Skip to main content

AMPK in Yeast: The SNF1 (Sucrose Non-fermenting 1) Protein Kinase Complex

  • Chapter
  • First Online:
Book cover AMP-activated Protein Kinase

Part of the book series: Experientia Supplementum ((EXS,volume 107))

Abstract

In yeast, SNF1 protein kinase is the orthologue of mammalian AMPK complex. It is a trimeric complex composed of Snf1 protein kinase (orthologue of AMPKα catalytic subunit), Snf4 (orthologue of AMPKγ regulatory subunit), and a member of the Gal83/Sip1/Sip2 family of proteins (orthologues of AMPKβ subunit) that act as scaffolds and also regulate the subcellular localization of the complex. In this chapter, we review the recent literature on the characteristics of SNF1 complex subunits, the structure and regulation of the activity of the SNF1 complex, its role at the level of transcriptional regulation of relevant target genes and also at the level of posttranslational modification of targeted substrates. We also review the crosstalk of SNF1 complex activity with other key protein kinase pathways such as cAMP–PKA, TORC1, and PAS kinase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AID:

Autoinhibitory domain

ASC:

Association with Snf1 complex

AMPK:

AMP-activated protein kinase

CBS:

Cystathionine-β-synthase domain

CSRE:

Carbon source-responsive element

eIF2α:

Eukaryotic initiation factor 2α

GBD:

Glycogen-binding domain

KD:

Catalytic domain

RD:

Regulatory domain

Snf1:

sucrose non-fermenting 1

TORC1:

Target of rapamycin complex 1

PAS kinase:

Protein kinase with a PAS domain

PKA:

Protein kinase A

References

  • Abate G, Bastonini E, Braun KA, Verdone L, Young ET, Caserta M (2012) Snf1/AMPK regulates Gcn5 occupancy, H3 acetylation and chromatin remodelling at S. cerevisiae ADY2 promoter. Biochim Biophys Acta 1819(5):419–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahuatzi D, Riera A, Pelaez R, Herrero P, Moreno F (2007) Hxk2 regulates the phosphorylation state of Mig1 and therefore its nucleocytoplasmic distribution. J Biol Chem 282(7):4485–4493

    Article  CAS  PubMed  Google Scholar 

  • Alepuz PM, Cunningham KW, Estruch F (1997) Glucose repression affects ion homeostasis in yeast through the regulation of the stress-activated ENA1 gene. Mol Microbiol 26(1):91–98

    Article  CAS  PubMed  Google Scholar 

  • Amodeo GA, Rudolph MJ, Tong L (2007) Crystal structure of the heterotrimer core of Saccharomyces cerevisiae AMPK homologue SNF1. Nature 449(7161):492–495

    Article  CAS  PubMed  Google Scholar 

  • Ashrafi K, Lin SS, Manchester JK, Gordon JI (2000) Sip2p and its partner snf1p kinase affect aging in S. cerevisiae. Genes Dev 14(15):1872–1885

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bertram PG, Choi JH, Carvalho J, Chan TF, Ai W, Zheng XF (2002) Convergence of TOR-nitrogen and Snf1-glucose signaling pathways onto Gln3. Mol Cell Biol 22(4):1246–1252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calabrese MF, Rajamohan F, Harris MS, Caspers NL, Magyar R, Withka JM, Wang H, Borzilleri KA, Sahasrabudhe PV, Hoth LR, Geoghegan KF, Han S, Brown J, Subashi TA, Reyes AR, Frisbie RK, Ward J, Miller RA, Landro JA, Londregan AT, Carpino PA, Cabral S, Smith AC, Conn EL, Cameron KO, Qiu X, Kurumbail RG (2014) Structural basis for AMPK activation: natural and synthetic ligands regulate kinase activity from opposite poles by different molecular mechanisms. Structure 22(8):1161–1172

    Article  CAS  PubMed  Google Scholar 

  • Casamayor A, Serrano R, Platara M, Casado C, Ruiz A, Arino J (2012) The role of the Snf1 kinase in the adaptive response of Saccharomyces cerevisiae to alkaline pH stress. Biochem J 444(1):39–49

    Article  CAS  PubMed  Google Scholar 

  • Celenza JL, Carlson M (1984) Cloning and genetic mapping of SNF1, a gene required for expression of glucose-repressible genes in Saccharomyces cerevisiae. Mol Cell Biol 4(1):49–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conrad M, Schothorst J, Kankipati HN, Van Zeebroeck G, Rubio-Texeira M, Thevelein JM (2014) Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 38(2):254–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cullen PJ, Sprague GF Jr (2000) Glucose depletion causes haploid invasive growth in yeast. Proc Natl Acad Sci USA 97(25):13619–13624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charbon G, Breunig KD, Wattiez R, Vandenhaute J, Noel-Georis I (2004) Key role of Ser562/661 in Snf1-dependent regulation of Cat8p in Saccharomyces cerevisiae and Kluyveromyces lactis. Mol Cell Biol 24(10):4083–4091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cherkasova V, Qiu H, Hinnebusch AG (2010) Snf1 promotes phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2 by activating Gcn2 and inhibiting phosphatases Glc7 and Sit4. Mol Cell Biol 30(12):2862–2873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chida T, Ando M, Matsuki T, Masu Y, Nagaura Y, Takano-Yamamoto T, Tamura S, Kobayashi T (2013) N-Myristoylation is essential for protein phosphatases PPM1A and PPM1B to dephosphorylate their physiological substrates in cells. Biochem J 449(3):741–749

    Article  CAS  PubMed  Google Scholar 

  • DeMille D, Badal BD, Evans JB, Mathis AD, Anderson JF, Grose JH (2015) PAS kinase is activated by direct SNF1-dependent phosphorylation and mediates inhibition of TORC1 through the phosphorylation and activation of Pbp1. Mol Biol Cell 26(3):569–582

    Article  PubMed  PubMed Central  Google Scholar 

  • DeMille D, Bikman BT, Mathis AD, Prince JT, Mackay JT, Sowa SW, Hall TD, Grose JH (2014) A comprehensive protein-protein interactome for yeast PAS kinase 1 reveals direct inhibition of respiration through the phosphorylation of Cbf1. Mol Biol Cell 25(14):2199–2215

    Article  PubMed  PubMed Central  Google Scholar 

  • Djouder N, Tuerk RD, Suter M, Salvioni P, Thali RF, Scholz R, Vaahtomeri K, Auchli Y, Rechsteiner H, Brunisholz RA, Viollet B, Makela TP, Wallimann T, Neumann D, Krek W (2010) PKA phosphorylates and inactivates AMPKalpha to promote efficient lipolysis. EMBO J 29(2):469–481

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Garcia P, Pelaez R, Herrero P, Moreno F (2012) Phosphorylation of yeast hexokinase 2 regulates its nucleocytoplasmic shuttling. J Biol Chem 287(50):42151–42164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrer-Dalmau J, Randez-Gil F, Marquina M, Prieto JA, Casamayor A (2015) Protein kinase Snf1 is involved in the proper regulation of the unfolded protein response in Saccharomyces cerevisiae. Biochem J 468(1):33–47

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Haro L, Garcia-Gimeno MA, Neumann D, Beullens M, Bollen M, Sanz P (2010) The PP1-R6 protein phosphatase holoenzyme is involved in the glucose-induced dephosphorylation and inactivation of AMP-activated protein kinase, a key regulator of insulin secretion, in MIN6 beta cells. FASEB J 24(12):5080–5091

    Article  PubMed  Google Scholar 

  • Grose JH, Smith TL, Sabic H, Rutter J (2007) Yeast PAS kinase coordinates glucose partitioning in response to metabolic and cell integrity signaling. EMBO J 26(23):4824–4830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grose JH, Sundwall E, Rutter J (2009) Regulation and function of yeast PAS kinase: a role in the maintenance of cellular integrity. Cell Cycle 8(12):1824–1832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn JS, Thiele DJ (2004) Activation of the Saccharomyces cerevisiae heat shock transcription factor under glucose starvation conditions by Snf1 protein kinase. J Biol Chem 279(7):5169–5176

    Article  CAS  PubMed  Google Scholar 

  • Hao HX, Cardon CM, Swiatek W, Cooksey RC, Smith TL, Wilde J, Boudina S, Abel ED, McClain DA, Rutter J (2007) PAS kinase is required for normal cellular energy balance. Proc Natl Acad Sci USA 104(39):15466–15471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardie DG, Ashford ML (2014) AMPK: regulating energy balance at the cellular and whole body levels. Physiology (Bethesda) 29(2):99–107

    CAS  Google Scholar 

  • Hardie DG, Carling D, Carlson M (1998) The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu Rev Biochem 67:821–855

    Article  CAS  PubMed  Google Scholar 

  • Hawley SA, Boudeau J, Reid JL, Mustard KJ, Udd L, Makela TP, Alessi DR, Hardie DG (2003) Complexes between the LKB1 tumor suppressor, STRADalpha/beta and MO25alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol 2(4):28

    Article  PubMed  PubMed Central  Google Scholar 

  • Hedbacker K, Carlson M (2006) Regulation of the nucleocytoplasmic distribution of Snf1-Gal83 protein kinase. Eukaryot Cell 5(12):1950–1956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hedbacker K, Hong SP, Carlson M (2004a) Pak1 protein kinase regulates activation and nuclear localization of Snf1-Gal83 protein kinase. Mol Cell Biol 24(18):8255–8263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hedbacker K, Townley R, Carlson M (2004b) Cyclic AMP-dependent protein kinase regulates the subcellular localization of Snf1-Sip1 protein kinase. Mol Cell Biol 24(5):1836–1843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong SP, Carlson M (2007) Regulation of snf1 protein kinase in response to environmental stress. J Biol Chem 282(23):16838–16845

    Article  CAS  PubMed  Google Scholar 

  • Honigberg SM, Lee RH (1998) Snf1 kinase connects nutritional pathways controlling meiosis in Saccharomyces cerevisiae. Mol Cell Biol 18(8):4548–4555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu HE, Liu TN, Yeh CS, Chang TH, Lo YC, Kao CF (2015) Feedback control of Snf1 protein and its phosphorylation is necessary for adaptation to environmental stress. J Biol Chem 290(27):16786–16796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter T, Plowman GD (1997) The protein kinases of budding yeast: six score and more. Trends Biochem Sci 22(1):18–22

    Article  CAS  PubMed  Google Scholar 

  • Janecek S, Svensson B, Macgregor EA (2011) Structural and evolutionary aspects of two families of non-catalytic domains present in starch and glycogen binding proteins from microbes, plants and animals. Enzym Microb Technol 49(5):429–440

    Article  CAS  Google Scholar 

  • Jiang R, Carlson M (1996) Glucose regulates protein interactions within the yeast SNF1 protein kinase complex. Genes Dev 10:3105–3115

    Article  CAS  PubMed  Google Scholar 

  • Jiang R, Carlson M (1997) The Snf1 protein kinase and its activating subunit, Snf4, interact with distinct domains of the Sip1/Sip2/Gal83 component in the kinase complex. Mol Cell Biol 17:2099–2106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joseph BK, Liu HY, Francisco J, Pandya D, Donigan M, Gallo-Ebert C, Giordano C, Bata A, Nickels JT Jr (2015) Inhibition of AMP kinase by the protein phosphatase 2A heterotrimer, PP2APpp2r2d. J Biol Chem 290(17):10588–10598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaps S, Kettner K, Migotti R, Kanashova T, Krause U, Rodel G, Dittmar G, Kriegel TM (2015) Protein kinase Ymr291w/Tda1 is essential for glucose signaling in saccharomyces cerevisiae on the level of hexokinase isoenzyme ScHxk2 phosphorylation*. J Biol Chem 290(10):6243–6255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kayikci O, Nielsen J (2015) Glucose repression in Saccharomyces cerevisiae. FEMS Yeast Res 15(6):fov068. doi:10.1093/femsyr/fov068

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuchin S, Treich I, Carlson M (2000) A regulatory shortcut between the Snf1 protein kinase and RNA polymerase II holoenzyme. Proc Natl Acad Sci USA 97(14):7916–7920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuchin S, Vyas VK, Carlson M (2002) Snf1 protein kinase and the repressors Nrg1 and Nrg2 regulate FLO11, haploid invasive growth, and diploid pseudohyphal differentiation. Mol Cell Biol 22(12):3994–4000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulkarni A, Buford TD, Rai R, Cooper TG (2006) Differing responses of Gat1 and Gln3 phosphorylation and localization to rapamycin and methionine sulfoximine treatment in Saccharomyces cerevisiae. FEMS Yeast Res 6(2):218–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leech A, Nath N, McCartney RR, Schmidt MC (2003) Isolation of mutations in the catalytic domain of the snf1 kinase that render its activity independent of the snf4 subunit. Eukaryot Cell 2(2):265–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lesage P, Yang X, Carlson M (1996) Yeast SNF1 protein kinase interacts with SIP4, a C6 zinc cluster transcriptional activator: a new role for SNF1 in the glucose response. Mol Cell Biol 16(5):1921–1928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Wang L, Zhou XE, Ke J, de Waal PW, Gu X, Tan MH, Wang D, Wu D, Xu HE, Melcher K (2015) Structural basis of AMPK regulation by adenine nucleotides and glycogen. Cell Res 25(1):50–66

    Article  PubMed  Google Scholar 

  • Lin SS, Manchester JK, Gordon JI (2003) Sip2, an N-myristoylated beta subunit of Snf1 kinase, regulates aging in Saccharomyces cerevisiae by affecting cellular histone kinase activity, recombination at rDNA loci, and silencing. J Biol Chem 278(15):13390–13397

    Article  CAS  PubMed  Google Scholar 

  • Lin YY, Lu JY, Zhang J, Walter W, Dang W, Wan J, Tao SC, Qian J, Zhao Y, Boeke JD, Berger SL, Zhu H (2009) Protein acetylation microarray reveals that NuA4 controls key metabolic target regulating gluconeogenesis. Cell 136(6):1073–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo WS, Duggan L, Emre NC, Belotserkovskya R, Lane WS, Shiekhattar R, Berger SL (2001) Snf1—a histone kinase that works in concert with the histone acetyltransferase Gcn5 to regulate transcription. Science 293(5532):1142–1146

    Article  CAS  PubMed  Google Scholar 

  • Ludin K, Jiang R, Carlson M (1998) Glucose-regulated interaction of a regulatory subunit of protein phosphatase 1 with the Snf1 protein kinase in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 95(11):6245–6250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mangat S, Chandrashekarappa D, McCartney RR, Elbing K, Schmidt MC (2010) Differential roles of the glycogen-binding domains of beta subunits in regulation of the Snf1 kinase complex. Eukaryot Cell 9(1):173–183

    Article  CAS  PubMed  Google Scholar 

  • Mayer FV, Heath R, Underwood E, Sanders MJ, Carmena D, McCartney RR, Leiper FC, Xiao B, Jing C, Walker PA, Haire LF, Ogrodowicz R, Martin SR, Schmidt MC, Gamblin SJ, Carling D (2011) ADP regulates SNF1, the Saccharomyces cerevisiae homolog of AMP-activated protein kinase. Cell Metab 14(5):707–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCartney RR, Rubenstein EM, Schmidt MC (2005) Snf1 kinase complexes with different beta subunits display stress-dependent preferences for the three Snf1-activating kinases. Curr Genet 47(6):335–344

    Article  CAS  PubMed  Google Scholar 

  • McCartney RR, Schmidt MC (2001) Regulation of Snf1 kinase. Activation requires phosphorylation of threonine 210 by an upstream kinase as well as a distinct step mediated by the Snf4 subunit. J Biol Chem 276(39):36460–36466

    Article  CAS  PubMed  Google Scholar 

  • Momcilovic M, Iram SH, Liu Y, Carlson M (2008) Roles of the glycogen-binding domain and Snf4 in glucose inhibition of SNF1 protein kinase. J Biol Chem 283(28):19521–19529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nayak V, Zhao K, Wyce A, Schwartz MF, Lo WS, Berger SL, Marmorstein R (2006) Structure and dimerization of the kinase domain from yeast Snf1, a member of the Snf1/AMPK protein family. Structure 14(3):477–485

    Article  CAS  PubMed  Google Scholar 

  • Porta C, Paglino C, Mosca A (2014) Targeting PI3K/Akt/mTOR signaling in cancer. Front Oncol 4:64

    Article  PubMed  PubMed Central  Google Scholar 

  • Roth S, Kumme J, Schuller HJ (2004) Transcriptional activators Cat8 and Sip4 discriminate between sequence variants of the carbon source-responsive promoter element in the yeast Saccharomyces cerevisiae. Curr Genet 45(3):121–128

    Article  CAS  PubMed  Google Scholar 

  • Rubenstein EM, McCartney RR, Zhang C, Shokat KM, Shirra MK, Arndt KM, Schmidt MC (2008) Access denied: Snf1 activation loop phosphorylation is controlled by availability of the phosphorylated threonine 210 to the PP1 phosphatase. J Biol Chem 283(1):222–230

    Article  CAS  PubMed  Google Scholar 

  • Rudolph MJ, Amodeo GA, Bai Y, Tong L (2005) Crystal structure of the protein kinase domain of yeast AMP-activated protein kinase Snf1. Biochem Biophys Res Commun 337(4):1224–1228

    Article  CAS  PubMed  Google Scholar 

  • Ruiz A, Xu X, Carlson M (2011) Roles of two protein phosphatases, Reg1-Glc7 and Sit4, and glycogen synthesis in regulation of SNF1 protein kinase. Proc Natl Acad Sci USA 108(16):6349–6354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz A, Xu X, Carlson M (2013) Ptc1 protein phosphatase 2C contributes to glucose regulation of SNF1/AMP-activated protein kinase (AMPK) in Saccharomyces cerevisiae. J Biol Chem 288(43):31052–31058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santangelo GM (2006) Glucose signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 70(1):253–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanz P, Alms GR, Haystead TA, Carlson M (2000) Regulatory interactions between the Reg1-Glc7 protein phosphatase and the Snf1 protein kinase. Mol Cell Biol 20(4):1321–1328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt MC, McCartney RR (2000) beta-subunits of Snf1 kinase are required for kinase function and substrate definition. EMBO J 19(18):4936–4943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shashkova S, Welkenhuysen N, Hohmann S (2015) Molecular communication: crosstalk between the Snf1 and other signaling pathways. FEMS Yeast Res 15(4):fov026

    Article  PubMed  Google Scholar 

  • Shimobayashi M, Hall MN (2014) Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nat Rev Mol Cell Biol 15(3):155–162

    Article  CAS  PubMed  Google Scholar 

  • Shirra MK, McCartney RR, Zhang C, Shokat KM, Schmidt MC, Arndt KM (2008) A chemical genomics study identifies Snf1 as a repressor of GCN4 translation. J Biol Chem 283(51):35889–35898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirra MK, Patton-Vogt J, Ulrich A, Liuta-Tehlivets O, Kohlwein SD, Henry SA, Arndt KM (2001) Inhibition of acetyl coenzyme A carboxylase activity restores expression of the INO1 gene in a snf1 mutant strain of Saccharomyces cerevisiae. Mol Cell Biol 21(17):5710–5722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson-Lavy KJ, Johnston M (2013) SUMOylation regulates the SNF1 protein kinase. Proc Natl Acad Sci USA 110(43):17432–17437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smets B, Ghillebert R, De Snijder P, Binda M, Swinnen E, De Virgilio C, Winderickx J (2010) Life in the midst of scarcity: adaptations to nutrient availability in Saccharomyces cerevisiae. Curr Genet 56(1):1–32

    Article  CAS  PubMed  Google Scholar 

  • Soontorngun N, Larochelle M, Drouin S, Robert F, Turcotte B (2007) Regulation of gluconeogenesis in Saccharomyces cerevisiae is mediated by activator and repressor functions of Rds2. Mol Cell Biol 27(22):7895–7905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tachibana C, Yoo JY, Tagne JB, Kacherovsky N, Lee TI, Young ET (2005) Combined global localization analysis and transcriptome data identify genes that are directly coregulated by Adr1 and Cat8. Mol Cell Biol 25(6):2138–2146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson-Jaeger S, Francois J, Gaughran JP, Tatchell K (1991) Deletion of SNF1 affects the nutrient response of yeast and resembles mutations which activate the adenylate cyclase pathway. Genetics 129(3):697–706

    CAS  PubMed  PubMed Central  Google Scholar 

  • Treitel MA, Carlson M (1995) Repression by SSN6-TUP1 is directed by MIG1, a repressor/activator protein. Proc Natl Acad Sci USA 92(8):3132–3136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turcotte B, Liang XB, Robert F, Soontorngun N (2010) Transcriptional regulation of nonfermentable carbon utilization in budding yeast. FEMS Yeast Res 10(1):2–13

    Article  CAS  PubMed  Google Scholar 

  • Viana R, Towler MC, Pan DA, Carling D, Viollet B, Hardie DG, Sanz P (2007) A conserved sequence immediately N-terminal to the Bateman domains in AMP-activated protein kinase gamma subunits is required for the interaction with the beta subunits. J Biol Chem 282(22):16117–16125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vincent O, Carlson M (1999) Gal83 mediates the interaction of the Snf1 kinase complex with the transcription activator Sip4. EMBO J 18(23):6672–6681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vincent O, Townley R, Kuchin S, Carlson M (2001) Subcellular localization of the Snf1 kinase is regulated by specific beta subunits and a novel glucose signaling mechanism. Genes Dev 15(9):1104–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Wilson WA, Fujino MA, Roach PJ (2001) Antagonistic controls of autophagy and glycogen accumulation by Snf1p, the yeast homolog of AMP-activated protein kinase, and the cyclin- dependent kinase Pho85p. Mol Cell Biol 21(17):5742–5752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiatrowski HA, Van Denderen BJ, Berkey CD, Kemp BE, Stapleton D, Carlson M (2004) Mutations in the gal83 glycogen-binding domain activate the snf1/gal83 kinase pathway by a glycogen-independent mechanism. Mol Cell Biol 24(1):352–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson MA, Koutelou E, Hirsch C, Akdemir K, Schibler A, Barton MC, Dent SY (2011) Ubp8 and SAGA regulate Snf1 AMP kinase activity. Mol Cell Biol 31(15):3126–3135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson WA, Hawley SA, Hardie DG (1996) Glucose repression/derepression in budding yeast: SNF1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high AMP:ATP ratio. Curr Biol 6(11):1426–1434

    Article  CAS  PubMed  Google Scholar 

  • Wilson WA, Skurat AV, Probst B, de Paoli-Roach A, Roach PJ, Rutter J (2005) Control of mammalian glycogen synthase by PAS kinase. Proc Natl Acad Sci USA 102(46):16596–16601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woods A, Dickerson K, Heath R, Hong SP, Momcilovic M, Johnstone SR, Carlson M, Carling D (2005) C(Ca2+)/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab 2(1):21–33

    Article  CAS  PubMed  Google Scholar 

  • Woods A, Johnstone SR, Dickerson K, Leiper FC, Fryer LG, Neumann D, Schlattner U, Wallimann T, Carlson M, Carling D (2003) LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol 13(22):2004–2008

    Article  CAS  PubMed  Google Scholar 

  • Woods A, Munday MR, Scott J, Yang X, Carlson M, Carling D (1994) Yeast SNF1 is functionally related to mammalian AMP-activated protein kinase and regulates acetyl-CoA carboxylase in vivo. J Biol Chem 269(30):19509–19515

    CAS  PubMed  Google Scholar 

  • Xiao B, Sanders MJ, Carmena D, Bright NJ, Haire LF, Underwood E, Patel BR, Heath RB, Walker PA, Hallen S, Giordanetto F, Martin SR, Carling D, Gamblin SJ (2013) Structural basis of AMPK regulation by small molecule activators. Nat Commun 4:3017

    PubMed  PubMed Central  Google Scholar 

  • Xiao B, Sanders MJ, Underwood E, Heath R, Mayer FV, Carmena D, Jing C, Walker PA, Eccleston JF, Haire LF, Saiu P, Howell SA, Aasland R, Martin SR, Carling D, Gamblin SJ (2011) Structure of mammalian AMPK and its regulation by ADP. Nature 472(7342):230–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao Y, Tsuchiyama S, Yang C, Bulteau AL, He C, Robison B, Tsuchiya M, Miller D, Briones V, Tar K, Potrero A, Friguet B, Kennedy BK, Schmidt M (2015) Proteasomes, Sir2, and Hxk2 form an interconnected aging network that impinges on the AMPK/Snf1-regulated transcriptional repressor Mig1. PLoS Genet 11(1), e1004968

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye T, Elbing K, Hohmann S (2008) The pathway by which the yeast protein kinase Snf1p controls acquisition of sodium tolerance is different from that mediating glucose regulation. Microbiology 154(Pt 9):2814–2826

    Article  CAS  PubMed  Google Scholar 

  • Young ET, Dombek KM, Tachibana C, Ideker T (2003) Multiple pathways are co-regulated by the protein kinase Snf1 and the transcription factors Adr1 and Cat8. J Biol Chem 278(28):26146–26158

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Olsson L, Nielsen J (2010) The beta-subunits of the Snf1 kinase in Saccharomyces cerevisiae, Gal83 and Sip2, but not Sip1, are redundant in glucose derepression and regulation of sterol biosynthesis. Mol Microbiol 77(2):371–383

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Spanish Ministry of Education and Science SAF2014-54604-C3-1-R and Generalitat Valenciana (PrometeoII/2014/029) to P.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascual Sanz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sanz, P., Viana, R., Garcia-Gimeno, M.A. (2016). AMPK in Yeast: The SNF1 (Sucrose Non-fermenting 1) Protein Kinase Complex. In: Cordero, M., Viollet, B. (eds) AMP-activated Protein Kinase. Experientia Supplementum, vol 107. Springer, Cham. https://doi.org/10.1007/978-3-319-43589-3_14

Download citation

Publish with us

Policies and ethics