The Pediatric Thyroid Nodule and Papillary Thyroid Cancer Management

  • Scott A. RivkeesEmail author
  • Catherine A. Dinauer


Pediatric thyroid cancer is a rare disease with an excellent prognosis. Compared with adults, epithelial-derived differentiated thyroid cancer (DTC), which includes papillary (PTC), presents at more advanced stages in children and is associated with higher rates of recurrence. Because of its uncommon occurrence, randomized trials have not been applied to test best care options in children. Even in adults that have a tenfold or higher incidence of thyroid cancer than children, few prospective trials have been executed to compare treatment approaches. We recognize that treatment recommendations have changed over the past few decades and will continue to do so. Reflecting the aggressiveness of pediatric thyroid cancer, high recurrence rates, and the problems associated with decades of long-term follow-up, a premium should be placed on treatments that minimize risk of recurrence and the adverse effects of treatments and facilitate follow-up. We recommend long-term follow-up, since disease can recur decades after initial therapy. Considering the complexity of DTC management and the potential complications associated with therapy, it is essential that pediatric DTC be managed by physicians with expertise in this area.


Thyroid nodule Thyroid cancer Thyroidectomy Pediatric Child Radioactive iodine Thyroglobulin 


  1. 1.
    Hogan AR, Zhuge Y, Perez EA, Koniaris LG, Lew JI, Sola JE. Pediatric thyroid carcinoma: incidence and outcomes in 1753 patients. J Surg Res. 2009;156(1):167–72.PubMedCrossRefGoogle Scholar
  2. 2.
    Francis G, Waguespack SG, Bauer AJ, Angelos P, Benvenga S, Cerutti J, et al. Management guidelines for children with thyroid nodules and differentiated thyroid cancer the American Thyroid Association Guidelines Task Force on Pediatric Thyroid Cancer. Thyroid. 2015;25:716–59.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Rivkees SA, Mazzaferri EL, Verburg FA, Reiners C, Luster M, Breuer CK, et al. The treatment of differentiated thyroid cancer in children: emphasis on surgical approach and radioactive iodine therapy. Endocr Rev. 2011;32(6):798–826.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Powers PA, Dinauer CA, Tuttle RM, Robie DK, McClellan DR, Francis GL. Tumor size and extent of disease at diagnosis predict the response to initial therapy for papillary thyroid carcinoma in children and adolescents. J Pediatr Endocrinol Metab. 2003;16(5):693–702.PubMedCrossRefGoogle Scholar
  5. 5.
    O’Gorman CS, Hamilton J, Rachmiel M, Gupta A, Ngan BY, Daneman D. Thyroid cancer in childhood: a retrospective review of childhood course. Thyroid. 2010;20(4):375–80.PubMedCrossRefGoogle Scholar
  6. 6.
    Rachmiel M, Charron M, Gupta A, Hamilton J, Wherrett D, Forte V, et al. Evidence-based review of treatment and follow up of pediatric patients with differentiated thyroid carcinoma. J Pediatr Endocrinol Metab. 2006;19(12):1377–93.PubMedCrossRefGoogle Scholar
  7. 7.
    Brink JS, van Heerden JA, McIver B, Salomao DR, Farley DR, Grant CS, et al. Papillary thyroid cancer with pulmonary metastases in children: long-term prognosis. Surgery. 2000;128(6):881–6; discussion 6–7.PubMedCrossRefGoogle Scholar
  8. 8.
    La Quaglia MP, Black T, Holcomb 3rd GW, Sklar C, Azizkhan RG, Haase GM, et al. Differentiated thyroid cancer: clinical characteristics, treatment, and outcome in patients under 21 years of age who present with distant metastases. A report from the Surgical Discipline Committee of the Children’s Cancer Group. J Pediatr Surg. 2000;35(6):955–9; discussion 60.PubMedCrossRefGoogle Scholar
  9. 9.
    Haugen BRM, Alexander EK, Bible KC, Doherty G, Mandel SJ, Nikiforov YE, et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26:1–133.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Howlader N NA, Krapcho M, Garshell J, Neyman N, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Cho H, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA (eds) SEER Cancer Statistics Review, 1975–2010. 2013.
  11. 11.
    Welch Dinauer CA, Tuttle RM, Robie DK, McClellan DR, Svec RL, Adair C, et al. Clinical features associated with metastasis and recurrence of differentiated thyroid cancer in children, adolescents and young adults. Clin Endocrinol (Oxf). 1998;49(5):619–28.CrossRefGoogle Scholar
  12. 12.
    Reiners C, Demidchik YE. Differentiated thyroid cancer in childhood: pathology, diagnosis, therapy. Pediatr Endocrinol Rev. 2003;1 Suppl 2:230–5; discussion 5–6.PubMedGoogle Scholar
  13. 13.
    Chaukar DA, Rangarajan V, Nair N, Dcruz AK, Nadkarni MS, Pai PS, et al. Pediatric thyroid cancer. J Surg Oncol. 2005;92(2):130–3.PubMedCrossRefGoogle Scholar
  14. 14.
    Okada T, Sasaki F, Takahashi H, Taguchi K, Takahashi M, Watanabe K, et al. Management of childhood and adolescent thyroid carcinoma: long-term follow-up and clinical characteristics. Eur J Pediatr Surg. 2006;16(1):8–13.PubMedCrossRefGoogle Scholar
  15. 15.
    Thompson GB, Hay ID. Current strategies for surgical management and adjuvant treatment of childhood papillary thyroid carcinoma. World J Surg. 2004;28(12):1187–98.PubMedCrossRefGoogle Scholar
  16. 16.
    Luster M, Lassmann M, Freudenberg LS, Reiners C. Thyroid cancer in childhood: management strategy, including dosimetry and long-term results. Hormones (Athens). 2007;6(4):269–78.CrossRefGoogle Scholar
  17. 17.
    Dinauer C, Francis GL. Thyroid cancer in children. Endocrinol Metab Clin North Am. 2007;36(3):779–806, vii.PubMedCrossRefGoogle Scholar
  18. 18.
    Dinauer CA, Breuer C, Rivkees SA. Differentiated thyroid cancer in children: diagnosis and management. Curr Opin Oncol. 2008;20(1):59–65.PubMedCrossRefGoogle Scholar
  19. 19.
    Zimmerman D, Hay ID, Gough IR, Goellner JR, Ryan JJ, Grant CS, et al. Papillary thyroid carcinoma in children and adults: long-term follow-up of 1039 patients conservatively treated at one institution during three decades. Surgery. 1988;104(6):1157–66.PubMedGoogle Scholar
  20. 20.
    Zaydfudim V, Feurer ID, Griffin MR, Phay JE. The impact of lymph node involvement on survival in patients with papillary and follicular thyroid carcinoma. Surgery. 2008;144(6):1070–7; discussion 7–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Hung W, Sarlis NJ. Current controversies in the management of pediatric patients with well-differentiated nonmedullary thyroid cancer: a review. Thyroid. 2002;12(8):683–702.PubMedCrossRefGoogle Scholar
  22. 22.
    Sugg SL, Ezzat S, Rosen IB, Freeman JL, Asa SL. Distinct multiple RET/PTC gene rearrangements in multifocal papillary thyroid neoplasia. J Clin Endocrinol Metab. 1998;83(11):4116–22.PubMedGoogle Scholar
  23. 23.
    Shattuck TM, Westra WH, Ladenson PW, Arnold A. Independent clonal origins of distinct tumor foci in multifocal papillary thyroid carcinoma. N Engl J Med. 2005;352(23):2406–12.PubMedCrossRefGoogle Scholar
  24. 24.
    Duffy PJF. Cancer of the thyroid in children: a report of twenty-eight cases. J Clin Endocrinol Metab. 1950;10:1296–308.PubMedCrossRefGoogle Scholar
  25. 25.
    Winship T, Rosvoll RV. A study of thyroid cancer in children. Am J Surg. 1961;102:747–52.PubMedCrossRefGoogle Scholar
  26. 26.
    Sigurdson AJ, Ronckers CM, Mertens AC, Stovall M, Smith SA, Liu Y, et al. Primary thyroid cancer after a first tumour in childhood (the Childhood Cancer Survivor Study): a nested case–control study. Lancet. 2005;365(9476):2014–23.PubMedCrossRefGoogle Scholar
  27. 27.
    Dolphin GW. The risk of thyroid cancers following irradiation. Health Phys. 1968;15:219–28.PubMedCrossRefGoogle Scholar
  28. 28.
    Ron E, Lubin J, Shore RE, Mabuchi K, Modan B, Pottern LM, et al. Thyroid Cancer after exposure to external radiation: a pooled analysis of seven studies. Radiat Res. 1995;141:259–77.PubMedCrossRefGoogle Scholar
  29. 29.
    Sankila R, Garwicz S, Olsen JH, Dollner H, Hertz H, Kreuger A, et al. Risk of subsequent malignant neoplasms among 1,641 Hodgkin’s disease patients diagnosed in childhood and adolescence: a population-based cohort study in the five Nordic countries. Association of the Nordic cancer registries and the Nordic society of pediatric hematology and oncology. J Clin Oncol. 1996;14(5):1442–6.PubMedCrossRefGoogle Scholar
  30. 30.
    Davies SM. Subsequent malignant neoplasms in survivors of childhood cancer: Childhood Cancer Survivor Study (CCSS) studies. Pediatr Blood Cancer. 2007;48(7):727–30.PubMedCrossRefGoogle Scholar
  31. 31.
    Maule M, Scelo G, Pastore G, Brennan P, Hemminki K, Pukkala E, et al. Risk of second malignant neoplasms after childhood central nervous system malignant tumours: an international study. Eur J Cancer. 2008;44(6):830–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Tucker MA, Jones PH, Boice Jr JD, Robison LL, Stone BJ, Stovall M, et al. Therapeutic radiation at a young age is linked to secondary thyroid cancer. The late effects study group. Cancer Res. 1991;51(11):2885–8.PubMedGoogle Scholar
  33. 33.
    Brignardello E, Corrias A, Isolato G, Palestini N, Cordero di Montezemolo L, Fagioli F, et al. Ultrasound screening for thyroid carcinoma in childhood cancer survivors: a case series. J Clin Endocrinol Metab. 2008;93(12):4840–3.PubMedCrossRefGoogle Scholar
  34. 34.
    Malchoff CD, Malchoff DM. Familial papillary thyroid carcinoma. Cancer Treat Res. 2004;122:381–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Ozaki O, Ito K, Kobayashi K, Suzuki A, Manabe Y, Hosoda Y. Familial occurrence of differentiated, nonmedullary thyroid carcinoma. World J Surg. 1988;12(4):565–71.PubMedCrossRefGoogle Scholar
  36. 36.
    Korber C, Geling M, Werner E, Mortl M, Mader U, Reiners C, et al. Incidence of familial non-medullary thyroid carcinoma in the patient register of the Clinic and Polyclinic of Nuclear Medicine, University of Wurzburg. Nuklearmedizin. 2000;39(1):27–32.PubMedGoogle Scholar
  37. 37.
    Hillenbrand A, Varhaug JE, Brauckhoff M, Pandev R, Haufe S, Dotzenrath C, et al. Familial nonmedullary thyroid carcinoma—clinical relevance and prognosis. A European multicenter study. Langenbecks Arch Surg. 2010;395:851–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Farooq A, Walker LJ, Bowling J, Audisio RA. Cowden syndrome. Cancer Treat Rev. 2010;36:577–83.PubMedCrossRefGoogle Scholar
  39. 39.
    Blumenthal GM, Dennis PA. PTEN hamartoma tumor syndromes. Eur J Hum Genet. 2008;16(11):1289–300.PubMedCrossRefGoogle Scholar
  40. 40.
    Richards ML. Familial syndromes associated with thyroid cancer in the era of personalized medicine. Thyroid. 2010;20(7):707–13.PubMedCrossRefGoogle Scholar
  41. 41.
    Hobert JA, Eng C. PTEN hamartoma tumor syndrome: an overview. Genet Med. 2009;11(10):687–94.PubMedCrossRefGoogle Scholar
  42. 42.
    Vriens MR, Suh I, Moses W, Kebebew E. Clinical features and genetic predisposition to hereditary nonmedullary thyroid cancer. Thyroid. 2009;19(12):1343–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Half E, Bercovich D, Rozen P. Familial adenomatous polyposis. Orphanet J Rare Dis. 2009;4:22.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Perrier ND, van Heerden JA, Goellner JR, Williams ED, Gharib H, Marchesa P, et al. Thyroid cancer in patients with familial adenomatous polyposis. World J Surg. 1998;22(7):738–42; discussion 43.PubMedCrossRefGoogle Scholar
  45. 45.
    Niedziela M. Pathogenesis, diagnosis and management of thyroid nodules in children. Endocr Relat Cancer. 2006;13(2):427–53.PubMedCrossRefGoogle Scholar
  46. 46.
    Cheung K, Roman SA, Wang TS, Walker HD, Sosa JA. Calcitonin measurement in the evaluation of thyroid nodules in the United States: a cost-effectiveness and decision analysis. J Clin Endocrinol Metab. 2008;93(6):2173–80.PubMedCrossRefGoogle Scholar
  47. 47.
    Cooper DS, Doherty GM, Haugen BR, Kloos RT, Lee SL, Mandel SJ, et al. Management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid. 2006;16(2):109–42.PubMedCrossRefGoogle Scholar
  48. 48.
    Corrias A, Einaudi S, Chiorboli E, Weber G, Crino A, Andreo M, et al. Accuracy of fine needle aspiration biopsy of thyroid nodules in detecting malignancy in childhood: comparison with conventional clinical, laboratory, and imaging approaches. J Clin Endocrinol Metab. 2001;86(10):4644–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Mussa A, De Andrea M, Motta M, Mormile A, Palestini N, Corrias A. Predictors of malignancy in children with thyroid nodules. J Pediatr. 2015;167(4):886–92 e1.PubMedCrossRefGoogle Scholar
  50. 50.
    Cibas ES, Ali SZ. The Bethesda system for reporting thyroid cytopathology. Thyroid. 2009;19(11):1159–65.PubMedCrossRefGoogle Scholar
  51. 51.
    Baloch ZW, LiVolsi VA, Asa SL, Rosai J, Merino MJ, Randolph G, et al. Diagnostic terminology and morphologic criteria for cytologic diagnosis of thyroid lesions: a synopsis of the National Cancer Institute thyroid fine-needle aspiration state of the science conference. Diagnostic cytopathology. 2008;36(6):425–37.PubMedCrossRefGoogle Scholar
  52. 52.
    Moslavac S, Matesa N, Kusic Z. Thyroid fine needle aspiration cytology in children and adolescents. Coll Antropol. 2010;34(1):197–200.PubMedGoogle Scholar
  53. 53.
    Kapila K, Pathan SK, George SS, Haji BE, Das DK, Qadan LR. Fine needle aspiration cytology of the thyroid in children and adolescents: experience with 792 aspirates. Acta Cytol. 2010;54(4):569–74.PubMedGoogle Scholar
  54. 54.
    Corrias A, Mussa A, Baronio F, Arrigo T, Salerno M, Segni M, et al. Diagnostic features of thyroid nodules in pediatrics. Arch Pediatr Adolesc Med. 2010;164(8):714–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Theoharis CG, Schofield KM, Hammers L, Udelsman R, Chhieng DC. The Bethesda thyroid fine-needle aspiration classification system: year 1 at an academic institution. Thyroid. 2009;19(11):1215–23.PubMedCrossRefGoogle Scholar
  56. 56.
    Izquierdo R, Shankar R, Kort K, Khurana K. Ultrasound-guided fine-needle aspiration in the management of thyroid nodules in children and adolescents. Thyroid. 2009;19(7):703–5.PubMedCrossRefGoogle Scholar
  57. 57.
    Rivkees SA. Evaluating the rare and predicting the worst: lessons for thyroid nodules. J Pediatr. 2015;167(4):790–1.PubMedCrossRefGoogle Scholar
  58. 58.
    Carty SE, Cooper DS, Doherty GM, Duh QY, Kloos RT, Mandel SJ, et al. Consensus statement on the terminology and classification of central neck dissection for thyroid cancer. Thyroid. 2009;19(11):1153–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Cooper DS, Doherty GM, Haugen BR, Kloos RT, Lee SL, Mandel SJ, et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid. 2009;19(11):1167–214.PubMedCrossRefGoogle Scholar
  60. 60.
    Kouvaraki MA, Shapiro SE, Fornage BD, Edeiken-Monro BS, Sherman SI, Vassilopoulou-Sellin R, et al. Role of preoperative ultrasonography in the surgical management of patients with thyroid cancer. Surgery. 2003;134(6):946–54; discussion 54–5.PubMedCrossRefGoogle Scholar
  61. 61.
    Solorzano CC, Carneiro DM, Ramirez M, Lee TM, Irvin 3rd GL. Surgeon-performed ultrasound in the management of thyroid malignancy. Am Surg. 2004;70(7):576–80; discussion 80–2.PubMedGoogle Scholar
  62. 62.
    Gonzalez HE, Cruz F, O’Brien A, Goni I, Leon A, Claure R, et al. Impact of preoperative ultrasonographic staging of the neck in papillary thyroid carcinoma. Arch Otolaryngol Head Neck Surg. 2007;133(12):1258–62.PubMedCrossRefGoogle Scholar
  63. 63.
    Stulak JM, Grant CS, Farley DR, Thompson GB, van Heerden JA, Hay ID, et al. Value of preoperative ultrasonography in the surgical management of initial and reoperative papillary thyroid cancer. Arch Surg. 2006;141(5):489–94; discussion 94–6.PubMedCrossRefGoogle Scholar
  64. 64.
    Gimm O, Rath FW, Dralle H. Pattern of lymph node metastases in papillary thyroid carcinoma. Br J Surg. 1998;85(2):252–4.PubMedCrossRefGoogle Scholar
  65. 65.
    Bonnet S, Hartl DM, Travagli JP. Lymph node dissection for thyroid cancer. J Visc Surg. 2010;147(3):e155–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Machens A, Hauptmann S, Dralle H. Lymph node dissection in the lateral neck for completion in central node-positive papillary thyroid cancer. Surgery. 2009;145(2):176–81.PubMedCrossRefGoogle Scholar
  67. 67.
    Udelsman R, Lakatos E, Ladenson P. Optimal surgery for papillary thyroid carcinoma. World J Surg. 1996;20(1):88–93.PubMedCrossRefGoogle Scholar
  68. 68.
    Udelsman R. Thyroid cancer surgery. Rev Endocr Metab Disord. 2000;1(3):155–63.PubMedCrossRefGoogle Scholar
  69. 69.
    Demidchik YE, Demidchik EP, Reiners C, Biko J, Mine M, Saenko VA, et al. Comprehensive clinical assessment of 740 cases of surgically treated thyroid cancer in children of Belarus. Ann Surg. 2006;243(4):525–32.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Handkiewicz-Junak D, Wloch J, Roskosz J, Krajewska J, Kropinska A, Pomorski L, et al. Total thyroidectomy and adjuvant radioiodine treatment independently decrease locoregional recurrence risk in childhood and adolescent differentiated thyroid cancer. J Nucl Med. 2007;48(6):879–88.PubMedCrossRefGoogle Scholar
  71. 71.
    Hay ID, Gonzalez-Losada T, Reinalda MS, Honetschlager JA, Richards ML, Thompson GB. Long-term outcome in 215 children and adolescents with papillary thyroid cancer treated during 1940 through 2008. World J Surg. 2010;34(6):1192–202.PubMedCrossRefGoogle Scholar
  72. 72.
    Borson-Chazot F, Causeret S, Lifante JC, Augros M, Berger N, Peix JL. Predictive factors for recurrence from a series of 74 children and adolescents with differentiated thyroid cancer. World J Surg. 2004;28(11):1088–92.PubMedCrossRefGoogle Scholar
  73. 73.
    Mazzaferri EL. A vision for the surgical management of papillary thyroid carcinoma: extensive lymph node compartmental dissections and selective use of radioiodine. J Clin Endocrinol Metab. 2009;94(4):1086–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Doherty GM. Prophylactic central lymph node dissection: continued controversy. Oncology (Williston Park). 2009;23(7):603–8.Google Scholar
  75. 75.
    Bonnet S, Hartl D, Leboulleux S, Baudin E, Lumbroso JD, Al Ghuzlan A, et al. Prophylactic lymph node dissection for papillary thyroid cancer less than 2 cm: implications for radioiodine treatment. J Clin Endocrinol Metab. 2009;94(4):1162–7.PubMedCrossRefGoogle Scholar
  76. 76.
    Leboulleux S, Baudin E, Hartl DW, Travagli JP, Schlumberger M. Follicular-cell derived thyroid cancer in children. Eur J Cancer. 2004;40(11):1655–9.PubMedCrossRefGoogle Scholar
  77. 77.
    Seidlin SM, Oshry E, Yalow AA. Spontaneous and experimentally induced uptake of radioactive iodine in metastases from thyroid carcinoma; a preliminary report. J Clin Endocrinol Metab. 1948;8(6):423–32.PubMedCrossRefGoogle Scholar
  78. 78.
    Coliez R. Results of examination of 85 cases of cancer of the thyroid with radioactive iodine. J Radiol Electrol Arch Electr Medicale. 1954;32:881–95.Google Scholar
  79. 79.
    Benua RS, Cicale NR, Sonenberg M, Rawson RW. The relation of radioiodine dosimetry to results and complications in the treatment of metastatic thyroid cancer. Am J Roentgenol Radium Ther Nucl Med. 1962;87:171–82.PubMedGoogle Scholar
  80. 80.
    Verburg FA, Hanscheid H, Biko J, Hategan MC, Lassmann M, Kreissl MC, et al. Dosimetry-guided high-activity (131)I therapy in patients with advanced differentiated thyroid carcinoma: initial experience. Eur J Nucl Med Mol Imaging. 2010;37(5):896–903.PubMedCrossRefGoogle Scholar
  81. 81.
    Maxon HR, Thomas SR, Hertzberg VS, Kereiakes JG, Chen IW, Sperling MI, et al. Relation between effective radiation dose and outcome of radioiodine therapy for thyroid cancer. N Engl J Med. 1983;309:937–41.PubMedCrossRefGoogle Scholar
  82. 82.
    Beierwaltes WH. The treatment of thyroid carcinoma with radioactive iodine. Semin Nucl Med. 1978;8(1):79–94.PubMedCrossRefGoogle Scholar
  83. 83.
    Kulkarni K, Van Nostrand D, Atkins F, Aiken M, Burman K, Wartofsky L. The relative frequency in which empiric dosages of radioiodine would potentially overtreat or undertreat patients who have metastatic well-differentiated thyroid cancer. Thyroid. 2006;16(10):1019–23.PubMedCrossRefGoogle Scholar
  84. 84.
    Van Nostrand D, Atkins F, Moreau S, Aiken M, Kulkarni K, Wu JS, et al. Utility of the radioiodine whole-body retention at 48 hours for modifying empiric activity of 131-iodine for the treatment of metastatic well-differentiated thyroid carcinoma. Thyroid. 2009;19(10):1093–8.PubMedCrossRefGoogle Scholar
  85. 85.
    Rall JE, Alpers JB, Lewallen CG, Sonenberg M, Berman M, Rawson RW. Radiation pneumonitis and fibrosis: a complication of radioiodine treatment of pulmonary metastases from cancer of the thyroid. J Clin Endocrinol Metab. 1957;17(11):1263–76.PubMedCrossRefGoogle Scholar
  86. 86.
    Song H, He B, Prideaux A, Du Y, Frey E, Kasecamp W, et al. Lung dosimetry for radioiodine treatment planning in the case of diffuse lung metastases. J Nucl Med. 2006;47(12):1985–94.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Sgouros G, Song H, Ladenson PW, Wahl RL. Lung toxicity in radioiodine therapy of thyroid carcinoma: development of a dose-rate method and dosimetric implications of the 80-mCi rule. J Nucl Med. 2006;47(12):1977–84.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Scheumann GF, Gimm O, Wegener G, Hundeshagen H, Dralle H. Prognostic significance and surgical management of locoregional lymph node metastases in papillary thyroid cancer. World J Surg. 1994;18(4):559–67; discussion 67–8.PubMedCrossRefGoogle Scholar
  89. 89.
    Dralle H, Machens A. Surgical approaches in thyroid cancer and lymph-node metastases. Best Pract Res Clin Endocrinol Metab. 2008;22(6):971–87.PubMedCrossRefGoogle Scholar
  90. 90.
    Machens A, Hinze R, Thomusch O, Dralle H. Pattern of nodal metastasis for primary and reoperative thyroid cancer. World J Surg. 2002;26(1):22–8.PubMedCrossRefGoogle Scholar
  91. 91.
    Samuel AM, Rajashekharrao B, Shah DH. Pulmonary metastases in children and adolescents with well-differentiated thyroid cancer. J Nucl Med. 1998;39(9):1531–6.PubMedGoogle Scholar
  92. 92.
    Bal CS, Kumar A, Chandra P, Dwivedi SN, Mukhopadhyaya S. Is chest x-ray or high-resolution computed tomography scan of the chest sufficient investigation to detect pulmonary metastasis in pediatric differentiated thyroid cancer? Thyroid. 2004;14(3):217–25.PubMedCrossRefGoogle Scholar
  93. 93.
    Dottorini ME, Vignati A, Mazzucchelli L, Lomuscio G, Colombo L. Differentiated thyroid carcinoma in children and adolescents: a 37-year experience in 85 patients. J Nucl Med. 1997;38(5):669–75.PubMedGoogle Scholar
  94. 94.
    Giuffrida D, Scollo C, Pellegriti G, Lavenia G, Iurato MP, Pezzin V, et al. Differentiated thyroid cancer in children and adolescents. J Endocrinol Invest. 2002;25(1):18–24.PubMedCrossRefGoogle Scholar
  95. 95.
    Chow SM, Law SC, Mendenhall WM, Au SK, Chan PT, Leung TW, et al. Papillary thyroid carcinoma: prognostic factors and the role of radioiodine and external radiotherapy. Int J Radiat Oncol Biol Phys. 2002;52(3):784–95.PubMedCrossRefGoogle Scholar
  96. 96.
    Collini P, Mattavelli F, Spinelli C, Massimino M. Treatment of sporadic nonmedullary thyroid carcinomas in pediatric age. Expert Rev Anticancer Ther. 2007;7(1):23–30.PubMedCrossRefGoogle Scholar
  97. 97.
    Grigsby PW, Gal-or A, Michalski JM, Doherty GM. Childhood and adolescent thyroid carcinoma. Cancer. 2002;95(4):724–9.PubMedCrossRefGoogle Scholar
  98. 98.
    Pazaitou-Panayiotou K, Kaprara A, Boudina M, Georgiou E, Drimonitis A, Vainas I, et al. Thyroid carcinoma in children and adolescents: presentation, clinical course, and outcome of therapy in 23 children and adolescents in Northern Greece. Hormones (Athens). 2005;4(4):213–20.CrossRefGoogle Scholar
  99. 99.
    Lazarus JH. Guidelines for the use of radioiodine in the management of hyperthyroidism: a summary. Prepared by the Radioiodine Audit Subcommittee of the Royal College of Physicians Committee on Diabetes and Endocrinology, and the Research Unit of the Royal College of Physicians. Journal of the Royal College of Physicians of London. 1995;29(6):464–9.PubMedGoogle Scholar
  100. 100.
    Lazar L, Lebenthal Y, Steinmetz A, Yackobovitch-Gavan M, Phillip M. Differentiated thyroid carcinoma in pediatric patients: comparison of presentation and course between pre-pubertal children and adolescents. J Pediatr. 2009;154(5):708–14.PubMedCrossRefGoogle Scholar
  101. 101.
    Pawelczak M, David R, Franklin B, Kessler M, Lam L, Shah B. Outcomes of children and adolescents with well-differentiated thyroid carcinoma and pulmonary metastases following (1)(3)(1)I treatment: a systematic review. Thyroid. 2010;20(10):1095–101.PubMedCrossRefGoogle Scholar
  102. 102.
    Chow SM, Law SC, Mendenhall WM, Au SK, Yau S, Mang O, et al. Differentiated thyroid carcinoma in childhood and adolescence-clinical course and role of radioiodine. Pediatr Blood Cancer. 2004;42(2):176–83.PubMedCrossRefGoogle Scholar
  103. 103.
    Parisi MT, Mankoff D. Differentiated pediatric thyroid cancer: correlates with adult disease, controversies in treatment. Semin Nucl Med. 2007;37(5):340–56.PubMedCrossRefGoogle Scholar
  104. 104.
    Kalemba B, Rozkosz J, Wloch J, Jarzab B. Early results of 131I therapy of differentiated thyroid carcinoma in children. Endokrynol Diabetol Chor Przemiany Materii Wieku Rozw. 1998;4(1):27–35.PubMedGoogle Scholar
  105. 105.
    Verburg E, Biko J, Diebl S, Demidchik Y, Drozd V, Rivkees S, et al. I-131 activities as high as safely administrable for the treatment of children and adolescents with advanced differentiated thyroid cancer. JCEM. 2011;96(8):E1268–71.PubMedGoogle Scholar
  106. 106.
    Maxon 3rd HR, Smith HS. Radioiodine-131 in the diagnosis and treatment of metastatic well differentiated thyroid cancer. Endocrinol Metab Clin North Am. 1990;19(3):685–718.PubMedGoogle Scholar
  107. 107.
    Huang SC, Wu VC, Lin SY, Sheu WH, Song YM, Lin YH, et al. Factors related to clinical hypothyroid severity in thyroid cancer patients after thyroid hormone withdrawal. Thyroid. 2009;19(1):13–20.PubMedCrossRefGoogle Scholar
  108. 108.
    Edmonds CJ, Hayes S, Kermode JC, Thompson BD. Measurement of serum TSH and thyroid hormones in the management of treatment of thyroid carcinoma with radioiodine. Br J Radiol. 1977;50(599):799–807.PubMedCrossRefGoogle Scholar
  109. 109.
    Pacini F, Schlumberger M, Dralle H, Elisei R, Smit JW, Wiersinga W. European consensus for the management of patients with differentiated thyroid carcinoma of the follicular epithelium. Eur J Endocrinol. 2006;154(6):787–803.PubMedCrossRefGoogle Scholar
  110. 110.
    Caldwell KL, Jones R, Hollowell JG. Urinary iodine concentration: United States National Health and Nutrition Examination Survey 2001–2002. Thyroid. 2005;15(7):692–9.PubMedCrossRefGoogle Scholar
  111. 111.
    Ronckers CM, McCarron P, Ron E. Thyroid cancer and multiple primary tumors in the SEER cancer registries. Int J Cancer. 2005;117(2):281–8.PubMedCrossRefGoogle Scholar
  112. 112.
    Brown AP, Chen J, Hitchcock YJ, Szabo A, Shrieve DC, Tward JD. The risk of second primary malignancies up to three decades after the treatment of differentiated thyroid cancer. J Clin Endocrinol Metab. 2008;93(2):504–15.PubMedCrossRefGoogle Scholar
  113. 113.
    Iyer NG, Morris LG, Tuttle RM, Shaha AR, Ganly I. Rising incidence of second cancers in patients with low-risk (T1N0) thyroid cancer who receive radioactive iodine therapy. Cancer. 2011;117:4439–46.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Verkooijen RB, Smit JW, Romijn JA, Stokkel MP. The incidence of second primary tumors in thyroid cancer patients is increased, but not related to treatment of thyroid cancer. Eur J Endocrinol. 2006;155(6):801–6.PubMedCrossRefGoogle Scholar
  115. 115.
    Rubino C, de Vathaire F, Dottorini ME, Hall P, Schvartz C, Couette JE, et al. Second primary malignancies in thyroid cancer patients. Br J Cancer. 2003;89(9):1638–44.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Garsi JP, Rubino C, Lonn S, Schvartz C, Andruccioli M, Bardet S, et al. Impact of radioiodine treatment on the risk of second primary malignancy (SPM) following thyroid cancer: a European cohort study. 14th Annual International Thyroid Conference; Paris. 2010.Google Scholar
  117. 117.
    Zanzonico PB. Radiation dose to patients and relatives incident to 131I therapy. Thyroid. 1997;7(2):199–204.PubMedCrossRefGoogle Scholar
  118. 118.
    Cooper DS, Specker B, Ho M, Sperling M, Ladenson PW, Ross DS, et al. Thyrotropin suppression and disease progression in patients with differentiated thyroid cancer: results from the National Thyroid Cancer Treatment Cooperative Registry. Thyroid. 1998;8(9):737–44.PubMedCrossRefGoogle Scholar
  119. 119.
    Burmeister LA, Goumaz MO, Mariash CN, Oppenheimer JH. Levothyroxine dose requirements for thyrotropin suppression in the treatment of differentiated thyroid cancer. J Clin Endocrinol Metab. 1992;75(2):344–50.PubMedGoogle Scholar
  120. 120.
    Batrinos ML. The problem of exogenous subclinical hyperthyroidism. Hormones (Athens). 2006;5(2):119–25.CrossRefGoogle Scholar
  121. 121.
    Osman F, Gammage MD, Franklyn JA. Hyperthyroidism and cardiovascular morbidity and mortality. Thyroid. 2002;12(6):483–7.PubMedCrossRefGoogle Scholar
  122. 122.
    Rivkees SA. Pediatric Graves’ disease: controversies in management. Horm Res Paediatr. 2010;74:305–11.PubMedCrossRefGoogle Scholar
  123. 123.
    Biondi B, Cooper DS. Benefits of thyrotropin suppression versus the risks of adverse effects in differentiated thyroid cancer. Thyroid. 2010;20(2):135–46.PubMedCrossRefGoogle Scholar
  124. 124.
    Biondi B, Filetti S, Schlumberger M. Thyroid-hormone therapy and thyroid cancer: a reassessment. Nat Clin Pract Endocrinol Metab. 2005;1(1):32–40.PubMedCrossRefGoogle Scholar
  125. 125.
    Baudin E, Do Cao C, Cailleux AF, Leboulleux S, Travagli JP, Schlumberger M. Positive predictive value of serum thyroglobulin levels, measured during the first year of follow-up after thyroid hormone withdrawal, in thyroid cancer patients. J Clin Endocrinol Metab. 2003;88(3):1107–11.PubMedCrossRefGoogle Scholar
  126. 126.
    Verburg FA, Stokkel MP, Duren C, Verkooijen RB, Mader U, van Isselt JW, et al. No survival difference after successful (131)I ablation between patients with initially low-risk and high-risk differentiated thyroid cancer. Eur J Nucl Med Mol Imaging. 2010;37(2):276–83.PubMedCrossRefGoogle Scholar
  127. 127.
    Sherry NA, Levitsky LL. Management of diabetic ketoacidosis in children and adolescents. Paediatr Drugs. 2008;10(4):209–15.PubMedCrossRefGoogle Scholar
  128. 128.
    Costello I, Wong IC, Nunn AJ. A literature review to identify interventions to improve the use of medicines in children. Child Care Health Dev. 2004;30(6):647–65.PubMedCrossRefGoogle Scholar
  129. 129.
    Falkenstein K, Flynn L, Kirkpatrick B, Casa-Melley A, Dunn S. Non-compliance in children post-liver transplant. Who are the culprits? Pediatr Transplant. 2004;8(3):233–6.PubMedCrossRefGoogle Scholar
  130. 130.
    Beardon PH, McGilchrist MM, McKendrick AD, McDevitt DG, MacDonald TM. Primary non-compliance with prescribed medication in primary care. BMJ. 1993;307(6908):846–8.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Beck-Peccoz P, Persani L, LaFranchi S. Safety of medications and hormones used in the treatment of pediatric thyroid disorders. Pediatr Endocrinol Rev. 2004;2 Suppl 1:124–33.PubMedGoogle Scholar
  132. 132.
    Luster M, Handkiewicz-Junak D, Grossi A, Zacharin M, Taieb D, Cruz O, et al. Recombinant thyrotropin use in children and adolescents with differentiated thyroid cancer: a multicenter retrospective study. J Clin Endocrinol Metab. 2009;94(10):3948–53.PubMedCrossRefGoogle Scholar
  133. 133.
    Mazzaferri EL, Robbins RJ, Spencer CA, Braverman LE, Pacini F, Wartofsky L, et al. A consensus report of the role of serum thyroglobulin as a monitoring method for low-risk patients with papillary thyroid carcinoma. J Clin Endocrinol Metab. 2003;88(4):1433–41.PubMedCrossRefGoogle Scholar
  134. 134.
    Van Savell Jr H, Hughes SM, Bower C, Parham DM. Lymphocytic infiltration in pediatric thyroid carcinomas. Pediatr Dev Pathol. 2004;7(5):487–92.PubMedCrossRefGoogle Scholar
  135. 135.
    Somnuke PH, Pusuwan P, Likitmaskul S, Santiprabhob J, Sawathiparnich P. Treatment outcome of Graves’ disease in Thai children. J Med Assoc Thai. 2007;90(9):1815–20.PubMedGoogle Scholar
  136. 136.
    Rubello D, Casara D, Girelli ME, Piccolo M, Busnardo B. Clinical meaning of circulating antithyroglobulin antibodies in differentiated thyroid cancer: a prospective study. J Nucl Med. 1992;33(8):1478–80.PubMedGoogle Scholar
  137. 137.
    Bournaud C, Charrie A, Nozieres C, Chikh K, Lapras V, Denier ML, et al. Thyroglobulin measurement in fine-needle aspirates of lymph nodes in patients with differentiated thyroid cancer: a simple definition of the threshold value, with emphasis on potential pitfalls of the method. Clin Chem Lab Med. 2010;48(8):1171–7.PubMedCrossRefGoogle Scholar
  138. 138.
    Kim MJ, Kim EK, Kim BM, Kwak JY, Lee EJ, Park CS, et al. Thyroglobulin measurement in fine-needle aspirate washouts: the criteria for neck node dissection for patients with thyroid cancer. Clin Endocrinol (Oxf). 2009;70(1):145–51.CrossRefGoogle Scholar
  139. 139.
    Chao M. Management of differentiated thyroid cancer with rising thyroglobulin and negative diagnostic radioiodine whole body scan. Clin Oncol (R Coll Radiol). 2010;22(6):438–47.CrossRefGoogle Scholar
  140. 140.
    Heston TF, Wahl RL. Molecular imaging in thyroid cancer. Cancer Imaging. 2010;10(1):1–7.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of PediatricsUniversity of Florida College of MedicineGainesvilleUSA
  2. 2.Department of SurgeryYale University School of MedicineNew HavenUSA
  3. 3.Department of PediatricsYale University School of MedicineNew HavenUSA

Personalised recommendations