Skip to main content

The Basic Paradigm: Horizontal Homogeneity Over Flat Terrain

  • Chapter
  • First Online:
Turbulence and Dispersion in the Planetary Boundary Layer

Part of the book series: Physics of Earth and Space Environments ((EARTH))

  • 984 Accesses

Abstract

The idealized conditions of horizontal homogeneity allow to develop the basic theory for the PBL. In this chapter we focus on what happens when the PBL processes depend only on the vertical coordinate and on the time. The similarity theory and the data (mainly from the field) lead to the formulation of parameterizations which are the essential background for the understanding of the observations and for the numerical modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • J.D. Albertson, M. Parlange, G. Kiely, W.E. Eichinger, The average dissipation rate of turbulent kinetic energy in the neutral and unstable atmospheric surface layer. J. Geophys. Res. 102, 13423–13432 (1997)

    Google Scholar 

  • E.L. Andreas, R. Hill, J. Gosz, Statistics of surface-layer turbulence over terrain with metre-scale heterogeneity. Bound.-Layer Meteorol. 86, 379–408 (1998)

    Google Scholar 

  • E.L. Andreas, K.J. Claffey, R.E. Jordan, C.W. Fairall, P.S. Guest, P.O.G. Persson, A.A. Grachev, Evaluation of the von Karman constant in the atmospheric surface layer. J. Fluid Mech. 559, 117–149 (2006)

    Article  ADS  MATH  Google Scholar 

  • D. Anfossi, G. Schayes, G. Degrazia, A. Goulart, Atmospheric turbulence decay during the solar total eclipse of 11 August 1999. Bound.-Layer Meteorol. 111, 301–311 (2004)

    Google Scholar 

  • D. Anfossi, D. Oettl, G. Degrazia, E. Ferrero, A. Goulart, An analysis of sonic anemometer observations in low wind speed conditions. Bound.-Layer Meteorol. 114, 179–203 (2005)

    Google Scholar 

  • W.M. Angevine, A.W. Grimsdell, L.M. Hartten, A.C. Delany, The flatland boundary layer experiments. Bull. Am. Meteorol. Soc. 79, 419–431 (1998)

    Article  ADS  Google Scholar 

  • A. Ansmann, J. Fruntke, R. Engelmann, Updraft and downdraft characterization with Doppler lidar: cloud-free versus cumuli-topped mixed layer. Atmos. Chem. Phys. 10, 7845–7858 (2010)

    Google Scholar 

  • P. Baas, G.J. Steeneveld, B.J.H. van de Wiel, A.A.M. Holtslag, Exploring self-correlation in fluxgradient relationships for stably stratified conditions. J. Atmos. Sci. 63, 3045–3054 (2006)

    Google Scholar 

  • D. Bala Subrahamanyam, T.J. Anurose, M. Mohan, M. Santosh, N.V.P. Kiran Kumar, S. Sijikumar, S.S. Prijith, M. Aloysius, Atmospheric surface-layer response to the annular solar eclipse of 15 January 2010 over Thiruvananthapuram, India. Bound.-Layer Meteorol. 141, 325–332 (2011)

    Google Scholar 

  • R.M. Banta, Y.L. Pichugina, W.A. Brewer, Turbulent velocity-variance profiles in the stable boundary layer generated by a nocturnal low-level jet. J. Atmos. Sci. 63, 2700–2719 (2006)

    Article  ADS  Google Scholar 

  • E. Barberis, Analisi statistiche nello strato limite turbolento. Thesis, Univ. Torino, Dip. Fisica (2007)

    Google Scholar 

  • E. Batchvarova, S.E. Gryning, Applied model for the growth of the daytime mixed layer. Bound.-Layer Meteorol. 56, 261–274 (1990)

    Article  ADS  Google Scholar 

  • A. Beljaars, A.A.M. Holtslag, Flux parameterization over land surfaces for atmospheric models. J. Appl. Meteorol. 30, 327–341 (1991)

    Article  ADS  Google Scholar 

  • F. Beyrich, H.T. Mengelkamp, Evaporation over a heterogeneous land surface: EVA_GRIPS and the LITFASS-2003 experiment. Bound.-Layer Meteorol. 121, 5–32 (2006)

    Article  ADS  Google Scholar 

  • R. Bolgiano, Turbulent spectra in a stably stratified atmosphere. J. Geophys. Res. 64, 2226–2229 (1959)

    Article  ADS  Google Scholar 

  • R. Bolgiano, Structure of turbulence in stratified media. J. Geophys. Res. 67, 3015–3023 (1962)

    Article  ADS  MATH  Google Scholar 

  • S.J. Caughey, J.C. Kaimal, Vertical heat flux in the convective boundary layer. Q. J. R. Meteorol. Soc. 103, 811–815 (1977)

    Article  ADS  Google Scholar 

  • S.J. Caughey, J.C. Wyngaard, J.C. Kaimal, Turbulence in the evolving stable boundary layer. J. Atmos. Sci. 36, 1041–1052 (1979)

    Article  ADS  Google Scholar 

  • G. Caulliez, V.K. Makin, V. Kudryavtsev, Drag of the water surface at very short fetches: observations and modeling. J. Phys. Oceanogr. 38, 2038–2055 (2008)

    Google Scholar 

  • H. Charnock, Wind stress on a water surface. Q. J. R. Meteorol. Soc. 81, 639–640 (1955)

    Article  ADS  Google Scholar 

  • D. Charuchittipan, J.D. Wilson, Turbulent kinetic energy dissipation in the surface layer. Bound.-Layer Meteorol. 132, 193–204 (2009)

    Article  ADS  Google Scholar 

  • Y. Cheng, W. Brutsaert, Fluxprofile relationships for wind speed and temperature in the stable atmospheric boundary layer. Bound.-Layer Meteorol. 114, 519–538 (2005)

    Google Scholar 

  • P. Chiba, Stability dependence of the vertical velocity skewness in the atmospheric surface layer. J. Meteorol. Soc. Jpn. 56, 140–142 (1978)

    Google Scholar 

  • M. Courtney, I. Troen, Wind speed spectrum from one year of continuous 8 hz measurements, in Proceedings 9th Symposium on Turbulence and Diffusion (American Meteorological Society, Boston, MA, 1990)

    Google Scholar 

  • C. Darbieu, M. Lothon, D. Pino, Turbulence vertical structure of the boundary layer during the afternoon transition. Atmos. Chem. Phys. 15, 10071–10086 (2015)

    Google Scholar 

  • M. de Franceschi, D. Zardi, M. Tagliazucca, F. Tampieri, Analysis of second order moments in surface layer turbulence in an alpine valley. Q. J. R. Meteorol. Soc. 135, 1750–1765 (2009)

    Google Scholar 

  • J.W. Deardorff, The counter-gradient heat flux in the atmosphere and in the laboratory. J. Atmos. Sci. 23, 503–506 (1966)

    Article  ADS  Google Scholar 

  • J.W. Deardorff, Convective velocity and temperature scales for the unstable planetary boundary layer. J. Atmos. Sci. 27, 1211–1213 (1970)

    Article  ADS  Google Scholar 

  • S.H. Derbyshire, Nieuwstadt’s stable boundary layer revisited. Q. J. R. Meteorol. Soc. 116, 127–158 (1990)

    Article  ADS  Google Scholar 

  • N.L. Dias, W. Brutsaert, M.L. Wesely, Z-less stratification under stable conditions. Bound.-Layer Meteorol. 75, 175–187 (1995)

    Google Scholar 

  • F. Durst, J. Jovanovic, L.J. Kanevce, Probability density distribution in turbulent wall boundary-layer flows, in Turbulent Shear Flows 5, ed. by F. Durst, B.E. Launder, J.L. Lumley, F.W. Schmidt, J.H. Whitelaw (Springer, Berlin, 1987)

    Google Scholar 

  • H.J.S. Fernando, B. Verhoef, S. Di Sabatino, L.S. Leo, S. Park, The phoenix evening transition flow experiment (TRANSFLEX). Bound.-Layer Meteorol. 147, 443–468 (2013)

    Google Scholar 

  • J.J. Finnigan, F. Einaudi, D. Fua, The interaction between an internal gravity wave and turbulence in the stably stratified nocturnal boundary layer. J. Atmos. Sci. 41, 2409–2436 (1984)

    Google Scholar 

  • P. Frenzen, C.A. Vogel, Further studies of atmospheric turbulence in layers near the surface: scaling the tke budget above the roughness sublayer. Bound.-Layer Meteorol. 99, 173–206 (2001)

    Article  ADS  Google Scholar 

  • J.R. Garratt, The Atmospheric Boundary Layer (Cambridge University Press, Cambridge, 1992), 316 pp

    MATH  Google Scholar 

  • A. Goulart, G. Degrazia, U. Rizza, D. Anfossi, A theoretical model for the study of the convective turbulence decay and comparison with les data. Bound.-Layer Meteorol. 107, 143–155 (2003)

    Google Scholar 

  • A.A. Grachev, C.W. Fairall, P.O.G. Persson, E.L. Andreas, P.S. Guest, Stable boundary-layer scaling regimes: the SHEBA data. Bound.-Layer Meteorol. 116, 201–235 (2005)

    Article  ADS  Google Scholar 

  • A.A. Grachev, E.L. Andreas, C.W. Fairall, P.S. Guest, P.O.G. Persson, On the turbulent Prandtl number in the stable atmospheric boundary layer. Bound.-Layer Meteorol. 125, 329–341 (2007)

    Article  ADS  Google Scholar 

  • A.A. Grachev, E.L. Andreas, C.W. Fairall, P.S. Guest, P.O.G. Persson, The critical Richardson number and limits of applicability of local similarity theory in the stable boundary layer. Bound.-Layer Meteorol 147, 51–82 (2013)

    Article  ADS  Google Scholar 

  • V. Gryanik, J. Hartmann, A turbulence closure for the convective boundary layer based on a two-scale mass-flux approach. J. Atmos. Sci. 59, 2729–2744 (2002)

    Google Scholar 

  • B.B. Hicks, W.R. Pendergrass III, C.A. Vogel, R.N. Keener Jr., S.M. Leyton, On the micrometeorology of the Southern Great Plains 1: legacy relationships revisited. Bound.-Layer Meteorol. 151, 389–405 (2014)

    Google Scholar 

  • C.W. Higgins, C. Meneveau, M. Parlange, The effect of filter dimension on the subgrid-scale stress, heat flux, and tensor alignements in the atmospheric surface layer. J. Atmos. Ocean. Technol. 24, 360–375 (2007)

    Google Scholar 

  • U. Högström, Analysis of turbulence structure in the surface layer with a modified similarity formulation for near neutral conditions. J. Atmos. Sci. 47, 1949–1972 (1990)

    Article  Google Scholar 

  • U. Högström, Review of some basic characteristics of the atmospheric surface layer. Bound.-Layer Meteorol. 78, 215–246 (1996)

    Article  Google Scholar 

  • U. Högström, J.C.R. Hunt, A.S. Smedman, Theory and measurements for turbulence spectra and variances in the atmospheric neutral surface layer. Bound.-Layer Meteorol. 103, 101–124 (2002)

    Article  ADS  Google Scholar 

  • J.C.R. Hunt, J.C. Kaimal, J.E. Gaynor, Eddy structure in the convective boundary layer - new measurements and new concepts. Q. J. R. Meteorol. Soc. 114, 827–858 (1988)

    ADS  Google Scholar 

  • B.A. Kader, A.M. Yaglom, Mean fields and fluctuation moments in unstably stratified turbulent boundary layers. J. Fluid Mech. 212, 637–662 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • J.C. Kaimal, J.J. Finnigan, Atmospheric Boundary Layer Flows. Their Structure and Measurement. (Oxford University Press, Oxford, 1994)

    Google Scholar 

  • C.L. Klipp, L. Mahrt, Flux-gradient relationship, self-correlation and intermittency in the stable boundary layer. Q. J. R. Meteorol. Soc. 130, 2087–2103 (2004)

    Google Scholar 

  • J. Kondo, O. Kanechika, N. Yasuda, Heat and momentum transfers under strong stability in the atmospheric surface layer. J. Atmos. Sci. 35, 1012–1021 (1978)

    Google Scholar 

  • X.G. Larsén, S.E. Larsen, E.L. Petersen, Full-scale spectrum of boundary-layer winds. Bound.-Layer Meteorol. 159, 349–371 (2016)

    Article  ADS  Google Scholar 

  • D.H. Lenschow, J.C. Wyngaard, W.T. Pennel, Mean field and second moment budgets in a baroclinic, convective boundary layer. J. Atmos. Sci. 37, 1313–1326 (1980)

    Article  ADS  Google Scholar 

  • D.H. Lenschow, X.S. Li, C.J. Zhu, B.B. Stankov, The stably stratified boundary layer over the Great Plains. Bound.-Layer Meteorol. 42, 95–121 (1988)

    Article  ADS  Google Scholar 

  • D.H. Lenschow, M. Lothon, S.D. Mayor, P.P. Sullivan, G. Canut, A comparison of higher-order vertical velocity moments in the convective boundary layer from lidar with in situ measurements and large-eddy simulation. Bound.-Layer Meteorol. 143, 107–123 (2012)

    Google Scholar 

  • D. Li, G. Katul, E. Bou-Zeid, Mean velocity and temperature profiles in a sheared diabatic turbulent boundary layer. Phys. Fluids 24 (2012). 105105.1–105105.16

    Google Scholar 

  • J. Liang, L. Zhang, Y. Wang, X. Cao, Q. Zhang, H. Wang, B. Zhang, Turbulence regimes and the validity of similarity theory in the stable boundary layer over complex terrain of the Loess Plateau, China. J. Geophys. Res.-Atmos. 119, 6009–6021 (2014)

    Google Scholar 

  • M. Lothon, and B. team, The BLLAST field experiment: boundary-Layer late afternoon and sunset turbulence. Atmos. Chem. Phys. 14, 10931–10960 (2014)

    Google Scholar 

  • A.K. Luhar, An analytical slab model for the growth of the coastal thermal internal boundary layer under near-neutral onshore flowconditions. Bound.-Layer Meteorol. 88, 103–120 (1998)

    Article  ADS  Google Scholar 

  • A.K. Luhar, P.J. Hurley, K.N. Rayner, Modelling near-surface low winds over land under stable conditions: sensitivity tests, flux-gradient relationships, and stability parameters. Bound.-Layer Meteorol. 130, 249–274 (2009)

    Article  ADS  Google Scholar 

  • L. Mahrt, Modelling the depth of the stable boundary layer. Bound.-Layer Meteorol. 21, 3–19 (1981)

    Article  ADS  Google Scholar 

  • L. Mahrt, Stably stratified atmospheric boundary layers. Annu. Rev. Fluid Mech. 46, 23–45 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • L. Mahrt, D. Vickers, Contrasting vertical structures of nocturnal boundary layers. Bound.-Layer Meteorol. 105, 351–363 (2002)

    Google Scholar 

  • V.K. Makin, A note on the drag of the sea surface at hurricane winds. Bound.-Layer Meteorol. 115, 169–176 (2005)

    Article  ADS  Google Scholar 

  • S.P. Malinowski, K.E. Haman, M.K. Kopec, W. Kumala, H. Gerber, Small-scale turbulent mixing at stratocumulus top observed by means of high resolution airborne temperature and LWC measurements. J. Phys. Conf. Ser. 318 (2011). 072013.1–072013.7

    Google Scholar 

  • I. Mammarella, F. Tampieri, M. Tagliazucca, M. Nardino, Turbulence perturbations in the neutrally stratified surface layer due to the interaction of a katabatic flow with a steep ridge. Environ. Fluid Mech. 5, 227–246 (2005)

    Google Scholar 

  • T. Mauritsen, G. Svensson, Observations of stably stratified shear-driven atmospheric turbulence at low and high Richardson numbers. J. Atmos. Sci. 64, 645–655 (2007)

    Google Scholar 

  • D.V. Mironov, E. Fedorovich, On the limiting effect of the Earth’s rotation on the depth of a stably stratified boundary layer. Q. J. R. Meteorol. Soc. 136, 1473–1480 (2010)

    Google Scholar 

  • A.S. Monin, A.M. Yaglom, Statistical Fluid Mechanics, vol. I (MIT, Cambridge, 1971), 769 pp

    Google Scholar 

  • A.S. Monin, A.M. Yaglom, Statistical Fluid Mechanics, vol. II (MIT, Cambridge, 1975), 874 pp

    Google Scholar 

  • D.F. Nadeau, E.R. Pardyjak, C.W. Higgins, H.J.S. Fernando, M. Parlange, A simple model for the afternoon and early evening decay of convective turbulence over different land surfaces. Bound.-Layer Meteorol. 141, 301–324 (2011)

    Google Scholar 

  • F.T.M. Nieuwstadt, The turbulent structure of the stable, nocturnal boundary layer. J. Atmos. Sci. 41, 2202–2216 (1984)

    Article  ADS  Google Scholar 

  • F.T.M. Nieuwstadt, A model for the stationary, stable boundary layer, in Turbulence and Diffusion in Stable Environments, ed. by J.C.R. Hunt (Clarendon, Oxford, 1985), pp. 149–220

    Google Scholar 

  • F.T.M. Nieuwstadt, R.A. Brost, The decay of convective turbulence. J. Atmos. Sci. 43, 532–546 (1986)

    Article  ADS  Google Scholar 

  • V. Nikora, Origin of the − 1 spectral law in wall-bounded turbulence. Phys. Rev. Lett. 83, 734–736 (1999)

    Article  ADS  Google Scholar 

  • A.M. Obukhov, Turbulence in thermally inhomogeneous atmosphere. Trudy In-ta Theoret. Geofiz. AN SSSR 1, 95–115 (1946). In Russian

    Google Scholar 

  • G.S. Poulos, W. Blumen, D.C. Fritts, J.K. Lundquist, J. Sun, S.P. Burns, C. Nappo, R.M. Banta, R.K. Newsom, J. Cuxart, E. Terradellas, B.B. Balsley, M. Jensen, CASES-99: a comprehensive investigation of the stable nocturnal boundary layer. Bull. Am. Meteorol. Soc. 83, 555–581 (2002)

    Google Scholar 

  • M.D. Powell, P.J. Vickery, T.A. Reinhold, Reduced drag coefficient for high wind speeds in tropical cyclones. Nature 422, 279–283 (2003)

    Article  ADS  Google Scholar 

  • E. Sahlee, A.S. Smedman, A. Rutgersson, U. Högström, Spectra of co2 and water vapour in the marine atmospheric surface layer. Bound.-Layer Meteorol. 126, 279–296 (2008)

    Google Scholar 

  • M. Sastre, C. Yagüe, C. Román-Cascón, G. Maqueda, Atmospheric boundary-layer evening transitions: a comparison between two different experimental sites. Bound.-Layer Meteorol. 157, 375–399 (2015)

    Google Scholar 

  • A.S. Smedman, U. Högström, H. Bergstrom, The turbulence regime of a very stable marine airflow with quasi-frictional decoupling. J. Geophys. Res. 102, 21049–21059 (1997)

    Google Scholar 

  • A.S. Smedman, U. Högström, J.C.R. Hunt, E. Sahlee, Heat/mass transfer in the slightly unstable atmospheric surface layer. Q. J. R. Meteorol. Soc. 133, 37–51 (2007)

    Google Scholar 

  • Z. Sorbjan, Structure of the stably-stratified boundary layer during the SESAME-1979 experiment. Bound.-Layer Meteorol. 44, 255–266 (1988)

    Article  ADS  Google Scholar 

  • Z. Sorbjan, Evaluation of local similarity functions in the convective boundary layer. Bound.-Layer Meteorol. 30, 1565–1583 (1991)

    Google Scholar 

  • Z. Sorbjan, Decay of convective turbulence revisited. Bound.-Layer Meteorol. 82, 501–515 (1997)

    Article  ADS  Google Scholar 

  • Z. Sorbjan, Gradient-based scales and similarity laws in the stable boundary layer. Q. J. R. Meteorol. Soc. 136, 1243–1254 (2010)

    Google Scholar 

  • Z. Sorbjan, A.A. Grachev, An evaluation of the fluxgradient relationship in the stable boundary layer. Bound.-Layer Meteorol. 135, 385–405 (2010)

    Article  ADS  Google Scholar 

  • M.A. Strunin, T. Hiyama, J. Asanuma, T. Ohata, Aircraft observations of the development of thermal internal boundary layers and scaling of the convective boundary layer over non-homogeneous land surfaces. Bound.-Layer Meteorol. 111, 491–522 (2004)

    Google Scholar 

  • J. Sun, C.J. Nappo, L. Mahrt, D. Belusic, B. Grisogono, D.R. Stauffer, M. Pulido, C. Staquet, Q. Jiang, A. Pouquet et al., Review of wave-turbulence interactions in the stable atmospheric boundary layer. Rev. Geophys. 53, 956–993 (2015)

    Google Scholar 

  • F. Tampieri, A. Maurizi, A. Viola, An investigation on temperature variance scaling in the atmospheric surface layer. Bound.-Layer Meteorol. 132, 31–42 (2009)

    Google Scholar 

  • F. Tampieri, C. Yagüe, S. Viana, The vertical structure of second-order turbulence moments in the stable boundary layer from SABLES98 observations. Bound.-Layer Meteorol. 157, 45–59 (2015)

    Google Scholar 

  • I. Troen, L. Mahrt, A simple model of the atmospheric boundary layer: sensitivity to surface evaporation. Bound.-Layer Meteorol. 39, 129–148 (1986)

    Google Scholar 

  • W.S. Uijttewaal, R.V.A. Oliemans, Particle dispersion and deposition in direct numerical and large eddy simulations of vertical pipe flows. Phys. Fluids 8, 2590–2604 (1996)

    Article  ADS  MATH  Google Scholar 

  • A.P. van Ulden, A.A.M. Holtslag, Estimation of atmospheric boundary layer parameters for diffusion applications. J. Clim. Appl. Meteorol. 24, 1196–1207 (1985)

    Article  ADS  Google Scholar 

  • J.C. Wyngaard, O.R. Coté, The budgets of turbulent kinetic energy and temperature variance in the atmospheric surface layer. J. Atmos. Sci. 28, 190–201 (1971)

    Article  ADS  Google Scholar 

  • J.C. Wyngaard, O.R. Coté, Cospectral similarity in the atmospheric surface layer. Q. J. R. Meteorol. Soc. 98, 590–603 (1972)

    Article  ADS  Google Scholar 

  • J.C. Wyngaard, O.R. Coté, Y. Izumi, Local free convection, similarity, and the budgets of shear stress and heat flux. J. Atmos. Sci. 28, 1171–1182 (1971)

    Google Scholar 

  • A.M. Yaglom, Fluctuation spectra and variances in convective turbulent boundary layers: a reevaluation of old models. Phys. Fluids 6, 962–972 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • C. Yagüe, S. Viana, G. Maqueda, J.M. Redondo, Influence of stability on the flux-profile relationships for wind speed, ϕ m , and temperature, ϕ h , for the stable atmospheric boundary layer. Nonlinear Process. Geophys. 13, 185–203 (2006)

    Google Scholar 

  • S.S. Zilitinkevich, Comments on “A model for the dynamics of the inversion above a convective boundary layer”. J. Atmos. Sci. 32, 991–992 (1975)

    Article  ADS  Google Scholar 

  • S.S. Zilitinkevich, Third-order transport due to internal waves and non-local turbulence in the stably stratified surface layer. Q. J. R. Meteorol. Soc. 128, 913–925 (2002)

    Article  ADS  Google Scholar 

  • S.S. Zilitinkevich, The height of the atmospheric planetary boundary layer: state of the art and new development, in NATO Science for Peace and Security Series C: Environmental Security (Springer, Berlin, 2012), pp. 147–161

    Google Scholar 

  • S.S. Zilitinkevich, A. Baklanov, Calculation of the height of the stable boundary layer in practical applications. Bound.-Layer Meteorol. 105, 389–409 (2002)

    Google Scholar 

  • S.S. Zilitinkevich, I.N. Esau, On integral measures of the neutral barotropic planetary boundary layer. Bound.-Layer Meteorol. 104, 371–379 (2002)

    Article  ADS  Google Scholar 

  • S.S. Zilitinkevich, I.N. Esau, Resistance and heat-transfer laws for stable and neutral planetary boundary layers: old theory advanced and re-evaluated. Q. J. R. Meteor. Soc. 131, 1863–1892 (2005)

    Article  ADS  Google Scholar 

  • S.S. Zilitinkevich, I.N. Esau, Similarity theory and calculation of turbulent fluxes at the surface for the stably stratified atmospheric boundary layer. Bound.-Layer Meteorol. 125, 193–205 (2007)

    Article  ADS  Google Scholar 

  • S.S. Zilitinkevich, D.V. Mironov, A multi-limit formulation for the equilibrium depth of a stably stratified boundary layer. Bound.-Layer Meteorol. 81, 325–351 (1996)

    Article  ADS  Google Scholar 

  • S.S. Zilitinkevich, A.A. Grachev, J.C.R. Hunt, Surface frictional processes and non-local heat/mass transfer in the shear-free convective boundary layer, in Buoyant Convection in Geophysical Flows, ed. by E.J. Plate (Kluwer, Dordrecht, 1998)

    Google Scholar 

  • S.S. Zilitinkevich, J.C.R. Hunt, I.N. Esau, A.A. Grachev, D.P. Lalas, E. Akylas, M. Tombrou, C.W. Fairall, H.J.S. Fernando, A. Baklanov, S.M. Joffre, The influence of large convective eddies on the surface-layer turbulence. Q. J. R. Meteorol. Soc. 132, 1423–1456 (2006)

    Google Scholar 

  • S.S. Zilitinkevich, I.N. Esau, A. Baklanov, Further comments on the equilibrium height of neutral and stable planetary boundary layers. Q. J. R. Meteorol. Soc. 133, 265–271 (2007)

    Google Scholar 

  • S.S. Zilitinkevich, T. Elperin, N. Kleeorin, I. Rogachevskii, I.N. Esau, T. Mauritsen, M.W. Miles, Turbulence energetics in stably stratified geophysical flows: strong and weak mixing regimes. Q. J. R. Meteorol. Soc. 134, 793–799 (2008)

    Google Scholar 

  • S.S. Zilitinkevich, T. Elperin, N. Kleeorin, I. Rogachevskii, I.N. Esau, A hierarchy of energy- and flux-budget (EFB) turbulence closure models for stably-stratified geophysical flows. Bound.-Layer Meteorol. 146, 341–373 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tampieri, F. (2017). The Basic Paradigm: Horizontal Homogeneity Over Flat Terrain. In: Turbulence and Dispersion in the Planetary Boundary Layer. Physics of Earth and Space Environments. Springer, Cham. https://doi.org/10.1007/978-3-319-43604-3_3

Download citation

Publish with us

Policies and ethics