Skip to main content

Evolution of Toxin

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Biochemistry and Molecular Biology ((BRIEFSBIOCHEM))

Abstract

It is very intriguing how toxins in certain organisms have evolved. There must have been a drawn out period where evolution ‘tested’ and ‘fine-tuned’ the toxin. To trace back we need to study both animal and bacterial toxins. Animal toxins are very diverse, which makes them important candidates for evolutionary innovation. On the other hand, bacterial toxins always target critical molecules. Toxins typically go after molecules that are either scarce or those involve in signal transductions. Both classes of toxin offer a unique model to study predator-prey relationship, co-evolution, lateral gene transfer, natural selection, and the influence of structure on molecular evolution. Adaptation and counter-adaptation due to evolutionary arms race results in complex traits. Each toxin or poison probably has its own evolutionary “arms race”. To be a strong player in evolutionary “arms race” toxins need structural plasticity. The existence of structural plasticity allows them to evolve as highly specific toxins for their respective targets. Protein toxins are either multi-domain or complex protein, and their larger surface area and subunit flexibility provide structural flexibility needed to survive, adapt and evolve. Several mechanisms and models have been suggested to explain this phenomenon. Point mutations, gene duplication, lateral gene transfer, recombination, and post-translation modification of genes lead to a wide variety of proteins and peptides. Study of these phenomena, relationships and proposed mechanisms can establish evolutionary link of protein toxins to their progenitors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Acuna R, Padilla BE, Claudia PFR et al (2012) Adaptive horizontal transfer of a bacterial gene to an invasive insect pest of coffee. PNAS 109:4197–4202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alcaine SD, Sukhnanand SS, Warnick LD et al (2005) Ceftiofur-resistant Salmonella strains isolated from dairy farms represent multiple widely distributed subtypes that evolved by independent horizontal gene transfer. Antimicrob Agents Chemother 49:4061–4067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ambrose KV, Koppenho AM, Belanger FC (2014) Horizontal gene transfer of a bacterial insect toxin gene into the Epichloe fungal symbionts of grasses. Sci Rep 4:1–8

    Article  Google Scholar 

  • Bernheimer AW, Campbell BJ, Forrester LJ (1985) Comparative toxinology of Loxosceles reclusa and Corynebacterium pseudotuberculosis. Science 228:590–591

    Google Scholar 

  • Bergelson J, Dwyer G, Emerson JJ (2001) Models and data on plant-enemy coevolution. Annu Rev Genet 35:469–499

    Article  CAS  PubMed  Google Scholar 

  • Binford GJ, Bodner MR, Cordes MH et al (2009) Molecular evolution, functional variation, and proposed nomenclature of the gene family that includes sphingomyelinase d in sicariid spider venoms. Mol Biol Evol 26:547–566

    Article  CAS  PubMed  Google Scholar 

  • Cai S, Singh BR (2001) Role of the disulfide cleavage induced molten globule state of type A botulinum neurotoxin in its endopeptidase activity. Biochemistry 40:15327–15333

    Article  CAS  PubMed  Google Scholar 

  • Cai S, Kukreja R, Shoesmith S et al (2006) Botulinum neurotoxin light chain refolds at endosomal pH for its translocation. Protein J 25:455–462

    Article  CAS  PubMed  Google Scholar 

  • Campanaro S, Vezzi A, Vitulo N et al (2005) Laterally transferred elements and high pressure adaptation in Photobacterium profundum strains. BMC Genomics 6:122

    Article  PubMed  PubMed Central  Google Scholar 

  • Casewell NR, Wuster W, Vonk FJ et al (2013) Complex cocktails: the evolutionary novelty of venoms. Trends Ecol Evol 28:219–229

    Article  PubMed  Google Scholar 

  • Chang TW (2011) Sequence analysis and novel antidotes development of botulinum neurotoxin. PhD Thesis, University of Massachusetts, Dartmouth.

    Google Scholar 

  • Chang D, Duda TF Jr (2012) Extensive and continuous duplication facilitates rapid evolution and diversification of gene families. Mol Biol Evol 29:2019–2029

    Article  CAS  PubMed  Google Scholar 

  • Chippaux JP, Williams V, White J (1991) Snake venom variability: method of study, results and interpretation. Toxicon 29:1279–1303

    Article  CAS  PubMed  Google Scholar 

  • Clay K, Kover PX (1996) The red queen hypothesis and plant/pathogen interactions. Annu Rev Phytopathol 34:29–50

    Article  CAS  PubMed  Google Scholar 

  • Cordes MHJ, Binford GJ (2006) Lateral gene transfer of a dermonecrotic toxin between spiders and bacteria. Bioinformatics 22:264–268

    Article  CAS  PubMed  Google Scholar 

  • Daltry JC, Wuster W, Thorpe RS (1996) Diet and snake venom evolution. Nature 379:537–540

    Article  CAS  PubMed  Google Scholar 

  • Deshimaru M, Ogawa T, Nakashima K et al (1996) Accelerated evolution of crotalinae snake venom glan serine proteinases. FEBS Lett 397:83–88

    Article  CAS  PubMed  Google Scholar 

  • Dobbins SE, Lesk VI, Stenberg MJ (2008) Insight into protein flexibility: the relationship between normal modes and conformational change upon protein–protein docking. PNAS 105:10390–10395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duda TF Jr, Palumbi SR (1999) Molecular genetics of ecological diversification: duplication and rapid evolution of toxin genes of the venomous gastropod Conus. PNAS 96:6820–6823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Escoubus P, King GF (2009) Venomics as a drug discovery platform. Expert Rev Proteomics 6:221–224

    Article  Google Scholar 

  • Fry BG (2005) From genome to venome: molecular origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences and related body proteins. Genome Res 15:403–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fry BG, Wüster W, Kini RM et al (2003) Molecular evolution and phylogeny of elapid snake venom three-finger toxins. J Mol Evol 57:110–129

    Article  CAS  PubMed  Google Scholar 

  • Fry BG, Roelants K, Champagne DE et al (2009) The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms. Annu Rev Genomics Hum Genet 10:483–511

    Article  CAS  PubMed  Google Scholar 

  • Fry BG, Casewell NR, Wuster W et al (2012) The structural and functional diversification of Toxifera reptile venom system. Toxicon 60:434–448

    Article  CAS  PubMed  Google Scholar 

  • Gong N, Armugam A, Jeyaseelan K (2000) Molecular cloning, characterization and evolution of the gene encoding a new group of short chain α-neurotoxins in an Australian elapid, Pseudonaja textilis. FEBS Lett 473:303–310

    Article  CAS  PubMed  Google Scholar 

  • Hacker J, Kaper JB (2000) Pathgenicity islands and the evolution of microbes. Annu Rev Microbiol 54:641–679

    Article  CAS  PubMed  Google Scholar 

  • Harris JB (1998) Phospholipase A2 that show neurotoxic activity. In: Bailey GS (ed) Enzymes from snake venoms. Fort Collins, Alaken, pp 425–449

    Google Scholar 

  • Hughes AL (1994) The evolution of functionally novel proteins after gene duplication. Proc Biol Sci 256:119–124

    Article  CAS  PubMed  Google Scholar 

  • Hughes AL (2000) Adaptive evolution of genes and genomes. Oxford University Press, New York

    Google Scholar 

  • Hughes AL, Nei M (1998) Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 355:167–170

    Google Scholar 

  • Kini RM (1997) Phospholipase A2: a complex multifunctional protein puzzle. In: Kini RM (ed) Venom phospholipase A2 enzymes: structure, function and mechanism. Wiley, Chichester, pp 1–28

    Google Scholar 

  • Kini RM, Chan YM (1999) Accelerated evolution and molecular surface of venom phospholipase A2 enzyme. J Mol Evol 48:125–132

    Article  CAS  PubMed  Google Scholar 

  • Kordis D, Gubensek F (2000) Adaptive evolution of animal toxin multigene families. Gene 261:43–52

    Article  CAS  PubMed  Google Scholar 

  • Kukreja RV, Sharma SK, Singh BR (2010) Molecular basis of activation of endopeptidase activity of botulinum neurotoxin type E. Biochemistry 49:2510–2519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar R, Kukreja RV, Li L et al (2013a) Botulinum neurotoxin: unique folding of enzyme domain of the most-poisonous poison. J Biomol Struct Dyn 32:804–815

    Article  PubMed  Google Scholar 

  • Kumar R, Chang TW, Singh BR (2013b) Evolutionary traits of toxins. Handbook of toxinology. In: Gopalakrishkone P (ed) Biological toxins and bioterrorism, vol 1, chapter 23. Springer, Dordrecht, Heidelberg, New York, London, p 527–557

    Google Scholar 

  • Kumar R, Kukreja RV, Cai S et al (2014) Differential role of molten globule and protein folding in distinguishing unique features of botulinum neurotoxin. Biochim Biophys Acta 1844:1145–1152

    Article  CAS  PubMed  Google Scholar 

  • Li L, Singh BR (2000) Role of zinc binding in type A botulinum neurotoxin light chain’s toxic structure. Biochemistry 39:10581–10586

    Article  CAS  PubMed  Google Scholar 

  • Luque I, Freire E (2000) Structural stability of binding sites: consequences for binding affinity and allosteric effects. Proteins Suppl 4:63–71

    Article  CAS  PubMed  Google Scholar 

  • Maagd RA, Bravo A, Berry C et al (2003) Structure, diversity, and evolution of protein toxins from spore-forming entomopathogenic bacteria. Annu Rev Genet 37:409–433

    Article  PubMed  Google Scholar 

  • Marsh JA (2013) Buried and accessible surface area control intrinsic protein flexibility. J Mol Biol 425:3250–3263

    Article  CAS  PubMed  Google Scholar 

  • Marsh JA, Teichmann SA (2012) Protein flexibility facilitates quaternary structure assembly and evolution. PLoS Biol 12:4197–4202

    Google Scholar 

  • Mebs D (2001) Toxicity in animals. Trends in evolution? Toxicon 39:87–96

    Article  CAS  PubMed  Google Scholar 

  • Menez A (1998) Functional architectures of animal toxins: A clue to drug design. Toxicon, 36, 1557–1572

    Google Scholar 

  • Nei M, Rooney AP (2005) Concerted and birth-and-death evolution of multigene families. Annu Rev Genet 39:121–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nei M, Gu X, Sitnikova T (1997) Evolution by the birth and death process in multigene families of the vertebrate immune system. PNAS 94:7799–7806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nobuhisa I, Deshimaru M, Chijiwa T et al (1997) Structures of genes encoding phospholipase A2 inhibitors from the serum of Trimeresurus Flavouridis snake. Gene 191:31–37

    Article  CAS  PubMed  Google Scholar 

  • Norton RS, Pallaghy PK (1998) The cystine knot structure of ion channel toxins and related polypeptides. Toxicon 36:1573–1583

    Google Scholar 

  • Ohno M, Menez R, Ogawa T et al (1998) Molecular evolution of snake toxins: is the functional diversity of snake toxins associated with a mechanism of accelerated evolution? Prog Nucleic Acid Res Mol Biol 59:307–364

    Article  CAS  PubMed  Google Scholar 

  • Olivera BM (2002) Conus venom peptides: reflections from the biology of clades and species. Annu Rev Ecol Syst 33:25–47

    Article  Google Scholar 

  • Pal C, Papp B, Lercher MJ (2005) Adaptive evolution of bacterial metabolic networks by horizontal gene transfer. Nat Genet 37:1372–1375

    Article  CAS  PubMed  Google Scholar 

  • Rost B (1997) Protein structures sustain evolutionary drift. Fold Des 2:S19–S24

    Article  CAS  PubMed  Google Scholar 

  • Sandegren L, Andersson DI (2009) Bacterial gene amplification: implications for the evolution of antibiotic resistance. Nat Rev Microbiol 7:578–588

    Article  CAS  PubMed  Google Scholar 

  • Smith GP (1973) Unequal crossover and the evolution of multigene families. Cold Spring Harbor Symp Quant Biol 3:507–513.

    Google Scholar 

  • Smith WL, Wheeler WC (2006) Venom evolution widespread in fishes: a phylogenetic road map for the bioprospecting of piscine venoms. J Hered 97:206–217

    Article  CAS  PubMed  Google Scholar 

  • Smith JJ, Hill JM, Little MJ et al (2011) Unique scorpion toxin with a putative ancestral fold provides insight into evolution of the inhibitor cystine knot motif. PNAS 108:10478–10483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sokurenko EV, Hasty DL, Dykhuizen DE (1999) Pathoadaptive mutations: gene loss and variations in bacterial pathogens. Trends Microbiol 7:191–195

    Article  CAS  PubMed  Google Scholar 

  • Soucek A, Michalec C, Souckova A (1967) Enzymatic hydrolysis of spingomyleins by a toxin of Corynebacterium ovis. BBA Lipid Lipid Metab 144:180–182

    Article  CAS  Google Scholar 

  • Stock EP, Stock AM, Mottonen JM (1990) Signal transduction in bacteria. Nature 344:395–400

    Article  CAS  PubMed  Google Scholar 

  • Sullivan JT, Ronson CW (1998) Evolution of rhizobia by acquisition of a 500 kb symbiosis island that integrates into a phe-tRNA gene. PNAS 95:5145–5149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunagar K, Jackson TNW, Undheim EAB et al (2013) Three-fingered RAVERs: rapid accumulation of variations in exposed residues of snake venom toxins. Toxins (Basel) 5:2172–2208

    Article  CAS  Google Scholar 

  • Takasaki C, Yutani F, Kajiyashiki T (1990a) Amino acid sequence of eight phospholipase A2 from the venom of Australian king brown snake. Toxicon 28:329–339

    Google Scholar 

  • Takasaki C, Sugama A, Yanagita A et al (1990b) Effects of chemical modifications of Pa-11, a phospholipase A2 from the venom of Australian king brown snake (Pseudechis australia), on its biological activities. Toxicon 28:107–117

    Google Scholar 

  • Toft C, Andersson SGE (2010) Evolutionary microbial genomics: insight into bacterial host adaptation. Nature 11:465–475

    CAS  Google Scholar 

  • Truett AP III, King JLE (1993) Sphingomyelinase D: a pathogenic agent produced by bacteria and arthropods. Adv Lipid Res 26:275–291

    CAS  PubMed  Google Scholar 

  • Van Meeteren LA, Frederiks F, Giepmans BN et al (2004) Spider and bacterial Sphingomyelinase D target cellular lysophosphatidic acid receptors by hydrolyzing lysophosphatidylcholine. J Biol Chem 279:10833–10836

    Article  PubMed  Google Scholar 

  • Weinberger H et al (2011) Positions under positive selection—key for selectivity and potency of scorpion α-toxins. Mol Biol Evol 27:1025–1034

    Article  Google Scholar 

  • Wren BW (2000) Microbial genome analysis: insight into virulence, host adaptation and evolution. Nat Rev Genet 1:30–39

    Article  CAS  PubMed  Google Scholar 

  • Zaman L, Meyer JR, Devangam S et al (2014) Coevolution drives the emergence of complex traita and promotes evolvability. PLoS Biol 12:1–9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raj Kumar Ph.D. .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kumar, R., Singh, B.R. (2016). Evolution of Toxin. In: Protein Toxins in Modeling Biochemistry. SpringerBriefs in Biochemistry and Molecular Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-43540-4_5

Download citation

Publish with us

Policies and ethics