Skip to main content

AMPK/Mitochondria in Metabolic Diseases

  • Chapter
  • First Online:
AMP-activated Protein Kinase

Part of the book series: Experientia Supplementum ((EXS,volume 107))

Abstract

The obtaining of nutrients is the most important task in our lives. Energy is central to life’s evolutions; this was one of the aspect that induced the selection of the more adaptable and more energetically profitable species. Nowadays things have changed in our modern society. A high proportion of people has access to plenty amount of food and the obesity appear as one of the pathological characteristics of our society. Energy is obtained essentially in the mitochondria with the transfer of protons across the inner membrane that produce ATP. The exactly regulation of the synthesis and degradation of ATP (ATP ↔ ADP + phosphate) is essential to all form of life. This task is performed by the 5' adenosine monophosphate-activated protein kinase (AMPK). mtDNA is highly exposed to oxidative damage and could play a central role in human health and disease. This high potential rate of abnormalities is controlled by one of the most complex mechanism: the autophagy. AMPK appears to be the key cellular energy sensor involved in multiple cellular mechanisms and is essential to have a good metabolic homeostasis to face all the aggression and start the inflammatory reaction. Therefore its disturbances have been related with multiple diseases. Recent findings support the role of AMPK in inflammation and immunity such as Metabolic Syndrome, Obesity and Diabetes. All these Metabolic Disorders are considered pandemics and they need an adequate control and prevention. One important way to achieve it is deepen in the pathogenic mechanisms. Mitochondria and AMPK are the key elements through which it happen, their knowledge and research allow us to a better management. The discovery and use of drugs that can modulate them is imperative to improve our way of manage the metabolic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal NK, Kant S (2014) Targeting inflammation in diabetes: newer therapeutic options. World J Diabetes 5:697–710

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahima RS, Flier JS (2000) Leptin. Annu Rev Physiol 62:413–437

    Article  CAS  PubMed  Google Scholar 

  • Alberti KGMM, Zimmet P (2005) The metabolic syndrome—a new worldwide definition. Lancet 366:1059–1062

    Article  PubMed  Google Scholar 

  • Alberti KGMM, Eckel RH, Grundy SM et al (2009) Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; National heart, lung, and blood institute; American heart association; World heart federation; International atherosclerosis society; And international association for the study of obesity. Circulation 120:1640–1645

    Article  CAS  PubMed  Google Scholar 

  • Andersson U, Filipsson K, Abbott CR et al (2004) AMP-activated protein kinase plays a role in the control of food intake. J Biol Chem 279:12005–12008

    Article  CAS  PubMed  Google Scholar 

  • Andreelli F, Foretz M, Knauf C, Cani PD, Perrin C, Iglesias MA, Pillot B, Bado A, Tronche F, Mithieux G, Vaulont S, Burcelin R, Viollet B (2006) Liver adenosine monophosphate-activated kinasealpha2 catalytic subunit is a key target for the control of hepatic glucose production by adiponectin and leptin but not insulin. Endocrinology 147:2432–2441

    Article  CAS  PubMed  Google Scholar 

  • Archibald JM (2015) Evolution: gene transfer in complex cells. Nature 524:423–424

    Article  CAS  PubMed  Google Scholar 

  • Barsh GS, Farooqi IS, O’Rahilly S (2000) Genetics of body-weight regulation. Nature 404:644–651

    CAS  PubMed  Google Scholar 

  • Benard G, Rossignol R (2008) Ultrastructure of the mitochondrion and its bearing on function and bioenergetics. Antioxid Redox Signal 10:1313–13142

    Article  CAS  PubMed  Google Scholar 

  • Biala AK, Dhingra R, Kirshenbaum LA (2015) Mitochondrial dynamics: orchestrating the journey to advanced age. J Mol Cell Cardiol 83:37–43

    Article  CAS  PubMed  Google Scholar 

  • Boden G, Lebed B, Schatz M, Homko C, Lemieux S (2001) Effects of acute changes of plasma free fatty acids on intramyocellular fat content and insulin resistance in healthy subjects. Diabetes 50:1612–1617

    Article  CAS  PubMed  Google Scholar 

  • Bogacka I, Ukropcova B, McNeil M, Gimble JM, Smith SR (2005a) Structural and functional consequences of mitochondrial biogenesis in human adipocytes in vitro. J Clin Endocrinol Metab 90:6650–6656

    Article  CAS  PubMed  Google Scholar 

  • Bogacka I, Xie H, Bray GA, Smith SR (2005b) Pioglitazone induces mitochondrial biogenesis in human subcutaneous adipose tissue in vivo. Diabetes 54:1392–1399

    Article  CAS  PubMed  Google Scholar 

  • Bogacka I, Gettys TW, de Jonge L et al (2007) The effect of β-adrenergic and peroxisome proliferator-activated receptor-γ stimulation on target genes related to lipid metabolism in human subcutaneous adipose tissue. Diabetes Care 30:1179–1186

    Article  CAS  PubMed  Google Scholar 

  • Bray GA, Tartaglia LA (2000) Medicinal strategies in the treatment of obesity. Nature 404:672–677

    CAS  PubMed  Google Scholar 

  • Brown CL, Halvorson EE, Cohen GM, Lazorick S, Skelton JA (2015) Addressing childhood obesity: opportunities for prevention. Pediatr Clin North Am 62:1241–1261

    Article  PubMed  PubMed Central  Google Scholar 

  • Burté F, Carelli V, Chinnery PF, Yu-Wai-Man P (2015) Disturbed mitochondrial dynamics and neurodegenerative disorders. Nat Rev Neurol 11:11–24

    Article  PubMed  CAS  Google Scholar 

  • Cai K, Qi D, Wang O, Chen J, Liu X, Deng B, Qian L, Liu X, Le Y (2011) TNF-α acutely upregulates amylin expression in murine pancreatic beta cells. Diabetologia 54:617–626

    Article  CAS  PubMed  Google Scholar 

  • Cheng J, Qiao L, Xu X, Zhai C, Zhao K, Ji X, Chen W (2015) Lower AMP-activated protein kinase level is associated with the vulnerability of coronary atherosclerotic plaques by attenuating the expression of monocyte autophagy. Coron Artery Dis 26:322–327

    Article  PubMed  Google Scholar 

  • Choo HJ, Kim JH, Kwon OB et al (2006) Mitochondria are impaired in the adipocytes of type 2 diabetic mice. Diabetologia 49:784–791

    Article  CAS  PubMed  Google Scholar 

  • Cigolini M, Targher G, Andreis IAB, Tonoli M, Agostino G, De Sandre G (1996) Visceral fat accumulation and its relation to plasma hemostatic factors in healthy men. Arterioscler Thromb Vasc Biol 16:368–374

    Article  CAS  PubMed  Google Scholar 

  • Dahlman I, Forsgren M, Sjögren A et al (2006) Downregulation of electron transport chain genes in visceral adipose tissue in type 2 diabetes independent of obesity and possibly involving tumor necrosis factor-α. Diabetes 55:1792–1799

    Article  CAS  PubMed  Google Scholar 

  • Engeli S, Feldpausch M, Gorzelniak K et al (2003) Association between adiponectin and mediators of inflammation in obese women. Diabetes 52:942–947

    Article  CAS  PubMed  Google Scholar 

  • Erem C, Ozbas HM, Nuhoglu I, Deger O, Civan N, Ersoz HO (2014) Comparison of effects of gliclazide, metformin and pioglitazone monotherapies on glycemic control and cardiovascular risk factors in patients with newly diagnosed uncontrolled type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes 122:295–302

    Article  CAS  PubMed  Google Scholar 

  • Esser N, Paquot N, Scheen AJ (2015) Anti-inflammatory agents to treat or prevent type 2 diabetes, metabolic syndrome and cardiovascular disease. Expert Opin Investig Drugs 24:283–307

    Article  CAS  PubMed  Google Scholar 

  • Ewart MA, Kennedy S (2011) AMPK and vasculoprotection. Pharmacol Ther 131:242–253

    Article  CAS  PubMed  Google Scholar 

  • Ezzati M, Lopez AD, Rodgers A, Vander Hoorn S, Murray CJ, Comparative Risk Assessment Collaborating Group (2002) Selected major risk factors and global and regional burden of disease. Lancet 360:1347–1360

    Article  PubMed  Google Scholar 

  • Flachs P, Mohamed-Ali V, Horakova O et al (2006) Polyunsaturated fatty acids of marine origin induce adiponectin in mice fed a high-fat diet. Diabetologia 49:394–397

    Article  CAS  PubMed  Google Scholar 

  • Foretz M, Ancellin N, Andreelli F et al (2005) Short-term over expression of a constitutively active form of AMP-activated protein kinase in the liver leads to mild hypoglycemia and fatty liver. Diabetes 54:1331–1339

    Article  CAS  PubMed  Google Scholar 

  • Foretz M, Guigas B, Bertrand L, Pollak M, Viollet B (2014) Metformin: from mechanisms of action to therapies. Cell Metab 20:953–966

    Article  CAS  PubMed  Google Scholar 

  • Furt F, Moreau P (2009) Importance of lipid metabolism for intracellular and mitochondrial membrane fusion/fission processes. Int J Biochem Cell Biol 41:1828–1836

    Article  CAS  PubMed  Google Scholar 

  • Giri S, Nath N, Smith B, Viollet B, Singh AK, Singh I (2004) 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside inhibits proinflammatory response in glial cells: a possible role of AMP-activated protein kinase. J Neurosci 24:479–487

    Article  CAS  PubMed  Google Scholar 

  • Giri S, Rattan R, Haq E et al (2006) AICAR inhibits adipocyte differentiation in 3T3L1 and restores metabolic alterations in diet-induced obesity mice model. Nutr Metab 3:1743–7075

    Article  CAS  Google Scholar 

  • Gonzalez-Freire M, de Cabo R, Bernier M, Sollott SJ, Fabbri E, Navas P, Ferrucci L (2015) Reconsidering the role of mitochondria in aging. J Gerontol A Biol Sci Med Sci 70:1334–1342

    Article  PubMed  PubMed Central  Google Scholar 

  • Gowans GJ, Hawley SA, Ross FA, Hardie DG (2013) AMP is a true physiological regulator of AMP-activated protein kinase, both by allosteric activation and by enhancing net phosphorylation. Cell Metab 18:556–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurevich-Panigrahi T, Panigrahi S, Wiechec E, Los M (2009) Obesity: pathophysiology and clinical management. Curr Med Chem 16:506–521

    Article  CAS  PubMed  Google Scholar 

  • Hanefeld M, Pfutzner A, Forst T, Kleine I, Fuchs W (2011) Double-blind, randomized, multicentre, and active comparator controlled investigation of the effect of pioglitazone, metformin, and the combination of both on cardiovascular risk in patients with type 2 diabetes receiving stable basal insulin therapy: the Piocomb study. Cardiovasc Diabetol 10:65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardie DG (2008) AMPK: a key regulator of energy balance in the single cell and the whole organism. Int J Obes 32:S7–S12

    Article  CAS  Google Scholar 

  • Hardie DG (2014) AMP-activated protein kinase: maintaining energy homeostasis at the cellular and whole-body levels. Annu Rev Nutr 34:31–55

    Article  CAS  PubMed  Google Scholar 

  • Hardie DG (2015) Molecular pathways: is AMPK a friend or a foe in cancer? Clin Cancer Res 21:3836–3840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardie DG, Ashford ML (2014) AMPK: regulating energy balance at the cellular and whole body levels. Physiology (Bethesda) 29:99–107

    CAS  Google Scholar 

  • Hardie DG, Ross FA, Hawley SA (2012) AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Bio 13:251–262

    Article  CAS  Google Scholar 

  • Hattori Y, Suzuki K, Hattori S, Kasai K (2006) Metformin inhibits cytokine-induced nuclear factor kappaB activation via AMP-activated protein kinase activation in vascular endothelial cells. Hypertension 47:1183–1188

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Aguilera A, Rull A, Rodríguez-Gallego E, Riera-Borrull M, Luciano-Mateo F, Camps J, Menéndez JA, Joven J (2013) Mitochondrial dysfunction: a basic mechanism in inflammation-related non-communicable diseases and therapeutic opportunities. Mediators Inflamm 2013:135698

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hutley L, Prins JB (2005) Fat as an endocrine organ: relationship to the metabolic syndrome. Am J Med Sci 330:280–289

    Article  PubMed  Google Scholar 

  • Hyun E, Ramachandran R, Hollenberg MD, Vergnolle N (2011) Mechanisms behind the anti-inflammatory actions of insulin. Crit Rev Immunol 31:307–340

    Article  CAS  PubMed  Google Scholar 

  • Isoda K, Young JL, Zirlik A, MacFarlane LA, Tsuboi N, Gerdes N, Schönbeck U, Libby P (2006) Metformin inhibits proinflammatory responses and nuclear factor-kappaB in human vascular wall cells. Arterioscler Thromb Vasc Biol 26:611–617

    Article  CAS  PubMed  Google Scholar 

  • Jeyabalan J, Shah M, Viollet B, Chenu C (2012) AMP-activated protein kinase pathway and bone metabolism. J Endocrinol 212:277–290

    Article  CAS  PubMed  Google Scholar 

  • Johnson DT, Harris RA, French S, Blair PV, You J, Bemis KG, Wang M, Balaban R (2007) Tissue heterogeneity of the mammalian mitochondrial proteome. Am J Physiol Cell Physiol 292:C689–C697

    Article  CAS  PubMed  Google Scholar 

  • Jucker BM, Dufour S, Ren J, Cao X, Previs SF, Underhill B, Cadman KS, Shulman GI (2001) Assessment of mitochondrial energy coupling in vivo by 13C/31P NMR. Proc Natl Acad Sci USA 97:6880–6884

    Article  Google Scholar 

  • Kaur J (2014) A comprehensive review on metabolic syndrome. Cardiol Res Pract 2014:943162

    PubMed  PubMed Central  Google Scholar 

  • Kim SA, Choi HC (2012) Metformin inhibits inflammatory response via AMPK-PTEN pathway in vascular smooth muscle cells. Biochem Biophys ResCommun 425:866–872

    Article  CAS  Google Scholar 

  • Kola B, Hubina E, Tucci SA et al (2005) Cannabinoids and ghrelin have both central and peripheral metabolic and cardiac effects via AMP-activated protein kinase. J Biol Chem 280:25196–25201

    Article  CAS  PubMed  Google Scholar 

  • Kubota N, Yano W, Kubota T, Yamauchi T, Itoh S, Kumagai H, Kozono H, Takamoto I, Okamoto S, Shiuchi T, Suzuki R, Satoh H, Tsuchida A, Moroi M, Sugi K, Noda T, Ebinuma H, Ueta Y, Kondo T, Araki E, Ezaki O, Nagai R, Tobe K, Terauchi Y, Ueki K, Minokoshi Y, Kadowaki T (2007) Adiponectin stimulates AMP activated protein kinase in the hypothalamus and increases food intake. Cell Metab 6:55–68

    Article  CAS  PubMed  Google Scholar 

  • Lamb RE, Goldstein BJ (2008) Modulating an oxidative-inflammatory cascade: potential new treatment strategy for improving glucose metabolism, insulin resistance, and vascular function. Int J Clin Pract 62:1087–1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamers D, Famulla S, Wronkowitz N, Hartwig S, Lehr S, Ouwens DM, Eckardt K, Kaufman JM, Ryden M, Müller S, Hanisch FG, Ruige J, Arner P, Sell H, Eckel J (2011) Dipeptidyl peptidase 4 is a novel adipokine potentially linking obesity to the metabolic syndrome. Diabetes 60:1917–1925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lane N (2006) Powerhouse of disease. Nature 440:600–602

    Article  CAS  PubMed  Google Scholar 

  • Lane N, Martin W (2010) The energetics of genome complexity. Nature 21:929–934

    Article  CAS  Google Scholar 

  • Lau DCW, Dhillon B, Yan H, Szmitko PE, Verma S (2005) Adipokines: molecular links between obesity and atheroslcerosis. Am J Physiol Heart Circ Physiol 288:H2031–H2041

    Article  CAS  PubMed  Google Scholar 

  • LeBrasseur N, Kelly M, Tsao TS, Farmer SR, Saha AK, Ruderman NB, Tomas E (2006) Thiazolidinediones can rapidly activate AMP-activated protein kinase in mammalian tissues. Am J Physiol Endocrinol Metab 291:E175–E181

    Article  CAS  PubMed  Google Scholar 

  • Lee HK, Cho YM, Kwak SH, Lim S, Park KS, Shim EB (2010) Mitochondrial dysfunction and metabolic syndrome—looking for environmental factors. Biochim Biophys Acta 1800:282–289

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Liu F (2010) Transcriptional and post-translational regulation of adiponectin. Biochem J 425:41–52

    Article  CAS  Google Scholar 

  • Lockwood TD (2010) The lysosome among targets of metformin: new anti-inflammatory uses for an old drug? Expert Opin Ther Targets 14:467–478

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Lluch G, Irusta PM, Navas P, de Cabo R (2008) Mitochondrial biogenesis and healthy aging. Exp Gerontol 43:813–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch M, Conery JS (2003) The origins of genome complexity. Science 302:1401–1404

    Article  CAS  PubMed  Google Scholar 

  • Marfella R, D’Amico M, Esposito K, Baldi A, Di Filippo C, Siniscalchi M, Sasso FC, Portoghese M, Cirillo F, Cacciapuoti F, Carbonara O, Crescenzi B, Baldi F, Ceriello A, Nicoletti GF, D’Andrea F, Verza M, Coppola L, Rossi F, Giugliano D (2006) The ubiquitin-proteasome system and inflammatory activity in dia-betic atherosclerotic plaques: effects of rosiglitazone treatment. Diabetes 55:622–632

    Article  CAS  PubMed  Google Scholar 

  • Marselli L, Thorne J, Dahiya S, Sgroi DC, Sharma A, Bonner-Weir S, Marchetti P, Weir GC (2010) Gene expression profiles of Beta-cell enriched tissue obtained by laser capture microdissection from subjects with type 2 diabetes. PLoS One 5:e11499

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matejkova O, Mustard KJ, Sponarova J et al (2004) Possible involvement of AMP-activated protein kinase in obesity resistance induced by respiratory uncoupling in white fat. FEBS Lett 569:245–248

    Article  CAS  PubMed  Google Scholar 

  • Medzhitov R (2010) Inflammation 2010: new adventures of an old flame. Cell 140:771–776

    Article  CAS  PubMed  Google Scholar 

  • Miles JM, Jensen MD (2005) Counterpoint: visceral adiposity is not causally related to insulin resistance. Diabetes Care 28:2326–2328

    Article  PubMed  Google Scholar 

  • Minokoshi Y, Kim YB, Peroni OD et al (2002) Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 415:339–343

    Article  CAS  PubMed  Google Scholar 

  • Minokoshi Y, Alquier T, Furukawa N et al (2004) AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 428:569–574

    Article  CAS  PubMed  Google Scholar 

  • Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144–148

    Article  CAS  PubMed  Google Scholar 

  • O’Neill LA, Hardie DG (2013) Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature 493:346–355

    Article  PubMed  CAS  Google Scholar 

  • Olijhoek JK, Van Der Graaf Y, Banga J-D, Algra A, Rabelink TJ, Visseren FLJ (2004) The metabolic syndrome is associated with advanced vascular damage in patients with coronary heart disease, stroke, peripheral arterial disease or abdominal aortic aneurysm. Eur Heart J 25:342–348

    Article  PubMed  Google Scholar 

  • Ouchi N, Kihara S, Arita Y et al (2000) Adiponectin, an adipocytederived plasma protein, inhibits endothelial NF-kB signaling through a cAMP-dependent pathway. Circulation 102:1296–1301

    Article  CAS  PubMed  Google Scholar 

  • Petersen KF, Befroy D, Dufour S, Dziura J, Ariyan C, Rothman DL, DiPietro L, Cline GW, Shulman GI (2003) Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 300:1140–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI (2004) Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 350:664–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfützner A, Marx N, Lübben G, Langenfeld M, Walcher D, Konrad T, Forst T (2005) Improvement of cardiovascular risk markers by pioglitazone is independent from glycemic control: results from the pioneer study. J Am Coll Cardiol 45:1925–1931

    Article  PubMed  CAS  Google Scholar 

  • Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM (2001) C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 286:327–334

    Article  CAS  PubMed  Google Scholar 

  • Qiang W, Weiqiang K, Qing Z, Pengju Z, Yi L (2007) Aging impairs insulin-stimulated glucose uptake in rat skeletal muscle via suppressing AMPKalpha. Exp Mol Med 39:535–543

    Article  CAS  PubMed  Google Scholar 

  • Reznick RM, Zong H, Li J, Morino K, Moore IK, Yu HJ, Liu ZX, Dong J, Mustard KJ, Hawley SA, Befroy D, Pypaert M, Hardie DG, Young LH, Shulman GI (2007) Aging-associated reductions in AMP-activated protein kinase activity and mitochondrial biogenesis. Cell Metab 5:151–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rich PR (2003) The cost of living. Nature 421:583

    Article  CAS  PubMed  Google Scholar 

  • Rocher C, Taanman JW, Pierron D, Faustin B, Benard G, Rossignol R, Malgat M, Pedespan L, Letellier T (2008) Influence of mitochondrial DNA level on cellular energy metabolism: implications for mitochondrial diseases. J Bioenerg Biomembr 40:59–67

    Article  CAS  PubMed  Google Scholar 

  • Rong JX, Qiu Y, Hansen MK et al (2007) Adipose mitochondrial biogenesis is suppressed in db/db and high-fat diet-fed mice and improved by rosiglitazone. Diabetes 56:1751–1760

    Article  CAS  PubMed  Google Scholar 

  • Rylova SN, Albertioni F, Flygh G, Eriksson S (2005) Activity profiles of deoxynucleoside kinases and 5′-nucleotidases in cultured adipocytes and myoblastic cells: insights into mitochondrial toxicity of nucleoside analogs. Biochem Pharmacol 69:951–960

    Article  CAS  PubMed  Google Scholar 

  • Schapira AH (2006) Mitochondrial disease. Lancet 368:70–82

    Article  CAS  PubMed  Google Scholar 

  • Scheen AJ, Esser N, Paquot N (2015) Antidiabetic agents: potential anti-inflammatory activity beyond glucose control. Diabetes Metab 41:183–194

    Article  CAS  PubMed  Google Scholar 

  • Schwartz MW, Woods SC, Porte DJ et al (2000) Central nervous control of food intake. Nature 404:661–671

    CAS  PubMed  Google Scholar 

  • Shi X, Burkart A, Nicoloro SM et al (2008) Paradoxical effect of mitochondrial respiratory chain impairment on insulin signaling and glucose transport in adipose cells. J Biol Chem 283:30658–30667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirwany NA, Zou MH (2014) AMPK: a cellular metabolic and redox sensor. A minireview. Front Biosci (Landmark Ed) 19:447–474

    Article  CAS  Google Scholar 

  • Spiegelman BM, Flier JS (2001) Obesity regulation and energy balance. Cell 104:531–543

    Article  CAS  PubMed  Google Scholar 

  • Stapleton D, Mitchelhill KI, Gao G, Widmer J, Michell BJ, Teh T, House CM, Fernandez CS, Cox T, Witters LA, Kemp BE (1996) Mammalian AMP-activated protein kinase subfamily. J Biol Chem 271:611–614

    Article  CAS  PubMed  Google Scholar 

  • Strong K, Mathers C, Leeder S, Beaglehole R (2005) Preventing chronic diseases: how many lives can we save? Lancet 366:1578–1582

    Article  PubMed  Google Scholar 

  • Szanto A, Nagy L (2008) The many faces of PPARgamma: anti-inflammatory by any means? Immunobiology 213:789–803

    Article  CAS  PubMed  Google Scholar 

  • Terman A, Kurz T, Navratil M, Arriaga EA, Brunk UT (2010) Mitochondrial turnover and aging of long-lived postmitotic cells: the mitochondrial-lysosomal axis theory of aging. Antioxid Redox Signal 12:503–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomas E, Tsao TS, Saha AK et al (2002) Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. Proc Natl Acad Sci 99:16309–16313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Twig G, Hyde B, Shirihai OS (2008) Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view. Biochim Biophys Acta 1777:1092–1097

    Article  CAS  PubMed  Google Scholar 

  • Vasamsetti SB, Karnewar S, Kanugula AK, Thatipalli AR, Kumar JM, Kotamraju S (2015) Metformin inhibits monocyte-to-macrophage differentiation via AMPK mediated inhibition of STAT3 activation: potential role in atherosclerosis. Diabetes 64:2028–2041

    Article  CAS  PubMed  Google Scholar 

  • Virtue S, Even P, Vidal-Puig A (2012) Below thermoneutrality, changes in activity do not drive changes in total daily energy expenditure between groups of mice. Cell Metab 16:665–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westermann B (2008) Molecular machinery of mitochondrial fusion and fission. J Biol Chem 283:13501–13505

    Article  CAS  PubMed  Google Scholar 

  • Williams RS (1986) Mitochondrial gene expression in mammalian striated muscle: evidence that variation in gene dosage is the major regulatory event. J Biol Chem 261:12390–12394

    CAS  PubMed  Google Scholar 

  • Wilson-Fritch L, Burkart A, Bell G et al (2003) Mitochondrial biogenesis and remodeling during adipogenesis and in response to the insulin sensitizer rosiglitazone. Mol Cell Biol 23:1085–1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson-Fritch L, Nicoloro S, Chouinard M et al (2004) Mitochondrial remodeling in adipose tissue associated with obesity and treatment with rosiglitazone. J Clin Invest 114:1281–1289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winder WW, Hardie DG (1999) AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. Am J Physiol 277:E1–E10

    CAS  PubMed  Google Scholar 

  • Xydakis AM, Case CC, Jones PH et al (2004) Adiponectin, inflammation, and the expression of the metabolic syndrome in obese individuals: the impact of rapid weight lose through caloric restriction. J Clin Endocrinol Metab 89:2697–2703

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Proenca R, Maffei M et al (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432

    Article  CAS  PubMed  Google Scholar 

  • Zhang BB, Zhou G, Li C (2009) AMPK: an emerging drug target for diabetes and the metabolic syndrome. Cell Metab 5:407–416

    Article  CAS  Google Scholar 

  • Zhou G, Myers R, Li Y et al (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108:1167–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuliani G, Volpato S, Blé A, Bandinelli S, Corsi AM, Lauretani F, Paolisso G, Fellin R, Ferrucci L (2007) High interleukin-6 plasma levels are associated with low HDL-C levels in communitydwelling older adults: the InChianti study. Atherosclerosis 192:384–390

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Bullon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bullon, P., Marin-Aguilar, F., Roman-Malo, L. (2016). AMPK/Mitochondria in Metabolic Diseases. In: Cordero, M., Viollet, B. (eds) AMP-activated Protein Kinase. Experientia Supplementum, vol 107. Springer, Cham. https://doi.org/10.1007/978-3-319-43589-3_6

Download citation

Publish with us

Policies and ethics