Systemic Therapy for Advanced Metastatic Thyroid Cancer

  • Dwight Owen
  • Manisha H. ShahEmail author


Thyroid cancer is the most common form of endocrine malignancy worldwide, and differentiated thyroid cancer (DTC) is the most common histological subtype and includes papillary, follicular, and Hürthle cell histologies. The incidence of thyroid cancer is increasing among both men and women, with a projected 62,450 new cases in 2015. Treatment for DTC is typically surgical, followed by radioactive iodine and levothyroxine therapy. However, a minority of patients with DTC will develop metastatic disease, and as many as two-thirds of these patients will be refractory to iodine therapy. Cytotoxic chemotherapy has extremely limited activity in metastatic, iodine-refractory cases of DTC. Over the past decade, the discovery of specific genetic mutations associated with DTC, along with the development of novel agents such as multitargeted tyrosine kinase inhibitors (MKI), has led to FDA approval of new therapeutic agents in metastatic, radioiodine-refractory DTC. This incredible progress represents a major breakthrough in the field of DTC treatment. Despite these exciting advances the impact of such therapies on overall survival remains unknown. Further research is needed to identify new therapies with better response and toxicity profiles as well as to determine how to best utilize these new agents safely either sequentially or in combination and what steps to take when they are no longer effective.


Differentiated thyroid cancer Papillary Follicular Hürthle cell Chemotherapy Kinase inhibitor Radioactive iodine-refractory 


  1. 1.
    Sherman SI. Thyroid carcinoma. Lancet. 2003;361(9356):501–11.CrossRefPubMedGoogle Scholar
  2. 2.
    Tuttle RM, Haddad RI, Ball DW, Byrd D, Dickson P, Duh QY, et al. Thyroid carcinoma, version 2.2014. J Natl Compr Canc Netw. 2014;12(12):1671–80; quiz 80.PubMedGoogle Scholar
  3. 3.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5–29.CrossRefPubMedGoogle Scholar
  4. 4.
    Durante C, Haddy N, Baudin E, Leboulleux S, Hartl D, Travagli JP, et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J Clin Endocrinol Metab. 2006;91(8):2892–9.CrossRefPubMedGoogle Scholar
  5. 5.
    Matuszczyk A, Petersenn S, Bockisch A, Gorges R, Sheu SY, Veit P, et al. Chemotherapy with doxorubicin in progressive medullary and thyroid carcinoma of the follicular epithelium. Horm Metab Res. 2008;40(3):210–3.CrossRefPubMedGoogle Scholar
  6. 6.
    Haugen BRM, Alexander EK, Bible KC, Doherty G, Mandel SJ, Nikiforov YE, et al. American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer. Thyroid. 2015;26(1):1–133.CrossRefGoogle Scholar
  7. 7.
    Matsui J, Yamamoto Y, Funahashi Y, Tsuruoka A, Watanabe T, Wakabayashi T, et al. E7080, a novel inhibitor that targets multiple kinases, has potent antitumor activities against stem cell factor producing human small cell lung cancer H146, based on angiogenesis inhibition. Int J Cancer. 2008;122(3):664–71.CrossRefPubMedGoogle Scholar
  8. 8.
    Salajegheh A, Smith RA, Kasem K, Gopalan V, Nassiri MR, William R, et al. Single nucleotide polymorphisms and mRNA expression of VEGF-A in papillary thyroid carcinoma: potential markers for aggressive phenotypes. Eur J Surg Oncol J Eur Soc Surg Oncol Br Assoc Surg Oncol. 2011;37(1):93–9.Google Scholar
  9. 9.
    Cabanillas ME, Schlumberger M, Jarzab B, Martins RG, Pacini F, Robinson B, et al. A phase 2 trial of lenvatinib (E7080) in advanced, progressive, radioiodine-refractory, differentiated thyroid cancer: A clinical outcomes and biomarker assessment. Cancer. 2015;121(16):2749–56.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Schlumberger M, Tahara M, Wirth LJ, Robinson B, Brose MS, Elisei R, et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N Engl J Med. 2015;372(7):621–30.CrossRefPubMedGoogle Scholar
  11. 11.
    Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, et al. BAY 43–9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004;64(19):7099–109.CrossRefPubMedGoogle Scholar
  12. 12.
    Brose MS, Nutting CM, Jarzab B, Elisei R, Siena S, Bastholt L, et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet. 2014;384(9940):319–28.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Thomas L, Lai SY, Dong W, Feng L, Dadu R, Regone RM, et al. Sorafenib in metastatic thyroid cancer: a systematic review. Oncologist. 2014;19(3):251–8.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Nikiforov YE. RET/PTC rearrangement in thyroid tumors. Endocr Pathol. 2002;13(1):3–16.CrossRefPubMedGoogle Scholar
  15. 15.
    Wells Jr SA, Robinson BG, Gagel RF, Dralle H, Fagin JA, Santoro M, et al. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial. J Clin Oncol. 2012;30(2):134–41.CrossRefPubMedGoogle Scholar
  16. 16.
    Leboulleux S, Bastholt L, Krause T, de la Fouchardiere C, Tennvall J, Awada A, et al. Vandetanib in locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 2 trial. Lancet Oncol. 2012;13(9):897–905.CrossRefPubMedGoogle Scholar
  17. 17.
    Gupta-Abramson V, Troxel AB, Nellore A, Puttaswamy K, Redlinger M, Ransone K, et al. Phase II trial of sorafenib in advanced thyroid cancer. J Clin Oncol. 2008;26(29):4714–9.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Haraldsdottir S, Shah MH. New era for treatment in differentiated thyroid cancer. Lancet. 2014;384(9940):286–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Krajewska J, Handkiewicz-Junak D, Jarzab B. Sorafenib for the treatment of thyroid cancer: an updated review. Expert Opin Pharmacother. 2015;16(4):573–83.CrossRefPubMedGoogle Scholar
  20. 20.
    Sherman SI, Wirth LJ, Droz J-P, Hofmann M, Bastholt L, Martins RG, et al. Motesanib diphosphate in progressive differentiated thyroid cancer. N Engl J Med. 2008;359(1):31–42.CrossRefPubMedGoogle Scholar
  21. 21.
    Locati LD, Licitra L, Agate L, Ou SH, Boucher A, Jarzab B, et al. Treatment of advanced thyroid cancer with axitinib: phase 2 study with pharmacokinetic/pharmacodynamic and quality-of-life assessments. Cancer. 2014;120(17):2694–703.CrossRefPubMedGoogle Scholar
  22. 22.
    Kumar R, Knick VB, Rudolph SK, Johnson JH, Crosby RM, Crouthamel MC, et al. Pharmacokinetic-pharmacodynamic correlation from mouse to human with pazopanib, a multikinase angiogenesis inhibitor with potent antitumor and antiangiogenic activity. Mol Cancer Ther. 2007;6(7):2012–21.CrossRefPubMedGoogle Scholar
  23. 23.
    Bible KC, Suman VJ, Molina JR, Smallridge RC, Maples WJ, Menefee ME, et al. Efficacy of pazopanib in progressive, radioiodine-refractory, metastatic differentiated thyroid cancers: results of a phase 2 consortium study. Lancet Oncol. 2010;11(10):962–72.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Chow LQ, Eckhardt SG. Sunitinib: from rational design to clinical efficacy. J Clin Oncol. 2007;25(7):884–96.CrossRefPubMedGoogle Scholar
  25. 25.
    Carr LL, Mankoff DA, Goulart BH, Eaton KD, Capell PT, Kell EM, et al. Phase II study of daily sunitinib in FDG-PET-positive, iodine-refractory differentiated thyroid cancer and metastatic medullary carcinoma of the thyroid with functional imaging correlation. Clin Cancer Res. 2010;16(21):5260–8.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Robbins RJ, Wan Q, Grewal RK, Reibke R, Gonen M, Strauss HW, et al. Real-time prognosis for metastatic thyroid carcinoma based on 2-[18F]fluoro-2-deoxy-D-glucose-positron emission tomography scanning. J Clin Endocrinol Metab. 2006;91(2):498–505.CrossRefPubMedGoogle Scholar
  27. 27.
    Prior JO, Montemurro M, Orcurto MV, Michielin O, Luthi F, Benhattar J, et al. Early prediction of response to sunitinib after imatinib failure by 18F-fluorodeoxyglucose positron emission tomography in patients with gastrointestinal stromal tumor. J Clin Oncol. 2009;27(3):439–45.CrossRefPubMedGoogle Scholar
  28. 28.
    Yakes FM, Chen J, Tan J, Yamaguchi K, Shi Y, Yu P, et al. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol Cancer Ther. 2011;10(12):2298–308.CrossRefPubMedGoogle Scholar
  29. 29.
    Shah MHDJ, Menefee ME, et al. Cabozantinib in patients with radioiodine-refractory differentiated thyroid cancer who progressed on prior VEGFR-targeted therapy: results of NCI- and ITOG-sponsored multicenter phase II clinical trial. Presented at 15th International Thyroid Congress, Lake Buena Vista; 2015.Google Scholar
  30. 30.
    Schlumberger M, Challeton C, De Vathaire F, Travagli JP, Gardet P, Lumbroso JD, et al. Radioactive iodine treatment and external radiotherapy for lung and bone metastases from thyroid carcinoma. J Nucl Med Off Publ Soc Nucl Med. 1996;37(4):598–605.Google Scholar
  31. 31.
    Liu YY, van der Pluijm G, Karperien M, Stokkel MP, Pereira AM, Morreau J, et al. Lithium as adjuvant to radioiodine therapy in differentiated thyroid carcinoma: clinical and in vitro studies. Clin Endocrinol (Oxf). 2006;64(6):617–24.CrossRefGoogle Scholar
  32. 32.
    Handkiewicz-Junak D, Roskosz J, Hasse-Lazar K, Szpak-Ulczok S, Puch Z, Kukulska A, et al. 13-cis-retinoic acid re-differentiation therapy and recombinant human thyrotropin-aided radioiodine treatment of non-Functional metastatic thyroid cancer: a single-center, 53-patient phase 2 study. Thyroid Res. 2009;2(1):8.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Knauf JA, Kuroda H, Basu S, Fagin JA. RET/PTC-induced dedifferentiation of thyroid cells is mediated through Y1062 signaling through SHC-RAS-MAP kinase. Oncogene. 2003;22(28):4406–12.CrossRefPubMedGoogle Scholar
  34. 34.
    Wheler J, Yelensky R, Falchook G, Kim KB, Hwu P, Tsimberidou AM, et al. Next generation sequencing of exceptional responders with BRAF-mutant melanoma: implications for sensitivity and resistance. BMC Cancer. 2015;15:61.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Durante C, Puxeddu E, Ferretti E, Morisi R, Moretti S, Bruno R, et al. BRAF mutations in papillary thyroid carcinomas inhibit genes involved in iodine metabolism. J Clin Endocrinol Metab. 2007;92(7):2840–3.CrossRefPubMedGoogle Scholar
  36. 36.
    Rothenberg SM, McFadden DG, Palmer EL, Daniels GH, Wirth LJ. Redifferentiation of iodine-refractory BRAF V600E-mutant metastatic papillary thyroid cancer with dabrafenib. Clin Cancer Res. 2015;21(5):1028–35.CrossRefPubMedGoogle Scholar
  37. 37.
    Cabanillas ME, Patel A, Danysh BP, Dadu R, Kopetz S, Falchook G. BRAF inhibitors: experience in thyroid cancer and general review of toxicity. Horm Cancer. 2015;6(1):21–36.CrossRefPubMedGoogle Scholar
  38. 38.
    Nucera C, Nehs MA, Nagarkatti SS, Sadow PM, Mekel M, Fischer AH, et al. Targeting BRAFV600E with PLX4720 displays potent antimigratory and anti-invasive activity in preclinical models of human thyroid cancer. Oncologist. 2011;16(3):296–309.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Kim KB, Cabanillas ME, Lazar AJ, Williams MD, Sanders DL, Ilagan JL, et al. Clinical responses to vemurafenib in patients with metastatic papillary thyroid cancer harboring BRAF(V600E) mutation. Thyroid. 2013;23(10):1277–83.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Dadu R, Shah K, Busaidy NL, Waguespack SG, Habra MA, Ying AK, et al. Efficacy and tolerability of vemurafenib in patients with BRAFV600E -positive papillary thyroid cancer: M.D. Anderson Cancer Center Off Label Experience. J Clin Endocrinol Metab. 2015;100(1):E77–81.CrossRefPubMedGoogle Scholar
  41. 41.
    Brose MSCM, Cohen EEW, et al. An open-label, multi-center phase 2 study of the BRAF inhibitor vemurafenib in patients with metastatic or unresectable papillary thryoid cancer (PTC) positive for the BRAF V600E mutation. Eur J Cancer. 2013;49(3):S7–19.Google Scholar
  42. 42.
    Gibney GT, Zager JS. Clinical development of dabrafenib in BRAF mutant melanoma and other malignancies. Expert Opin Drug Metab Toxicol. 2013;9(7):893–9.CrossRefPubMedGoogle Scholar
  43. 43.
    Falchook GS, Millward M, Hong D, Naing A, Piha-Paul S, Waguespack SG, et al. BRAF inhibitor dabrafenib in patients with metastatic BRAF-mutant thyroid cancer. Thyroid. 2015;25(1):71–7.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Villanueva J, Vultur A, Lee JT, Somasundaram R, Fukunaga-Kalabis M, Cipolla AK, et al. Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell. 2010;18(6):683–95.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Petrulea MS, Plantinga TS, Smit JW, Georgescu CE, Netea-Maier RT. PI3K/Akt/mTOR: a promising therapeutic target for non-medullary thyroid carcinoma. Cancer Treat Rev. 2015;41(8):707–13.CrossRefPubMedGoogle Scholar
  46. 46.
    Wang Y, Hou P, Yu H, Wang W, Ji M, Zhao S, et al. High prevalence and mutual exclusivity of genetic alterations in the phosphatidylinositol-3-kinase/akt pathway in thyroid tumors. J Clin Endocrinol Metab. 2007;92(6):2387–90.CrossRefPubMedGoogle Scholar
  47. 47.
    Wu G, Mambo E, Guo Z, Hu S, Huang X, Gollin SM, et al. Uncommon mutation, but common amplifications, of the PIK3CA gene in thyroid tumors. J Clin Endocrinol Metab. 2005;90(8):4688–93.CrossRefPubMedGoogle Scholar
  48. 48.
    Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell. 2006;124(3):471–84.CrossRefPubMedGoogle Scholar
  49. 49.
    Lim SM, Chang H, Yoon MJ, Hong YK, Kim H, Chung WY, et al. A multicenter, phase II trial of everolimus in locally advanced or metastatic thyroid cancer of all histologic subtypes. Ann Oncol. 2013;24(12):3089–94.CrossRefPubMedGoogle Scholar
  50. 50.
    Sherman EJHA, Fury MG et al. Combination of everolimus and sorafenib in the treatment of thyroid cancer: update on phase II study. J Clin Oncol. 2015;33(Suppl): (abstr 6069).Google Scholar
  51. 51.
    Brose MSTA, Yarchoan M, et al. A phase II study of everolimus (E) and sorafenib (S) in patients (PTS) with metastatic differentiated thyroid cancer who have progressed on sorafenib alone. J Clin Oncol. 2015;33(Suppl): (abstr 6072).Google Scholar
  52. 52.
    Gottlieb JA, Hill Jr CS. Chemotherapy of thyroid cancer with adriamycin. Experience with 30 patients. N Engl J Med. 1974;290(4):193–7.CrossRefPubMedGoogle Scholar
  53. 53.
    Haugen BR. Management of the patient with progressive radioiodine non-responsive disease. Semin Surg Oncol. 1999;16(1):34–41.CrossRefPubMedGoogle Scholar
  54. 54.
    Shimaoka K, Schoenfeld DA, DeWys WD, Creech RH, DeConti R. A randomized trial of doxorubicin versus doxorubicin plus cisplatin in patients with advanced thyroid carcinoma. Cancer. 1985;56(9):2155–60.CrossRefPubMedGoogle Scholar
  55. 55.
    Williams SD, Birch R, Einhorn LH. Phase II evaluation of doxorubicin plus cisplatin in advanced thyroid cancer: a Southeastern Cancer Study Group Trial. Cancer Treat Rep. 1986;70(3):405–7.PubMedGoogle Scholar
  56. 56.
    Hoskin PJ, Harmer C. Chemotherapy for thyroid cancer. Radiother Oncol. 1987;10(3):187–94.CrossRefPubMedGoogle Scholar
  57. 57.
    Argiris A, Agarwala SS, Karamouzis MV, Burmeister LA, Carty SE. A phase II trial of doxorubicin and interferon alpha 2b in advanced, non-medullary thyroid cancer. Invest New Drugs. 2008;26(2):183–8.CrossRefPubMedGoogle Scholar
  58. 58.
    Sherman SI. Cytotoxic chemotherapy for differentiated thyroid carcinoma. Clin Oncol (R Coll Radiol). 2010;22(6):464–8.CrossRefGoogle Scholar
  59. 59.
    Matuszczyk A, Petersenn S, Voigt W, Kegel T, Dralle H, Schmoll HJ, et al. Chemotherapy with paclitaxel and gemcitabine in progressive medullary and thyroid carcinoma of the follicular epithelium. Horm Metab Res. 2010;42(1):61–4.CrossRefPubMedGoogle Scholar
  60. 60.
    Hanauske AR, Dumez H, Piccart M, Yilmaz E, Graefe T, Gil T, et al. Pemetrexed combined with paclitaxel: a dose-finding study evaluating three schedules in solid tumors. Invest New Drugs. 2009;27(4):356–65.CrossRefPubMedGoogle Scholar
  61. 61.
    Spano JP, Vano Y, Vignot S, De La Motte Rouge T, Hassani L, Mouawad R, et al. GEMOX regimen in the treatment of metastatic differentiated refractory thyroid carcinoma. Med Oncol. 2012;29(3):1421–8.CrossRefPubMedGoogle Scholar
  62. 62.
    Cohen AB, Brose MS. Second-line treatment for advanced thyroid cancer: an indication in need of randomized clinical trials. J Clin Endocrinol Metab. 2014;99(6):1995–7.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.The Ohio State University Comprehensive Cancer CenterArthur G. James Cancer Hospital and Richard J. Solove Research InstituteColumbusUSA

Personalised recommendations