Advertisement

Initial Radioiodine Ablation

  • Rebecca L. Weiss
  • Angela M. LeungEmail author
Chapter

Abstract

Radioiodine has been used to treat thyroid cancer for more than 70 years and is an important aspect in the management of well-differentiated thyroid cancer. It has been historically used in two ways: to ablate residual thyroid tissue (adjuvant therapy) and to treat known metastatic disease. However, the indications and dosages of radioactive iodine use for patients with well-differentiated thyroid cancer are changing, with physicians advising treatment less often and lower doses for adjuvant therapy in recent years. As the practice of radioactive iodine continues to evolve with the availability of large, rigorous clinical studies, it is likely that adjuvant radioactive iodine will be reserved for larger tumors with more aggressive histology and/or for recurrent disease.

Keywords

Thyroid cancer Well-differentiated thyroid cancer Sodium-iodide symporter Radioactive iodine 131-I Remnant ablation Recombinant human TSH Thyroid hormone withdrawal 

References

  1. 1.
    Kaiho T. Iodine chemistry and applications. Hoboken: Wiley; 2015. p. xiv–636.Google Scholar
  2. 2.
    Portulano C, Paroder-Belenitsky M, Carrasco N. The Na+/I- symporter (NIS): mechanism and medical impact. Endocr Rev. 2014;35(1):106–49.CrossRefPubMedGoogle Scholar
  3. 3.
    Frantz VK, Ball RP, Keston AS, Palmer WW. Thyroid carcinoma with metastases: studied with radioactive iodine. Ann Surg. 1944;119(5):668–89.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Lamartina L, Durante C, Filetti S, Cooper DS. Low-risk differentiated thyroid cancer and radioiodine remnant ablation: a systematic review of the literature. J Clin Endocrinol Metab. 2015;100(5):1748–61.CrossRefPubMedGoogle Scholar
  5. 5.
    Sacks W, Wong RM, Bresee C, Braunstein GD. Use of evidence-based guidelines reduces radioactive iodine treatment in patients with low-risk differentiated thyroid cancer. Thyroid. 2015;25(4):377–85.CrossRefPubMedGoogle Scholar
  6. 6.
    Iyer NG, Morris LG, Tuttle RM, Shaha AR, Ganly I. Rising incidence of second cancers in patients with low-risk (T1N0) thyroid cancer who receive radioactive iodine therapy. Cancer. 2011;117(19):4439–46.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Marti JL, Jain KS, Morris LG. Increased risk of second primary malignancy in pediatric and young adult patients treated with radioactive iodine for differentiated thyroid cancer. Thyroid. 2015;25(6):681–7.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Marvin K, Parham K. Differentiated thyroid cancer in people aged 85 and older. J Am Geriatr Soc. 2015;63(5):932–7.CrossRefPubMedGoogle Scholar
  9. 9.
    Dai G, Levy O, Carrasco N. Cloning and characterization of the thyroid iodide transporter. Nature. 1996;379(6564):458–60.CrossRefPubMedGoogle Scholar
  10. 10.
    Chung JK, Youn HW, Kang JH, Lee HY, Kang KW. Sodium iodide symporter and the radioiodine treatment of thyroid carcinoma. Nucl Med Mol Imaging. 2010;44(1):4–14.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kogai T, Taki K, Brent GA. Enhancement of sodium/iodide symporter expression in thyroid and breast cancer. Endocr Relat Cancer. 2006;13(3):797–826.CrossRefPubMedGoogle Scholar
  12. 12.
    Kogai T, Endo T, Saito T, Miyazaki A, Kawaguchi A, Onaya T. Regulation by thyroid-stimulating hormone of sodium/iodide symporter gene expression and protein levels in FRTL-5 cells. Endocrinology. 1997;138(6):2227–32.CrossRefPubMedGoogle Scholar
  13. 13.
    Brent GA, Koenig RJ. Chapter 39. Thyroid and anti-thyroid drugs. In: Brunton LL, et al., editors. Goodman & Gilman’s the pharmacological basis of therapeutics. 12th ed. New York: McGraw-Hill; 2011. p. Web.Google Scholar
  14. 14.
    Eustatia-Rutten CF, Smit JW, Romijn JA, van der Kleij-Corssmit EP, Pereira AM, Stokkel MP, et al. Diagnostic value of serum thyroglobulin measurements in the follow-up of differentiated thyroid carcinoma, a structured meta-analysis. Clin Endocrinol (Oxf). 2004;61(1):61–74.CrossRefGoogle Scholar
  15. 15.
    Smanik PA, Ryu KY, Theil KS, Mazzaferri EL, Jhiang SM. Expression, exon-intron organization, and chromosome mapping of the human sodium iodide symporter. Endocrinology. 1997;138(8):3555–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Kollecker I, von Wasielewski R, Langner C, Müller JA, Spitzweg C, Kreipe H, et al. Subcellular distribution of the sodium iodide symporter in benign and malignant thyroid tissues. Thyroid. 2012;22(5):529–35.CrossRefPubMedGoogle Scholar
  17. 17.
    Vaisman F, Carvalho DP, Vaisman M. A new appraisal of iodine refractory thyroid cancer. Endocr Relat Cancer. 2015;22(6):R301–10.CrossRefPubMedGoogle Scholar
  18. 18.
    Cooper DS, Doherty GM, Haugen BR, Hauger BR, Kloos RT, Lee SL, et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid. 2009;19(11):1167–214.CrossRefPubMedGoogle Scholar
  19. 19.
    Haugen BR, Alexander EK, Bible KC, Doherty G, Mandel SJ, Nikiforov YE, et al. 2015 American Thyroid Association Management Guidelines for adult patients with thyroid nodules and differentiated thyroid cancer. Thyroid. 2016 Jan;26(1):1–133.Google Scholar
  20. 20.
    Tran Cao HS, Johnston LE, Chang DC, Bouvet M. A critical analysis of the American Joint Committee on Cancer (AJCC) staging system for differentiated thyroid carcinoma in young patients on the basis of the Surveillance, Epidemiology, and End Results (SEER) registry. Surgery. 2012;152(2):145–51.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hay ID, Bergstralh EJ, Goellner JR, Ebersold JR, Grant CS. Predicting outcome in papillary thyroid carcinoma: development of a reliable prognostic scoring system in a cohort of 1779 patients surgically treated at one institution during 1940 through 1989. Surgery. 1993;114(6):1050–7; discussion 7–8.PubMedGoogle Scholar
  22. 22.
    Tuttle RM, Tala H, Shah J, Leboeuf R, Ghossein R, Gonen M, et al. Estimating risk of recurrence in differentiated thyroid cancer after total thyroidectomy and radioactive iodine remnant ablation: using response to therapy variables to modify the initial risk estimates predicted by the new American Thyroid Association staging system. Thyroid. 2010;20(12):1341–9.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Vaisman F, Shaha A, Fish S, Michael Tuttle R. Initial therapy with either thyroid lobectomy or total thyroidectomy without radioactive iodine remnant ablation is associated with very low rates of structural disease recurrence in properly selected patients with differentiated thyroid cancer. Clin Endocrinol (Oxf). 2011;75(1):112–9.CrossRefGoogle Scholar
  24. 24.
    Carhill AA, Litofsky DR, Ross DS, Jonklaas J, Cooper DS, Brierley JD, et al. Long-term outcomes following therapy in differentiated thyroid carcinoma: NTCTCS registry analysis 1987-2012. J Clin Endocrinol Metab. 2015;100(9):3270–9; JC20151346.CrossRefPubMedGoogle Scholar
  25. 25.
    Ain KB. Radioiodine-remnant ablation in low-risk differentiated thyroid cancer: pros. Endocrine. 2015;50(1):61–6.CrossRefPubMedGoogle Scholar
  26. 26.
    Bal C, Ballal S, Soundararajan R, Chopra S, Garg A. Radioiodine remnant ablation in low-risk differentiated thyroid cancer patients who had R0 dissection is an over treatment. Cancer Med. 2015;4(7):1031–8.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Ruel E, Thomas S, Dinan M, Perkins JM, Roman SA, Sosa JA. Adjuvant radioactive iodine therapy is associated with improved survival for patients with intermediate-risk papillary thyroid cancer. J Clin Endocrinol Metab. 2015;100(4):1529–36.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Edmonds CJ, Hayes S, Kermode JC, Thompson BD. Measurement of serum TSH and thyroid hormones in the management of treatment of thyroid carcinoma with radioiodine. Br J Radiol. 1977;50(599):799–807.CrossRefPubMedGoogle Scholar
  29. 29.
    Carvalho MR, Ferreira TC, Leite V. Evaluation of whole-body retention of iodine-131 ((131)I) after postoperative remnant ablation for differentiated thyroid carcinoma - thyroxine withdrawal versus rhTSH administration: a retrospective comparison. Oncol Lett. 2012;3(3):617–20.PubMedGoogle Scholar
  30. 30.
    Mazzaferri EL, Kloos RT. Using recombinant human TSH in the management of well-differentiated thyroid cancer: current strategies and future directions. Thyroid. 2000;10(9):767–78.CrossRefPubMedGoogle Scholar
  31. 31.
    Mazzaferri EL, Massoll N. Management of papillary and follicular (differentiated) thyroid cancer: new paradigms using recombinant human thyrotropin. Endocr Relat Cancer. 2002;9(4):227–47.CrossRefPubMedGoogle Scholar
  32. 32.
    Kronenberg H, Williams RH. Williams textbook of endocrinology. 11th ed. Philadelphia: Saunders/Elsevier; 2008. p. xix–1911.Google Scholar
  33. 33.
    Hugo J, Robenshtok E, Grewal R, Larson S, Tuttle RM. Recombinant human thyroid stimulating hormone-assisted radioactive iodine remnant ablation in thyroid cancer patients at intermediate to high risk of recurrence. Thyroid. 2012;22(10):1007–15.CrossRefPubMedGoogle Scholar
  34. 34.
    Lee M, Lee YK, Jeon TJ, Chang HS, Kim BW, Lee YS, et al. Low iodine diet for one week is sufficient for adequate preparation of high dose radioactive iodine ablation therapy of differentiated thyroid cancer patients in iodine-rich areas. Thyroid. 2014;24(8):1289–96.CrossRefPubMedGoogle Scholar
  35. 35.
    Schlumberger M, Catargi B, Borget I, Deandreis D, Zerdoud S, Bridji B, et al. Strategies of radioiodine ablation in patients with low-risk thyroid cancer. N Engl J Med. 2012;366(18):1663–73.CrossRefPubMedGoogle Scholar
  36. 36.
    Mallick U, Harmer C, Yap B, Wadsley J, Clarke S, Moss L, et al. Ablation with low-dose radioiodine and thyrotropin alfa in thyroid cancer. N Engl J Med. 2012;366(18):1674–85.CrossRefPubMedGoogle Scholar
  37. 37.
    Molinaro E, Giani C, Agate L, Biagini A, Pieruzzi L, Bianchi F, et al. Patients with differentiated thyroid cancer who underwent radioiodine thyroid remnant ablation with low-activity 131I after either recombinant human TSH or thyroid hormone therapy withdrawal showed the same outcome after a 10-year follow-up. J Clin Endocrinol Metab. 2013;98(7):2693–700.CrossRefPubMedGoogle Scholar
  38. 38.
    Tu J, Wang S, Huo Z, Lin Y, Li X, Wang S. Recombinant human thyrotropin-aided versus thyroid hormone withdrawal-aided radioiodine treatment for differentiated thyroid cancer after total thyroidectomy: a meta-analysis. Radiother Oncol. 2014;110(1):25–30.CrossRefPubMedGoogle Scholar
  39. 39.
    Ravichandran R, Al Saadi A, Al Balushi N. Radioactive body burden measurements in (131)iodine therapy for differentiated thyroid cancer: effect of recombinant thyroid stimulating hormone in whole body (131)iodine clearance. World J Nucl Med. 2014;13(1):56–61.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Maini CL, Sciuto R, Tofani A, Rosito I, Franciotti G, Pisano L. Thyroid-stimulating hormone (TSH) suppression in differentiated thyroid carcinoma: combined treatment with triiodothyronine and thyroxine. Eur J Cancer. 1994;30A(14):2184–5.CrossRefPubMedGoogle Scholar
  41. 41.
    Luster M, Lippi F, Jarzab B, Perros P, Lassmann M, Reiners C, et al. rhTSH-aided radioiodine ablation and treatment of differentiated thyroid carcinoma: a comprehensive review. Endocr Relat Cancer. 2005;12(1):49–64.CrossRefPubMedGoogle Scholar
  42. 42.
    Van Nostrand D, Aiken M, Atkins F, Moreau S, Garcia C, Acio E, et al. The utility of radioiodine scans prior to iodine 131 ablation in patients with well-differentiated thyroid cancer. Thyroid. 2009;19(8):849–55.CrossRefPubMedGoogle Scholar
  43. 43.
    Chen MK, Yasrebi M, Samii J, Staib LH, Doddamane I, Cheng DW. The utility of I-123 pretherapy scan in I-131 radioiodine therapy for thyroid cancer. Thyroid. 2012;22(3):304–9.CrossRefPubMedGoogle Scholar
  44. 44.
    Nordén MM, Larsson F, Tedelind S, Carlsson T, Lundh C, Forssell-Aronsson E, et al. Down-regulation of the sodium/iodide symporter explains 131I-induced thyroid stunning. Cancer Res. 2007;67(15):7512–7.CrossRefPubMedGoogle Scholar
  45. 45.
    Chalstrey LJ, Benjamin B. High incidence of breast cancer in thyroid cancer patients. Br J Cancer. 1966;20(4):670–5.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Han JM, Kim WG, Kim TY, Jeon MJ, Ryu JS, Song DE, et al. Effects of low-dose and high-dose postoperative radioiodine therapy on the clinical outcome in patients with small differentiated thyroid cancer having microscopic extrathyroidal extension. Thyroid. 2014;24(5):820–5.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Verburg FA, Mader U, Reiners C, Hanscheid H. Long-term survival in differentiated thyroid cancer is worse after low-activity initial post-surgical 131I therapy in both high- and low-risk patients. J Clin Endocrinol Metab. 2014;99(12):4487–96.CrossRefPubMedGoogle Scholar
  48. 48.
    Fallahi B, Beiki D, Takavar A, Fard-Esfahani A, Gilani KA, Saghari M, et al. Low versus high radioiodine dose in postoperative ablation of residual thyroid tissue in patients with differentiated thyroid carcinoma: a large randomized clinical trial. Nucl Med Commun. 2012;33(3):275–82.CrossRefPubMedGoogle Scholar
  49. 49.
    Mäenpää HO, Heikkonen J, Vaalavirta L, Tenhunen M, Joensuu H. Low vs. high radioiodine activity to ablate the thyroid after thyroidectomy for cancer: a randomized study. PLoS One. 2008;3(4):e1885.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Caglar M, Bozkurt FM, Akca CK, Vargol SE, Bayraktar M, Ugur O, et al. Comparison of 800 and 3700 MBq iodine-131 for the postoperative ablation of thyroid remnant in patients with low-risk differentiated thyroid cancer. Nucl Med Commun. 2012;33(3):268–74.CrossRefPubMedGoogle Scholar
  51. 51.
    Pilli T, Brianzoni E, Capoccetti F, Castagna MG, Fattori S, Poggiu A, et al. A comparison of 1850 (50 mCi) and 3700 MBq (100 mCi) 131-iodine administered doses for recombinant thyrotropin-stimulated postoperative thyroid remnant ablation in differentiated thyroid cancer. J Clin Endocrinol Metab. 2007;92(9):3542–6.CrossRefPubMedGoogle Scholar
  52. 52.
    Menzel C, Grunwald F, Schomburg A, Palmedo H, Bender H, Spath G, et al. “High-dose” radioiodine therapy in advanced differentiated thyroid carcinoma. J Nucl Med. 1996;37(9):1496–503.PubMedGoogle Scholar
  53. 53.
    Gao YC, Lu HK. Outcome after high-dose radioiodine therapy for advanced differentiated thyroid carcinoma in childhood. Endocr Res. 2009;34(4):121–9.CrossRefPubMedGoogle Scholar
  54. 54.
    Haq MS, McCready RV, Harmer CL. Treatment of advanced differentiated thyroid carcinoma with high activity radioiodine therapy. Nucl Med Commun. 2004;25(8):799–805.CrossRefPubMedGoogle Scholar
  55. 55.
    Rosário PW, Calsolari MR. Thyroid ablation with 1.1 GBq (30 mCi) iodine-131 in patients with papillary thyroid carcinoma at intermediate risk for recurrence. Thyroid. 2014;24(5):826–31.CrossRefPubMedGoogle Scholar
  56. 56.
    Sherman SI, Tielens ET, Sostre S, Wharam MD, Ladenson PW. Clinical utility of posttreatment radioiodine scans in the management of patients with thyroid carcinoma. J Clin Endocrinol Metab. 1994;78(3):629–34.PubMedGoogle Scholar
  57. 57.
    Rémy H, Coulot J, Borget I, Ricard M, Guilabert N, Lavielle F, et al. Thyroid cancer patients treated with 131I: radiation dose to relatives after discharge from the hospital. Thyroid. 2012;22(1):59–63.CrossRefPubMedGoogle Scholar
  58. 58.
    Pacilio M, Bianciardi L, Panichelli V, Argirò G, Cipriani C. Management of 131I therapy for thyroid cancer: cumulative dose from in-patients, discharge planning and personnel requirements. Nucl Med Commun. 2005;26(7):623–31.CrossRefPubMedGoogle Scholar
  59. 59.
    Ko KY, Kao CH, Lin CL, Huang WS, Yen RF. (131)I treatment for thyroid cancer and the risk of developing salivary and lacrimal gland dysfunction and a second primary malignancy: a nationwide population-based cohort study. Eur J Nucl Med Mol Imaging. 2015;42(8):1172–8.CrossRefPubMedGoogle Scholar
  60. 60.
    Hyer S, Vini L, O’Connell M, Pratt B, Harmer C. Testicular dose and fertility in men following I(131) therapy for thyroid cancer. Clin Endocrinol (Oxf). 2002;56(6):755–8.CrossRefGoogle Scholar
  61. 61.
    Klein Hesselink EN, Links TP. Radioiodine treatment and thyroid hormone suppression therapy for differentiated thyroid carcinoma: adverse effects support the trend toward less aggressive treatment for low-risk patients. Eur Thyroid J. 2015;4(2):82–92.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Spitzweg C, Joba W, Schriever K, Goellner JR, Morris JC, Heufelder AE. Analysis of human sodium iodide symporter immunoreactivity in human exocrine glands. J Clin Endocrinol Metab. 1999;84(11):4178–84.PubMedGoogle Scholar
  63. 63.
    Jonklaas J. Nasal symptoms after radioiodine therapy: a rarely described side effect with similar frequency to lacrimal dysfunction. Thyroid. 2014;24(12):1806–14.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Edmonds CJ, Smith T. The long-term hazards of the treatment of thyroid cancer with radioiodine. Br J Radiol. 1986;59(697):45–51.CrossRefPubMedGoogle Scholar
  65. 65.
    Alexander C, Bader JB, Schaefer A, Finke C, Kirsch CM. Intermediate and long-term side effects of high-dose radioiodine therapy for thyroid carcinoma. J Nucl Med. 1998;39(9):1551–4.PubMedGoogle Scholar
  66. 66.
    Mazzaferri EL. Gonadal damage from 131I therapy for thyroid cancer. Clin Endocrinol (Oxf). 2002;57(3):313–4.CrossRefGoogle Scholar
  67. 67.
    Wu JX, Young S, Ro K, Li N, Leung AM, Chiu HK, et al. Reproductive outcomes and nononcologic complications after radioactive iodine ablation for well-differentiated thyroid cancer. Thyroid. 2015;25(1):133–8.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Adjadj E, Rubino C, Shamsaldim A, Le MG, Schlumberger M, de Vathaire F. The risk of multiple primary breast and thyroid carcinomas. Cancer. 2003;98(6):1309–17.CrossRefPubMedGoogle Scholar
  69. 69.
    Sawka AM, Thabane L, Parlea L, Ibrahim-Zada I, Tsang RW, Brierley JD, et al. Second primary malignancy risk after radioactive iodine treatment for thyroid cancer: a systematic review and meta-analysis. Thyroid. 2009;19(5):451–7.CrossRefPubMedGoogle Scholar
  70. 70.
    Metso S, Auvinen A, Huhtala H, Salmi J, Oksala H, Jaatinen P. Increased cancer incidence after radioiodine treatment for hyperthyroidism. Cancer. 2007;109(10):1972–9.CrossRefPubMedGoogle Scholar
  71. 71.
    Verkooijen RB, Smit JW, Romijn JA, Stokkel MP. The incidence of second primary tumors in thyroid cancer patients is increased, but not related to treatment of thyroid cancer. Eur J Endocrinol. 2006;155(6):801–6.CrossRefPubMedGoogle Scholar
  72. 72.
    Ahn HY, Min HS, Yeo Y, Ma SH, Hwang Y, An JH, et al. Radioactive iodine therapy did not significantly increase the incidence and recurrence of subsequent breast cancer. J Clin Endocrinol Metab. 2015;100(9):3486–93; JC20142896.CrossRefPubMedGoogle Scholar
  73. 73.
    Lee J, Yun MJ, Nam KH, Chung WY, Soh EY, Park CS. Quality of life and effectiveness comparisons of thyroxine withdrawal, triiodothyronine withdrawal, and recombinant thyroid-stimulating hormone administration for low-dose radioiodine remnant ablation of differentiated thyroid carcinoma. Thyroid. 2010;20(2):173–9.CrossRefPubMedGoogle Scholar
  74. 74.
    Pacini F, Ladenson PW, Schlumberger M, Driedger A, Luster M, Kloos RT, et al. Radioiodine ablation of thyroid remnants after preparation with recombinant human thyrotropin in differentiated thyroid carcinoma: results of an international, randomized, controlled study. J Clin Endocrinol Metab. 2006;91(3):926–32.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Division of Endocrinology (111D)VA Greater Los Angeles Healthcare System, UCLA David Geffen School of MedicineLos AngelesUSA

Personalised recommendations