.TaqI in complex with DNA and a cofactor analog. Nat Struct Biol. 2001;8(2):121–5.PubMedCrossRefGoogle Scholar
  31. Gold M, Hurwitz J. The enzymatic methylation of ribonucleic acid and deoxyribonucleic acid. V. Purification and properties of the deoxyribonucleic acid-methylating activity of Escherichia coli. J Biol Chem. 1964a;239:3858–65.PubMedGoogle Scholar
  32. Gold M, Hurwitz J. The enzymatic methylation of ribonucleic acid and deoxyribonucleic acid. Vi. Further studies on the properties of the deoxyribonucleic acid methylation reaction. J Biol Chem. 1964b;239:3866–74.PubMedGoogle Scholar
  33. Gold M, Hurwitz J, Anders M. The enzymatic methylation of RNA and DNA, Ii. On the species specificity of the methylation enzymes. Proc Natl Acad Sci U S A. 1963;50(1):164–9.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Gold M, Hausmann R, Maitra U, Hurwitz J. The enzymatic methylation of Rna and DNA 8 effects of bacteriophage infection on the activity of the methylating enzymes. Proc Natl Acad Sci U S A. 1964;52:292–7.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Greger V, Passarge E, Hopping W, Messmer E, Horsthemke B. Epigenetic changes may contribute to the formation and spontaneous regression of retinoblastoma. Hum Genet. 1989;83(2):155–8.PubMedCrossRefGoogle Scholar
  36. Gruenbaum Y, Naveh-Many T, Cedar H, Razin A. Sequence specificity of methylation in higher plant DNA. Nature. 1981;292(5826):860–2.PubMedCrossRefGoogle Scholar
  37. Gruenbaum Y, Cedar H, Razin A. Substrate and sequence specificity of a eukaryotic DNA methylase. Nature. 1982;295(5850):620–2.PubMedCrossRefGoogle Scholar
  38. Guo X, Wang L, Li J, Ding Z, Xiao J, Yin X, et al. Structural insight into autoinhibition and histone H3-induced activation of DNMT3A. Nature. 2015;517(7536):640–4.PubMedCrossRefGoogle Scholar
  39. Guschlbauer W. The DNA, and S-adenosylmethionine-binding regions of EcoDam and related methyltransferases. Gene. 1988;74(1):211–4.PubMedCrossRefGoogle Scholar
  40. Hahn MA, Szabo PE, Pfeifer GP. 5-Hydroxymethylcytosine: a stable or transient DNA modification? Genomics. 2014;104(5):314–23.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Hamidi T, Singh AK, Chen T. Genetic alterations of DNA methylation machinery in human diseases. Epigenomics. 2015;7(2):247–65.PubMedCrossRefGoogle Scholar
  42. Hata K, Okano M, Lei H, Li E. Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development. 2002;129(8):1983–93.PubMedGoogle Scholar
  43. He YF, Li BZ, Li Z, Liu P, Wang Y, Tang Q, et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science. 2011;333(6047):1303–7.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Herman GE, Modrich P. Escherichia coli dam methylase. Physical and catalytic properties of the homogeneous enzyme. J Biol Chem. 1982;257(5):2605–12.PubMedGoogle Scholar
  45. Holliday R, Pugh JE. DNA modification mechanisms and gene activity during development. Science. 1975;187(4173):226–32.PubMedCrossRefGoogle Scholar
  46. Horton JR, Liebert K, Bekes M, Jeltsch A, Cheng X. Structure and substrate recognition of the Escherichia coli DNA adenine methyltransferase. J Mol Biol. 2006;358(2):559–70.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Hotchkiss RD. The quantitative separation of purines, pyrimidines, and nucleosides by paper chromatography. J Biol Chem. 1948;175(1):315–32.PubMedGoogle Scholar
  48. Hurwitz J, Gold M, Anders M. The enzymatic methylation of ribonucleic acid and deoxyribonucleic acid. 3. Purification of soluble ribonucleic acid-methylating enzymes. J Biol Chem. 1964a;239:3462–73.PubMedGoogle Scholar
  49. Hurwitz J, Gold M, Anders M. The enzymatic methylation of ribonucleic acid and deoxyribonucleic acid. Iv. The properties of the soluble ribonucleic acid-methylating enzymes. J Biol Chem. 1964b;239:3474–82.PubMedGoogle Scholar
  50. Ingrosso D, Fowler AV, Bleibaum J, Clarke S. Sequence of the D-aspartyl/L-isoaspartyl protein methyltransferase from human erythrocytes. Common sequence motifs for protein, DNA, RNA, and small molecule S-adenosylmethionine-dependent methyltransferases. J Biol Chem. 1989;264(33):20131–9.PubMedGoogle Scholar
  51. Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science. 2011;333(6047):1300–3.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Janulaitis A, Klimasauskas S, Petrusyte M, Butkus V. Cytosine modification in DNA by BcnI methylase yields N4-methylcytosine. FEBS Lett. 1983;161(1):131–4.PubMedCrossRefGoogle Scholar
  53. Jeltsch A. Circular permutations in the molecular evolution of DNA methyltransferases. J Mol Evol. 1999;49(1):161–4.PubMedCrossRefGoogle Scholar
  54. Jeltsch A. The cytosine N4-methyltransferase M.PvuII also modifies adenine residues. Biol Chem. 2001;382(4):707–10.PubMedCrossRefGoogle Scholar
  55. Jeltsch A. Beyond Watson and Crick: DNA methylation and molecular enzymology of DNA methyltransferases. Chembiochem. 2002;3(4):274–93.PubMedCrossRefGoogle Scholar
  56. Jeltsch A. Molecular biology. Phylogeny Methylomes Sci. 2010;328(5980):837–8.Google Scholar
  57. Jeltsch A. Oxygen, epigenetic signaling, and the evolution of early life. Trends Biochem Sci. 2013;38(4):172–6.PubMedCrossRefGoogle Scholar
  58. Jeltsch A, Jurkowska RZ. New concepts in DNA methylation. Trends Biochem Sci. 2014;39(7):310–8.PubMedCrossRefGoogle Scholar
  59. Jeltsch A, Christ F, Fatemi M, Roth M. On the substrate specificity of DNA methyltransferases. adenine-N6 DNA methyltransferases also modify cytosine residues at position N4. J Biol Chem. 1999;274(28):19538–44.PubMedCrossRefGoogle Scholar
  60. Jia D, Jurkowska RZ, Zhang X, Jeltsch A, Cheng X. Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature. 2007;449(7159):248–51.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Jones PA, Taylor SM. Cellular differentiation, cytidine analogs and DNA methylation. Cell. 1980;20(1):85–93.PubMedCrossRefGoogle Scholar
  62. Jurkowska RZ, Jurkowski TP, Jeltsch A. Structure and function of mammalian DNA methyltransferases. Chembiochem. 2011;12(2):206–22.PubMedCrossRefGoogle Scholar
  63. Kagan RM, Clarke S. Widespread occurrence of three sequence motifs in diverse S-adenosylmethionine-dependent methyltransferases suggests a common structure for these enzymes. Arch Biochem Biophys. 1994;310(2):417–27.PubMedCrossRefGoogle Scholar
  64. Kaneda M, Okano M, Hata K, Sado T, Tsujimoto N, Li E, et al. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature. 2004;429(6994):900–3.PubMedCrossRefGoogle Scholar
  65. Klimasauskas S, Timinskas A, Menkevicius S, Butkiene D, Butkus V, Janulaitis A. Sequence motifs characteristic of DNA[cytosine-N4]methyltransferases: similarity to adenine and cytosine-C5 DNA-methylases. Nucleic Acids Res. 1989;17(23):9823–32.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Klimasauskas S, Kumar S, Roberts RJ, Cheng X. HhaI methyltransferase flips its target base out of the DNA helix. Cell. 1994;76(2):357–69.PubMedCrossRefGoogle Scholar
  67. Kriaucionis S, Heintz N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science. 2009;324(5929):929–30.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Kungulovski G, Jeltsch A. Epigenome editing: state of the art, concepts, and perspectives. Trends Genet. 2016;32(2):101–13.PubMedCrossRefGoogle Scholar
  69. Labahn J, Granzin J, Schluckebier G, Robinson DP, Jack WE, Schildkraut I, et al. Three-dimensional structure of the adenine-specific DNA methyltransferase M.Taq I in complex with the cofactor S-adenosylmethionine. Proc Natl Acad Sci U S A. 1994;91(23):10957–61.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Lauster R, Kriebardis A, Guschlbauer W. The GATATC-modification enzyme EcoRV is closely related to the GATC-recognizing methyltransferases DpnII and dam from E. coli and phage T4. FEBS Lett. 1987;220(1):167–76.PubMedCrossRefGoogle Scholar
  71. Lauster R, Trautner TA, Noyer-Weidner M. Cytosine-specific type II DNA methyltransferases. A conserved enzyme core with variable target-recognizing domains. J Mol Biol. 1989;206(2):305–12.PubMedCrossRefGoogle Scholar
  72. Lei H, Oh SP, Okano M, Juttermann R, Goss KA, Jaenisch R, et al. De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells. Development. 1996;122(10):3195–205.PubMedGoogle Scholar
  73. Li E, Bestor TH, Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell. 1992;69(6):915–26.PubMedCrossRefGoogle Scholar
  74. Lister R, O’Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, et al. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell. 2008;133(3):523–36.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Malone T, Blumenthal RM, Cheng X. Structure-guided analysis reveals nine sequence motifs conserved among DNA amino-methyltransferases, and suggests a catalytic mechanism for these enzymes. J Mol Biol. 1995;253(4):618–32.PubMedCrossRefGoogle Scholar
  76. Marinus MG, Morris NR. Isolation of deoxyribonucleic acid methylase mutants of Escherichia coli K-12. J Bacteriol. 1973;114(3):1143–50.PubMedPubMedCentralGoogle Scholar
  77. Martin JL, McMillan FM. SAM (dependent) I AM: the S-adenosylmethionine-dependent methyltransferase fold. Curr Opin Struct Biol. 2002;12(6):783–93.PubMedCrossRefGoogle Scholar
  78. Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature. 2008;454(7205):766–70.PubMedPubMedCentralGoogle Scholar
  79. Meselson M, Yuan R, Heywood J. Restriction and modification of DNA. Annu Rev Biochem. 1972;41:447–66.PubMedCrossRefGoogle Scholar
  80. Modrich P. Studies on sequence recognition by type II restriction and modification enzymes. CRC Crit Rev Biochem. 1982;13(3):287–323.PubMedCrossRefGoogle Scholar
  81. Munzel M, Globisch D, Bruckl T, Wagner M, Welzmiller V, Michalakis S, et al. Quantification of the sixth DNA base hydroxymethylcytosine in the brain. Angew Chem Int Ed Engl. 2010;49(31):5375–7.PubMedCrossRefGoogle Scholar
  82. Nishiyama A, Yamaguchi L, Sharif J, Johmura Y, Kawamura T, Nakanishi K, et al. Uhrf1-dependent H3K23 ubiquitylation couples maintenance DNA methylation and replication. Nature. 2013;502(7470):249–53.PubMedCrossRefGoogle Scholar
  83. Okano M, Xie S, Li E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet. 1998;19(3):219–20.PubMedCrossRefGoogle Scholar
  84. Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99(3):247–57.PubMedCrossRefGoogle Scholar
  85. Ooi SK, Bestor TH. The colorful history of active DNA demethylation. Cell. 2008;133(7):1145–8.PubMedCrossRefGoogle Scholar
  86. Ooi SK, Qiu C, Bernstein E, Li K, Jia D, Yang Z, et al. DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature. 2007;448(7154):714–7.PubMedPubMedCentralCrossRefGoogle Scholar
  87. Pfaffeneder T, Hackner B, Truss M, Munzel M, Muller M, Deiml CA, et al. The discovery of 5-formylcytosine in embryonic stem cell DNA. Angew Chem Int Ed Engl. 2011;50(31):7008–12.PubMedCrossRefGoogle Scholar
  88. Pingoud A, Jeltsch A. Recognition and cleavage of DNA by type-II restriction endonucleases. Eur J Biochem/FEBS. 1997;246(1):1–22.CrossRefGoogle Scholar
  89. Pingoud A, Wilson GG, Wende W. Type II restriction endonucleases--a historical perspective and more. Nucleic Acids Res. 2014;42(12):7489–527.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Pogolotti Jr AL, Ono A, Subramaniam R, Santi DV. On the mechanism of DNA-adenine methylase. J Biol Chem. 1988;263(16):7461–4.PubMedGoogle Scholar
  91. Posfai J, Bhagwat AS, Posfai G, Roberts RJ. Predictive motifs derived from cytosine methyltransferases. Nucleic Acids Res. 1989;17(7):2421–35.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Razin A, Riggs AD. DNA methylation and gene function. Science. 1980;210(4470):604–10.PubMedCrossRefGoogle Scholar
  93. Reich NO, Mashhoon N. Inhibition of EcoRI DNA methylase with cofactor analogs. J Biol Chem. 1990;265(15):8966–70.PubMedGoogle Scholar
  94. Riggs AD. X inactivation, differentiation, and DNA methylation. Cytogenet Cell Genet. 1975;14(1):9–25.PubMedCrossRefGoogle Scholar
  95. Roberts RJ. On base flipping. Cell. 1995;82(1):9–12.PubMedCrossRefGoogle Scholar
  96. Roberts RJ, Cheng X. Base flipping. Annu Rev Biochem. 1998;67:181–98.PubMedCrossRefGoogle Scholar
  97. Sanchez-Romero MA, Cota I, Casadesus J. DNA methylation in bacteria: from the methyl group to the methylome. Curr Opin Microbiol. 2015;25:9–16.PubMedCrossRefGoogle Scholar
  98. Santi DV, Norment A, Garrett CE. Covalent bond formation between a DNA-cytosine methyltransferase and DNA containing 5-azacytosine. Proc Natl Acad Sci U S A. 1984;81(22):6993–7.PubMedPubMedCentralCrossRefGoogle Scholar
  99. Schluckebier G, O’Gara M, Saenger W, Cheng X. Universal catalytic domain structure of AdoMet-dependent methyltransferases. J Mol Biol. 1995;247(1):16–20.PubMedCrossRefGoogle Scholar
  100. Seeman NC, Rosenberg JM, Rich A. Sequence-specific recognition of double helical nucleic acids by proteins. Proc Natl Acad Sci U S A. 1976;73(3):804–8.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Sharif J, Muto M, Takebayashi S, Suetake I, Iwamatsu A, Endo TA, et al. The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature. 2007;450(7171):908–12.PubMedCrossRefGoogle Scholar
  102. Song J, Rechkoblit O, Bestor TH, Patel DJ. Structure of DNMT1-DNA complex reveals a role for autoinhibition in maintenance DNA methylation. Science. 2011;331(6020):1036–40.PubMedCrossRefGoogle Scholar
  103. Song J, Teplova M, Ishibe-Murakami S, Patel DJ. Structure-based mechanistic insights into DNMT1-mediated maintenance DNA methylation. Science. 2012;335(6069):709–12.PubMedPubMedCentralCrossRefGoogle Scholar
  104. Swartz MN, Trautner TA, Kornberg A. Enzymatic synthesis of deoxyribonucleic acid. XI. Further studies on nearest neighbor base sequences in deoxyribonucleic acids. J Biol Chem. 1962;237:1961–7.PubMedGoogle Scholar
  105. Szomolanyi E, Kiss A, Venetianer P. Cloning the modification methylase gene of Bacillus sphaericus R in Escherichia coli. Gene. 1980;10(3):219–25.PubMedCrossRefGoogle Scholar
  106. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324(5929):930–5.PubMedPubMedCentralCrossRefGoogle Scholar
  107. Takeshita K, Suetake I, Yamashita E, Suga M, Narita H, Nakagawa A, et al. Structural insight into maintenance methylation by mouse DNA methyltransferase 1 (Dnmt1). Proc Natl Acad Sci U S A. 2011;108(22):9055–9.PubMedPubMedCentralCrossRefGoogle Scholar
  108. Tawfik DS, Griffiths AD. Man-made cell-like compartments for molecular evolution. Nat Biotechnol. 1998;16(7):652–6.PubMedCrossRefGoogle Scholar
  109. Tazi J, Bird A. Alternative chromatin structure at CpG islands. Cell. 1990;60(6):909–20.PubMedCrossRefGoogle Scholar
  110. Wilson GG, Murray NE. Restriction and modification systems. Annu Rev Genet. 1991;25:585–627.PubMedCrossRefGoogle Scholar
  111. Wu JC, Santi DV. On the mechanism and inhibition of DNA cytosine methyltransferases. Prog Clin Biol Res. 1985;198:119–29.PubMedGoogle Scholar
  112. Wu JC, Santi DV. Kinetic and catalytic mechanism of HhaI methyltransferase. J Biol Chem. 1987;262(10):4778–86.PubMedGoogle Scholar
  113. Wu SC, Zhang Y. Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol. 2010;11(9):607–20.PubMedPubMedCentralCrossRefGoogle Scholar
  114. Xu GL, Bestor TH. Cytosine methylation targeted to pre-determined sequences. Nat Genet. 1997;17(4):376–8.PubMedCrossRefGoogle Scholar
  115. Yamashita Y, Yuan J, Suetake I, Suzuki H, Ishikawa Y, Choi YL, et al. Array-based genomic resequencing of human leukemia. Oncogene. 2010;29(25):3723–31.PubMedCrossRefGoogle Scholar
  116. Yang X, Lay F, Han H, Jones PA. Targeting DNA methylation for epigenetic therapy. Trends Pharmacol Sci. 2010;31(11):536–46.PubMedPubMedCentralCrossRefGoogle Scholar
  117. Zhang Y, Jurkowska R, Soeroes S, Rajavelu A, Dhayalan A, Bock I, et al. Chromatin methylation activity of Dnmt3a and Dnmt3a/3L is guided by interaction of the ADD domain with the histone H3 tail. Nucleic Acids Res. 2010;38(13):4246–53.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.BioMed X Innovation CenterHeidelbergGermany
  2. 2.Faculty of ChemistryInstitute of Biochemistry, University of StuttgartStuttgartGermany

Personalised recommendations