Advertisement

Integrative Approaches to Patients Undergoing Thyroid Surgery

  • Beatriz OlsonEmail author
Chapter

Abstract

This chapter focuses on patient-centered and holistic management of individuals undergoing thyroid surgery, from the preoperative to the postoperative phases of their treatment. Holistic care recognizes that illness involves the whole person and that mind and body issues need to be addressed, synchronously throughout the process, for the patient to feel served and whole at the end. Holistic care uses an integrative medicine approach that combines evidenced-based conventional medicine with complementary therapies, when needed, to achieve wellness after thyroidectomy and cancer diagnosis. Wellness is a state of health that encompasses vitality or vigor of body and mind, not just mere absence of disease. Data in the last decade has unmasked the physical and neurocognitive burden, after thyroidectomy, of hypothyroidism and the additive impact of a thyroid cancer diagnosis. Even though, in most, the original thyroid condition has been cured and thyroid replacement is adequate, many remain unwell with complaints of weight gain, fatigue, psychiatric and neurocognitive issues, worry, and impairment in quality of life. We lack evidence-based approaches to address these mind-body issues that result in lack of wellness post-thyroidectomy in these two groups of patients. Treatment of hypothyroidism is a complex and imperfect science, and levothyroxine therapy is never quite right for a significant (10–20 %) minority of patients. This chapter discusses the standard of care treatment of hypothyroidism after thyroidectomy and the rationale for use of complementary and alternative therapies to address hypothyroid complaints and other mind-body issues not adequately addressed by current treatment methods. The integration of complementary therapies to conventional medicine broadens the spectrum of options we can offer patients where standard therapies are limited.

Keywords

Holistic Integrative medicine Complementary and alternative therapies Weight gain and thyroidectomy Post-thyroidectomy fatigue Cancer-related fatigue Mindfulness Relaxation therapies Cognitive behavioral therapy Hypothyroid Thyroid hormone replacement Radioiodine treatment 

References

  1. 1.
    Abraham-Nordling M, Törring O, Hamberger B, Lundell G, Tallstedt L, Calissendorff J, Wallin G. Graves’ disease: a long-term quality-of-life follow up of patients randomized to treatment with antithyroid drugs, radioiodine, or surgery. Thyroid. 2005;15(11):1279–86.PubMedCrossRefGoogle Scholar
  2. 2.
    Bresner L, Banach R, Rodin G, Thabane L, Ezzat S, Swaska AM. J Clin Endocrinol Metab. 2015;100:977–85.PubMedCrossRefGoogle Scholar
  3. 3.
    To J, Goldberg AS, Jones J, Zhang J, Lowe J, Ezzat S, Gilbert J, Zahedi A, Segal P, Swaska AM. A systematic review of randomized control trials for management of post-treatment fatigue in thyroid cancer survivors. Thyroid. 2014;25:198–210.PubMedCrossRefGoogle Scholar
  4. 4.
    Benevicius R, Prange AJ. Mental improvement after replacement therapy with thyroxine plus triiodothyronine: relationship to cause of hypothyroidism. Int J Neuropsychopharmacol. 2000;3:167–74.CrossRefGoogle Scholar
  5. 5.
    Eustatia-Reuten CF, Corssmit EP, Pereira AM, Frolich M, Baxx JJ, Romijn JA, Smit JW. Quality of life in long-term exogenous subclinical hyperthyroidism and the effects of restoration of euthyroidism, a randomized controlled trial. Clin Endocrinol (Oxf). 2006;64:284–91.CrossRefGoogle Scholar
  6. 6.
    Biondi B, Wartofsky L. Treatment with thyroid hormone. Endocr Rev. 2014;35(3):433–512. doi: 10.1210/er.2013-1083. Epub 2014 Jan 16. Review.PubMedCrossRefGoogle Scholar
  7. 7.
    Andreas Schäffler, Prof. Dr. med. Hormone replacement after thyroid and parathyroid surgery. Dtsch Arztebl Int. 2010;107(47): 827–34. Published online 2010 Nov 26. doi: 10.3238/arztebl.2010.0827.
  8. 8.
    Wiersinga WM, Duntas L, Fadeyev V, et al. 2012 ETA guidelines: the use of L-T4 + L-T3 in the treatment of hypothyroidism. Eur Thyroid J. 2012;1(2):55–71. Published online 13 Jun 2012. doi: 10.1159/000339444.
  9. 9.
    Morley S, Goldfarb M. Support needs and survivorship concerns of thyroid cancer patients. Thyroid. 2015;25:649–56.PubMedCrossRefGoogle Scholar
  10. 10.
    Watt T, Hegedüs L, Rasmussen AK, Groenvold M, Bonnema SJ, Bjorner JB, Feld-Rasmussen U. Which domains of thyroid related quality of life are most relevant? Patients and clinicians provide complementary perspectives. Thyroid. 2007;17:647–54.PubMedCrossRefGoogle Scholar
  11. 11.
    Eisenberg DM, Davis RB, Ettner SL, et al. Trends in alternative medicine use in the United States, 1990–1997: results of a follow-up national survey. JAMA. 1998;280:1569–75.PubMedCrossRefGoogle Scholar
  12. 12.
    Rosen JE, Gardiner P, Saper RB, et al. Complementary and alternative medicine use among patients with thyroid cancer. Thyroid. 2013;23(10):1238–46. doi: 10.1089/thy.2012.0495.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Sadovsky R, Collins N, Tighe AP, Brunton SA, Safeer R. Patient use of dietary supplements: a clinician’s perspective. Curr Med Res Opin. 2008;24(4):1209–16.PubMedCrossRefGoogle Scholar
  14. 14.
    Ashar BH, Rice TN, Sisson SD. Physicians’ understanding of the regulation of dietary supplements. Arch Intern Med. 2007;167(9):966–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Ang-Lee MK, Moss J, Yuan C. Herbal medicines and perioperative care. JAMA. 2001;286(2):208–16. doi: 10.1001/jama.286.2.208.PubMedCrossRefGoogle Scholar
  16. 16.
    Abe A, Kaye AD, Gritsenko K, Urman RD, Kate AM. Perioperative analgesia and the effects of dietary supplements. Clin Anesthesiol. 2014;28(2):183–9.Google Scholar
  17. 17.
    Brake MK, Bartlett C, Hart RD, Trites JR, Taylor SM. Complementary and alternative medicine use in the thyroid patients of a head and neck practice. Otolaryngol Head Neck Surg. 2011;145(2):208–12. doi: 10.1177/0194599811407564.PubMedCrossRefGoogle Scholar
  18. 18.
    Saw JT, Bahari MB, Ang HH, Lim YH. Potential drug-herb interaction with antiplatelet/anticoagulant drugs. Complement Ther Clin Pract. 2006;12(4):236–41.PubMedCrossRefGoogle Scholar
  19. 19.
    Wong WW, Gabriel A, Maxwell GP, Gupta SC. Bleeding risks of herbal, homeopathic, and dietary supplements: a hidden nightmare for plastic surgeons? Aesthet Surg J. 2012;32(3):332–46. doi: 10.1177/1090820X12438913.PubMedCrossRefGoogle Scholar
  20. 20.
    Dinehart SM, Henry L. Dietary supplements: altered coagulation and effects on bruising. Dermatol Surg. 2005;31(7 Pt 2):819–26.PubMedGoogle Scholar
  21. 21.
    Leinung M, Beyer T. Postoperative hypocalcemia after thyroidectomy: can it be prevented? Endocr Pract. 2015;21:452–3.PubMedCrossRefGoogle Scholar
  22. 22.
    Holick MF. Vitamin D, deficiency. N Engl J Med. 2007;357:266–81.PubMedCrossRefGoogle Scholar
  23. 23.
    Grey A, Lucas J, Horne A, Gamble G, Davidson JS, Reid IR. Vitamin D repletion in patients with primary hyperparathyroidism and coexistent vitamin D insufficiency. J Clin Endocrinol Metab. 2005;90:2122–6.PubMedCrossRefGoogle Scholar
  24. 24.
    Heany RP. Health is better at serum 25(OH) D above 30 ng/ml. J Steroid Biochem Mol Biol. 2013;136:224–8.CrossRefGoogle Scholar
  25. 25.
    Falcone TE, Stein DJ, Jumaily JS, Pearce E, Holick MF, McAneny DB, Jalisi S, Grillone GA, Stone MD, Devaiah AK, Noordzij JP. Correlating pre-operative vitamin D status with post-thyroidectomy hypocalcemia. Endocr Pract. 2015;21:348–54.Google Scholar
  26. 26.
    Arlt W, Fremerey C, Callies F, Reincke M, Schneider P, Timmermann W, Allolio B. Well being, mood, and calcium homeostasis in patients with hypoparathyroidism receiving standard treatment with calcium and vitamin D. Eur J Endocrinol. 2002;146:215–22.PubMedCrossRefGoogle Scholar
  27. 27.
    Pritchard MJ. Managing anxiety in the elective surgical patient. Br J Nurs. 2009;18(7):416–9.PubMedCrossRefGoogle Scholar
  28. 28.
  29. 29.
    Brewer S, Gleditsch SL, Syblik D, Tietiens ME, Vacik HW. Pediatric anxiety: child life intervention in day surgery. J Pediatr Nurs. 2006;21(1):13–22.PubMedCrossRefGoogle Scholar
  30. 30.
    Gonzales EA, Ledesma RJ, McAllister DJ, Perry SM, Dyer CA, Maye JP. Effects of guided imagery on postoperative outcomes in patients undergoing same-day surgical procedures: a randomized, single blind study. AANA J. 2010;78(3):181–8.PubMedGoogle Scholar
  31. 31.
    Tussek DL, Church JM, Strong SA, Grass JA, Fazio VW. Guided imagery: a significant advance in the care of patients undergoing elective colorectal surgery. Dis Colon Rectum. 1997;40(2):172–8.CrossRefGoogle Scholar
  32. 32.
    Guisti M, Melle G, Fenocchio M, et al. Five-year longitudinal evaluation of quality of life in a cohort of patients with differentiated thyroid carcinoma. J Zhejiang Univ Sci B. 2011;12(3):163–73.CrossRefGoogle Scholar
  33. 33.
    Almeida J, Vartanian JG, Kowalshi LP. Clinical predictors of quality of life in patients with initial differentiated thyroid cancers. Arch Otolaryngol Head Neck Surg. 2009;135(4):342–6. doi: 10.1001/archoto.2009.16.PubMedCrossRefGoogle Scholar
  34. 34.
    Olson BR’s patient communications, and Olson BR, Insights of 51 patients on their thyroid cancer treatment (manuscript under review).Google Scholar
  35. 35.
    Giusti M, Sibilla F, Cappi C, Dellepiane M, Tombesi F, Ceresola E, Augeri C, Rasore E, Minuto F. A case-controlled study on the quality of life in a cohort of patients with history of differentiated thyroid carcinoma. J Endocrinol Invest. 2005;28(7):599–608.PubMedCrossRefGoogle Scholar
  36. 36.
    Jonklaas J, Nsouli-Maktabi H. Weight changes in euthyroid patients undergoing thyroidectomy. Thyroid. 2011;21(12):1343–51.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Weinreb JT, Yang Y, Braunstein GD. Do patients gain weight after thyroidectomy for thyroid cancer? Thyroid. 2011;21(12):1339–42.PubMedCrossRefGoogle Scholar
  38. 38.
    Lönn L, Stenlöf K, Ottosson M, Lindroos AK, Nyström E, Sjöström L. Body weight and body composition changes after treatment of hyperthyroidism. J Clin Endocrinol Metab. 1998;83:4269–73.PubMedGoogle Scholar
  39. 39.
    Pears J, Jung RT, Gunn A. Long-term weight changes in treated hyperthyroid and hypothyroid patients. Scott Med J. 1990;35(6):180–2.PubMedCrossRefGoogle Scholar
  40. 40.
    van Veenendaal NR, Rivkees SA. Treatment of pediatric Graves’ disease is associated with excessive weight gain. J Clin Endocrinol Metab. 2011;96(10):3257–63.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Tigas S, Idiculla J, Beckett G, Toft A. Is excessive weight gain after ablative treatment of hyperthyroidism due to inadequate thyroid hormone therapy? Thyroid. 2000;10(12):1107–11.PubMedCrossRefGoogle Scholar
  42. 42.
    Ozdemir S, Ozis ES, Gulpinar K, Aydin TH, Suzen B, Korkmaz A. The effects of levothyroxine substitution on body composition and body mass after total thyroidectomy for benign nodular goiter. Endocr Regul. 2010;44(4):147–53.PubMedCrossRefGoogle Scholar
  43. 43.
    Laurberg P, Knudsen N, Andersen S, et al. Thyroid function and obesity. Eur Thyroid J. 2012;1(3):159–67.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Lovejoy JC, Champagne CM, de Jonge L, Xie H, Smith SR. Increased visceral fat and decreased energy expenditure during the menopausal transition. Int J Obes (Lond). 2008;32(6):949–58.CrossRefGoogle Scholar
  45. 45.
    Santen RJ, Allred DC, Ardoin SP, et al. Postmenopausal hormone therapy: an Endocrine Society scientific statement. J Clin Endocrinol Metab. 2010;95(7 Suppl 1):s1–66.PubMedCrossRefGoogle Scholar
  46. 46.
    Davis SR, Castelo-Branco C, Chedraui P, Lumsden MA, Nappi RE, Shah D, Villaseca P; Writing Group of the International Menopause Society for World Menopause Day 2012. Understanding weight gain at menopause. Climacteric. 2012;15(5):419–29.Google Scholar
  47. 47.
    Penev PD. Update on energy homeostasis and insufficient sleep. J Clin Endocrinol Metab. 2012;97:1792–801.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Sumithran P, Prendergast LA, Delbridge E, Purcell K, Shulkes A, Kriketos A, Proietto J. Long-term persistence or hormonal adaptations to weight loss. N Engl J Med. 2011;365:1597–609.PubMedCrossRefGoogle Scholar
  49. 49.
    Walsh JP, Ward LC, Burke V, Bhagat CI, Shiels L, Henley D, Gillett MJ, Gilbert R, Tanner M, Stuckey BG. Small changes in thyroxine dosage do not produce measurable changes in hypothyroid symptoms, well-being, or quality of life: results of a double-blind, randomized clinical trial. J Clin Endocrinol Metab. 2006;91(7):2624–30.PubMedCrossRefGoogle Scholar
  50. 50.
    Celi FS, Zemskova M, Linderman JD, Babar NI, Skarulis MC, Csako G, Wesley R, Costello R, Penzak SR, Pucino F. The pharmacodynamic equivalence of levothyroxine and liothyronine: a randomized, double blind, cross-over study in thyroidectomized patients. Clin Endocrinol. 2010;72:709–15.CrossRefGoogle Scholar
  51. 51.
    Celi FS, Zemskova M, Linderman JD, Smith S, Drinkard B, Sachdev V, Skarulis MC, Kozlosky M, Csako G, Costello R, Pucino F. Metabolic effects of liothyronine therapy in hypothyroidism: a randomized, double-blind, crossover trial of liothyronine versus levothyroxine. J Clin Endocrinol Metab. 2011;96:3466–74.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Miller WC, Koceja DM, Hamilton EJ. A meta-analysis of the past 25 years of weight loss research using diet, exercise or diet plus exercise intervention. Int J Obes Relat Metab Disord. 1997;21(10):941–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Castro-Quezada I, Román-Viñas B, Serra-Majem L. The mediterranean diet and nutritional adequacy: a review. Nutrients. 2014;6(1):231–48. Published online 3 Jan 2014. doi: 10.3390/nu6010231. PMCID: PMC3916858.
  54. 54.
    Stephenson N, Cordain L. The paleo diet and cookbook. John Wiley & Sons, Hoboken, NJ, 2011.Google Scholar
  55. 55.
    Klonoff DC. The beneficial effects of a paleolithic diet on type 2 diabetes and other risk factors for cardiovascular disease. J Diabetes Sci Technol. 2009;3(6):1229–32. Published online Nov 2009. PMCID: PMC2787021.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Donnelly JE, Blair SN, Jakicic JM, et al. American College of Sports Medicine Position Stand. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med Sci Sports Exerc. 2009;41(2):459–71.PubMedCrossRefGoogle Scholar
  57. 57.
    Swift DL, Johannsen, NM, Lavie CJ, et al. The role of exercise and physical activity in weight loss and maintenance. Prog Cardiovasc Dis. 2014;56(4):441–7. Published online 11 Oct 2013. doi: 10.1016/j.pcad.2013.09.012.
  58. 58.
    Bravata DM, Smith-Spangler C, Sundaram V, Gienger AL, Lin N, Lewis R, Stave CD, Olkin I, Sirard JR. Using pedometers to increase physical activity and improve health: a systematic review. JAMA. 2007;298(19):2296–304.PubMedCrossRefGoogle Scholar
  59. 59.
    Xiao Q, Arem H, Moore SC, Hollenbeck AR, Matthews CE. A large prospective investigation of sleep duration, weight change, and obesity in the NIH-AARP Diet and Health Study cohort. Am J Epidemiol. 2013;178(11):1600–10.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Wing RR, Marcus MD, Epstein LH, Kupfer D. Mood and weight loss in a behavioral treatment program. J Consult Clin Psychol. 1983;51(1):153–5.PubMedCrossRefGoogle Scholar
  61. 61.
    Kabat-Zinn J. Mindfulness-based interventions in context: past, present, and future. Clin Psychol Sci Pract. 2003;10(2):144–56. doi: 10.1093/clipsy/bpg016.CrossRefGoogle Scholar
  62. 62.
    Kabat-Zinn J. Full catastrophe living: using the wisdom of your body and mind to face stress, pain and illness. New York: Delacourt; 1990.Google Scholar
  63. 63.
    Swaka AM, Naeem A, Jones J, Lowe J, Segal P, Goguen J, Gilbert J, Zahedi A, Kelly C, Ezzat S. Persistent post-treatment fatigue in thyroid cancer survivors: a Scoping review. Endocrinol Metab Clin North Am. 2014;43:475–94.CrossRefGoogle Scholar
  64. 64.
    Singer S, Lincke T, Gamper E, Baskharan K, Schreiber S, Hinz A, Schulte T. Quality of life in patients with thyroid Cancer Compared to the general population. Thyroid. 2012;22:117–24.PubMedCrossRefGoogle Scholar
  65. 65.
    Husson O, Mols F, van de Poll-Franse L, de Vries J, Schep G, Thong MS. Variation in fatigue among 6011 (long-term) cancer survivors and a normative population: a study from the population-based PROFILES registry. Support Care Cancer. 2015;23(7):2165–74. doi: 10.1007/s00520-014-2577-5. Epub 6 Jan 2015.PubMedCrossRefGoogle Scholar
  66. 66.
    Greenlee H, Balneaves LG, Carlson LE, et al. Clinical practice guidelines on the use of integrative therapies as supportive care in patients treated for breast cancer. J Natl Cancer Inst Monogr. 2014;50:346–58.CrossRefGoogle Scholar
  67. 67.
    Molassiotis A, Bardy J, Finnegan-John J, et al. Acupuncture for cancer-related fatigue in patients with breast cancer: a pragmatic randomized controlled trial. J Clin Oncol. 2012;30:4470–6. doi: 10.1200/jco.2012.41.6222.PubMedCrossRefGoogle Scholar
  68. 68.
    Buffart LM, VanUffelen JGZ, Riphagen II, et al. Physical and psychosocial benefits of yoga in cancer patients and survivors, a systematic review and metaanalysis of randomized controlled trials. BMC Cancer. 2012;12:559. doi: 10.1186/1471-2407-12-559.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Montgomery GH, Kangas M, David D, Hallquist MN, Green S, Bovbjerg DH, Schnur JB. Fatigue during breast cancer radiotherapy: an initial randomized study of cognitive behavioral therapy plus hypnosis. Health Psychol. 2009;28:317–22. doi: 10.1037/a0013582.PubMedCrossRefGoogle Scholar
  70. 70.
    Finnegan-John J, Molassiotis A, Richardson A, Ream E. A systematic review of complementary and alternative medicine interventions for the management of cancer-related fatigue. Integr Cancer Ther. 2013;12:276–90.PubMedCrossRefGoogle Scholar
  71. 71.
    Brown JC, Huedo-Medina TB, Pescatello LS, Pescatello SM, Ferrer RA, Johnson BT. Efficacy of exercise interventions in modulating cancer-related fatigue among adult cancer survivors: a meta-analysis. Cancer Epidemiol Biomarkers Prev. 2011;20:123–33. doi: 10.1158/1055-9965.epi-10-0988.PubMedCrossRefGoogle Scholar
  72. 72.
    Sadeeka Al-Majid S, Gray DP. A biobehavioral model for the study of exercise interventions in cancer-related fatigue. Biol Res Nurs. 2009;10(4):381–91.PubMedCrossRefGoogle Scholar
  73. 73.
    Marcus BH, Simkin LR. The transtheoretical model: applications to exercise behavior. Med Sci Sports Exerc. 1994;26(11):1400–4.PubMedCrossRefGoogle Scholar
  74. 74.
    Mishra SI, Scherer RW, Geigle PM, Berlanstein DR, Topaloglu O, Gotay CC, Snyder C. Exercise interventions on health-related quality of life for cancer survivors. Cochrane Database of Systematic Reviews 2012;(8):CD007566. doi: 10.1002/14651858.CD007566.pub2.
  75. 75.
    Vigårio Pdos S, Chachamovits DS, Teixiera PF, Rocque Mde L, Santos ML, Vaisman M. Exercise is associated with better quality of life in patients on thyrotropin-suppressive therapy with levothyroxine for differentiated thyroid carcinoma. Arq Bras Endocrinol Metabol. 2014;58:274–81.PubMedCrossRefGoogle Scholar
  76. 76.
    Jonklaas J, Bianco AC, Bauer AJ, Burman KD, Cappola AR, Celi FS, Cooper DS, Kim BW, Peeters RP, Rosenthal MS, Swaka AM. Guidelines for the treatment of hypothyroidism. Thyroid. 2014;24:1670–751.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Jonklaas J, Davidson B, Bhagat S, Soldin SJ. Triiodothyronine levels in athyreotic individuals during levothyroxine therapy. JAMA. 2008;299:769–77.PubMedCrossRefGoogle Scholar
  78. 78.
    Pilo A, Iervasi G, Vitek F, Ferdeghini M, Cazzuola F, Bianchi R. Thyroidal and peripheral production of 3,5,3′-triiodothyronine in humans by multicompartmental analysis. Am J Physiol. 1990;258:E715–26.PubMedGoogle Scholar
  79. 79.
    Grozinsky-Glasberg S, Fraser A, Nahshoni E, Weizman A, Leibovici L. Thyroxine-triiodothyronine combination therapy versus thyroxine monotherapy for clinical hypothyroidism: meta-analysis of randomized controlled trials. J Clin Endocrinol Metab. 2006;91:2592–9.PubMedCrossRefGoogle Scholar
  80. 80.
    Haugen BR, Alexander EK, Bible KC, et al. American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer. Thyroid. 2015;26(1):1–133.CrossRefGoogle Scholar
  81. 81.
    Bianco AC, Salvatore D, Gereben B, Berry MJ, Larsen PR. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr Rev. 2002;23:38–89.PubMedCrossRefGoogle Scholar
  82. 82.
    Panicker V, Cluett C, Shields B, et al. A common variation in deiodinase 1 gene DIO1 is associated with the relative levels of free thyroxine and triiodothyronine. J Clin Endocrinol Metab. 2008;93(8):3075–81.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Peeters RP, van der Deure WM, Visser TJ. Genetic variation in thyroid hormone pathway genes; polymorphisms in the TSH receptor and the iodothyronine deiodinases. Eur J Endocrinol. 2006;155:655–62.PubMedCrossRefGoogle Scholar
  84. 84.
    Torlantano M, Durante C, Torrente I, et al. Type 2 deiodinase polymorphism (threonine 92 alanine) predicts L-thyroxine dose to achieve target thyrotropin levels in thyroidectomized patients. J Clin Endocrinol Metab. 2008;93:910–3.CrossRefGoogle Scholar
  85. 85.
    Panicker V, Saravanan P, Vaidya B, et al. Common variation in the DIO2 gene predicts baseline psychological well-being and response to combination thyroxine plus triiodothyronine therapy in hypothyroid patients. J Clin Endocrinol Metab. 2009;94(5):1623–9.PubMedCrossRefGoogle Scholar
  86. 86.
    Dayan CM, Panicker V. Novel insights into thyroid hormones from the study of common genetic variation. Nat Rev Endocrinol. 2009;5:211–8.PubMedCrossRefGoogle Scholar
  87. 87.
    Andersen S, Pedersen KM, Bruun NH, Laurberg P. Narrow individual variations in serum T(4) and T(3) in normal subjects: a clue to the understanding of subclinical thyroid disease. J Clin Endocrinol Metab. 2002;87:1068–72.PubMedCrossRefGoogle Scholar
  88. 88.
    Hollowell JG, Staehling NW, Flanders WD, et al. Serum TSH, T4, and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J Clin Endocrinol Metab. 2002;87:489–99. Abstract, ISI.PubMedCrossRefGoogle Scholar
  89. 89.
    Baloch Z, Carayon P, Conte-Devolx B, et al.; Guidelines Committee, National Academy of Clinical Biochemistry. Laboratory medicine practice guidelines. Laboratory support for the diagnosis and monitoring of thyroid disease. Thyroid. 2003;13:3–126.Google Scholar
  90. 90.
    Boucai L, Hollowell JG, Surks MI. An approach for development of age-, gender-, and ethnicity-specific thyrotropin reference limits. Thyroid. 2011;21:5–11.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Vadiveloo T, Donnan PT, Murphy MJ, Leese GP. Age- and Gender specific TSH reference interval in people with no obvious thyroid disease in Tayside Scotland: the thyroid epidemiology, audit and research study (TEARS). J Clin Endocrinol Metab. 2013;98:1147–53.PubMedCrossRefGoogle Scholar
  92. 92.
    Boucai L, Surks M. Reference limits of serum TSH and free T4 are significantly influenced by race and age in an urban outpatient medical practice. Clin Endocrinol (Oxf). 2009;70:788–93. doi: 10.1111/j.1365-2265.2008.03390.x.CrossRefGoogle Scholar
  93. 93.
    Van den Ven AC, Netea-Maier RT, Smit JW, et al. Thyrotropin versus age relation as an indicator of historical iodine intakes. Thyroid. 2015;25:629–634. doi:10.1089thy.2014.0574.Google Scholar
  94. 94.
    Biondi B. Thyroid and obesity: an intriguing relationship. J Clin Endocrinol Metab. 2010;95:3614–7.PubMedCrossRefGoogle Scholar
  95. 95.
    Cappola AR, Ladenson PW. Hypothyroidism and atherosclerosis. J Clin Endocrinol Metab. 2003;88:2438–44.PubMedCrossRefGoogle Scholar
  96. 96.
    Okosieme O, Lazarus JH. Thyroid dysfunction in pregnancy. Rev Endocrinol. 2008;2(4):50–3.Google Scholar
  97. 97.
    Glinoer D. The regulation of thyroid function in pregnancy: pathways of endocrine adaptation from physiology to pathology. Endocr Rev. 1997;18:404–33.PubMedCrossRefGoogle Scholar
  98. 98.
    Alexander EK, Marqusee E, Lawrence J, Jarolim P, Fischer GA, Larsen PR. Timing and magnitude of increases in levothyroxine requirements during pregnancy in women with hypothyroidism. N Engl J Med. 2004;351:241–9.PubMedCrossRefGoogle Scholar
  99. 99.
    Abalovich M, Amino N, Barbour LA, et al. Management of thyroid dysfunction during pregnancy and postpartum: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2007;92:S1–47.PubMedCrossRefGoogle Scholar
  100. 100.
    Stagnaro-Green A, Abalovich M, Alexander E, et al. Guidelines of the American Thyroid Association for the diagnosis and management of thyroid disease during pregnancy and postpartum. Thyroid. 2011;21:1081–125.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    De Groot L, Abalovich M, Alexander EK, et al. Management of thyroid dysfunction during pregnancy and postpartum: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2012;97:2543–65.PubMedCrossRefGoogle Scholar
  102. 102.
    Biondi B, Wartofsky L. Combination treatment with T4 and T3: toward personalized replacement therapy in hypothyroidism? J Clin Endocrinol Metab. 2012;97(7):2256–71.PubMedCrossRefGoogle Scholar
  103. 103.
    McAninch EA, Bianco AC. The history and future treatment of hypothyroidism. Ann Intern Med. 2016;164:50–6.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Canaris GJ, Manowitz NR, Mayor G, Ridgway EC. The Colorado thyroid disease prevalence study. Arch Intern Med. 2000;160:526–34.PubMedCrossRefGoogle Scholar
  105. 105.
    Fish LH, Schwartz HL, Cavanaugh J, Steffes MW, Bantle JP, Oppenheimer JH. Replacement dose, metabolism, and bioavailability of levothyroxine in the treatment of hypothyroidism. Role of triiodothyronine in pituitary feedback in humans. N Engl J Med. 1987;316:764–70.PubMedCrossRefGoogle Scholar
  106. 106.
    Hennemann G, Docter R, Visser TJ, Postema PT, Krenning EP. Thyroxine plus low-dose, slow-release triiodothyronine replacement in hypothyroidism: proof of principle. Thyroid. 2004;14:271–5.PubMedCrossRefGoogle Scholar
  107. 107.
    McDermott MT. Does combination therapy make sense? Endocr Pract. 2012;18:750–7.PubMedCrossRefGoogle Scholar
  108. 108.
    Bunevicius R, Jakuboniene N, Jurkevicius R, Cernicat J, Lasas L, Prange Jr AJ. Thyroxine vs thyroxine plus triiodothyronine in treatment of hypothyroidism after thyroidectomy for Graves’ disease. Endocrine. 2002;18(2):129–33.PubMedCrossRefGoogle Scholar
  109. 109.
    Walsh JP, Shiels L, Lim EM, Bhagat CI, et al. Combined thyroxine/liothyronine treatment does not improve well-being, quality of life, or cognitive function compared to thyroxine alone: a randomized controlled trial in patients with primary hypothyroidism. J Clin Endocrinol Metab. 2003;88(10):4543–50.PubMedCrossRefGoogle Scholar
  110. 110.
    Bunevicius R, Kazanavicius G, Zalinkevicius R, Prange Jr AJ. Effects of thyroxine as compared with thyroxine plus triiodothyronine in patients with hypothyroidism. N Engl J Med. 1999;340:424–9.PubMedCrossRefGoogle Scholar
  111. 111.
    Appelhof BC, Fliers E, Wekking EM, et al. Combined therapy with levothyroxine and liothyronine in two ratios, compared with levothyroxine monotherapy in primary hypothyroidism: a double-blind, randomized, controlled clinical trial. J Clin Endocrinol Metab. 2005;90:2666–74.PubMedCrossRefGoogle Scholar
  112. 112.
    Escobar-Morreale HF, Botella-Carretero JI, Gómez-Bueno M, et al. Thyroid hormone replacement therapy in primary hypothyroidism: a randomized trial comparing L-thyroxine plus liothyronine with L-thyroxine alone. Ann Intern Med. 2005;142:412–24.PubMedCrossRefGoogle Scholar
  113. 113.
    Nygaard B, Jensen EW, Kvetny J, et al. Effect of combination therapy with thyroxine (T4) and 3,5,3′-triiodothyronine versus T4 monotherapy in patients with hypothyroidism, a double-blind, randomised cross-over study. Eur J Endocrinol. 2009;161:895–902.PubMedCrossRefGoogle Scholar
  114. 114.
    Russell W, Harrison RF, Smith N, et al. Free triiodothyronine has a distinct circadian rhythm that is delayed but parallels thyrotropin levels. J Clin Endocrinol Metab. 2008;93(6):2300–6.PubMedCrossRefGoogle Scholar
  115. 115.
    Rees-Jones RW, Larsen PR. Triiodothyronine and thyroxine content of desiccated thyroid tablets. Metabolism. 1977;26(11):1213–8.PubMedCrossRefGoogle Scholar
  116. 116.
    LeBoff MS, Kaplan MM, Silva JE, Larsen PR. Bioavailability of thyroid hormones from oral replacement preparations. Metabolism. 1982;31(9):900–5.PubMedCrossRefGoogle Scholar
  117. 117.
    Gullo D, Latina A, Frasca F, Le Moli R, Pelligriti G, Vigneri R. Levothyroxine monotherapy cannot guarantee euthyroidism I all athyreotic patients. PLoS One. 2011;6:e22552. PMID: 21829633.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Peitzner M, Lehmphul I, Friedrich N, et al. Translating pharmacological findings from hypothyroid rodents to euthyroid humans: is there a functional role of endogenous 3,5-T2? Thyroid. 2015;25:188–97.CrossRefGoogle Scholar
  119. 119.
    Lehmphul I, Brabant G, Wallaschofski H, Ruchala M, Strausberger CJ, Kohrle J, Wu Z. Detection of 3,5 diiodothyronine in sera of patients with altered thyroid status using new monoclonal antibody-based chemiluminescence immunoassay. Thyroid. 2015;24:1350–9.CrossRefGoogle Scholar
  120. 120.
    Saravanan P, Siddique H, Simmons DJ, Greenwood R, Dayan CM. Twenty-four hour hormone profiles of TSH, Free T3 and free T4 in hypothyroid patients on combined T3/T4 therapy. Exp Clin Endocrinol Diabetes. 2007;115(4):261–7.PubMedCrossRefGoogle Scholar
  121. 121.
    Mandel SJ, Mandel L. Radioactive iodine and the salivary glands. Thyroid. 2003;13:265–71.PubMedCrossRefGoogle Scholar
  122. 122.
    Lee S. Complications of radioactive iodine treatment of thyroid carcinoma. J Natl Compr Canc Netw. 2010;8:1277–87.PubMedGoogle Scholar
  123. 123.
    Sawka AM, Thabane L, Parlea L, Ibrahim-Zada I, Tsang RW, Brierley JD, Straus S, Ezzat S, Goldstein DP. Second primary malignancy risk after radioactive iodine treatment in thyroid cancer: a systematic review and meta-analysis. Thyroid. 2009;19:451–7.PubMedCrossRefGoogle Scholar
  124. 124.
    Kim C, Bi X, Pan D, Chen Y, Carling T, Ma S, Udelsman R, Zhang Y. The risk of secondary cancers after diagnosis of thyroid cancer is elevated in thyroid microcarcinomas. Thyroid. 2013;23:575–82.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Sisson JC, et al. Radiation safety in treatment of patients with thyroid diseases by 131I: practice recommendations of the American thyroid association. Thyroid. 2011;21(4):335–46.PubMedCrossRefGoogle Scholar
  126. 126.
    Swaka AM, Straus S, Rodin G, et al. Thyroid cancer patient perceptions of radioactive iodine treatment choice: follow up from a decision-aid randomized trial. Cancer. 2015. doi: 10.1002/cncr.29548.Google Scholar
  127. 127.
    Taieb D, Sebag F, Farman-Ara B, et al. Iodine biokinetics and radioiodine exposure after recombinant human thyrotropin-assisted remnant ablation in comparison with thyroid hormone withdrawal. J Clin Endocrinol Metab. 2010;95:3283–90.PubMedCrossRefGoogle Scholar
  128. 128.
    Tuttle RM, Brokhin M, Omry G, et al. Recombinant human TSH-assisted radioactive iodine remnant ablation achieves short-term clinical recurrence rates similar to those of traditional thyroid hormone withdrawal. J Nucl Med. 2008;49:764–70.PubMedCrossRefGoogle Scholar
  129. 129.
    Schlumberger M, Catargi B, Borget I, et al. Strategies of radioiodine ablation in patients with low-risk thyroid cancer. N Engl J Med. 2012;366:1663–73.PubMedCrossRefGoogle Scholar
  130. 130.
    Cooper DS, Doherty GM, Haugen BR, Kloos RT, Lee SL, Mandel SJ, Mazzaferri EL, McIver B, Pacini F, Schlumberger M, Sherman SI, Steward DL, Tuttle RM. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid. 2009;19:1167–214.PubMedCrossRefGoogle Scholar
  131. 131.
    Rosen JE, Gardiner P, Saper RB, Pearce EN, Hammer K, Gupta-Lawrence RL, Lee SL. Kelp use in patients with thyroid cancer. Endocrine. 2014;46:123–30.PubMedCrossRefGoogle Scholar
  132. 132.
    Aceves C, Anguiano B, Delgado G. The extrathyronine actions of iodine as antioxidant, apoptotic, and differentiation Factor in various tissues. Thyroid. 2012;23(8):938–46.CrossRefGoogle Scholar
  133. 133.
    Lee SY, Chang DLF, He X, Pearce EN, Braverman LE, Leung AM. Urinary iodine excretion and serum thyroid function in adults after iodinated contrast administration. Thyroid. 2015;25(5):471–7. doi: 10.1089/thy.2015.0024.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.EndocrinologyYale University School of MedicineMiddleburyUSA

Personalised recommendations