Skip to main content

Anti-angiogenic Therapy by Targeting the Tumor Vasculature with Liposomes

  • Chapter
  • First Online:
Intracellular Delivery III

Part of the book series: Fundamental Biomedical Technologies ((FBMT))

  • 900 Accesses

Abstract

In recent years, anti-angiogenic therapy has attracted considerable interest as a new class of anti-cancer medicine because it is more efficacious with a lower toxicity in comparison to traditional cyto-toxic anti-cancer drugs. the enhanced permeability and retention (EPR) effect is now a well-established strategy for targeting cancer cells. On the other hand, there is no generally accepted strategy for targeting tumor endothelial cells, which appear to be responsible for a pathological angiogenesis in cancerous tissues. In this article, we review the various tumor endothelial targeting nano drug delivery systems (DDSs) that involve the use of cationic lipids, peptides, antibodies sugar chains. In addition, the mechanisms responsible for how endothelial cells affect a tumor microenvironment for nanoparticle penetration in tumor tissues are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-FU:

5-fluorouracil

AMO:

anti-micro RNA oligonucleotide

bFGF:

basic gibroblast factor

BPD-MA:

benzoporphyrin derivative mono-acid ring A

CDC:

cell division cycle homologue

CPP:

cell penetrating peptie

DCP-TEPA:

dicetyl phosphate-tetraethylenepentamine

DDAB:

dimethyldioctadecyl ammonium bromide

DDS:

drug delivery system

DOTAP:

1,2-dioleoyl-3-trimethylammonium propane

DOX:

doxorubicin

EPR:

enhanced permeability and retention

FDA:

Food and Drug Administration

HIF:

hypoxia inducible factor

HUVEC:

Human umbilical vein endothelial cells

IFP:

interstitial fluid pressure

IL:

interleukin

miRNA:

micro RNA

MKI:

multi-kinase inhibitor

MRI:

magnetic resonance imaging

MT1-MMP:

membrane type-1 matrixmetalloproteinase

mTOR:

mammarian target of rapamycin

NCT:

neutron capture therapy

NRP-1:

neuropilin-1

ODN:

oligodeoxynucleotide

PDGFR:

platelet-derived growth factor receptor

pDNA:

plasmid DNA

PDT:

photodynamic therapy

PEG:

polyethylene glycol

PKN3:

phosphonositide-3-kinase

PLK1:

polo-like kinase

PTX:

paclitaxel

ROS:

reactive oxygen species

SELEX:

Systematic Evolution of Ligands by Exponential enrichment

siRNA:

small interfering RNA

SLX:

sialyl lewisX

TNF-α:

tumor necrosis factor-α

VCAM-1:

vacular cell adhesion molecule-1

VEGF:

vascular endothelial cells growth factor

VEGFR:

vascular endothelial cells growth factor receptor

WHO:

World Health Organization

References

  • Abu Lila AS, Kizuki S, Doi Y et al (2009) Oxaliplatin encapsulated in PEG-coated cationic liposomes induces significant tumor growth suppression via a dual-targeting approach in a murine solid tumor model. J Control Release 137:8–14

    Article  CAS  PubMed  Google Scholar 

  • Abu Lila AS, Doi Y, Nakamura K et al (2010) Sequential administration with oxaliplatin-containing PEG-coated cationic liposomes promotes a significant delivery of subsequent dose into murine solid tumor. J Control Release 142:167–173

    Article  CAS  PubMed  Google Scholar 

  • Aggarwal S, Ichikawa H, Takada Y et al (2006) Curcumin (diferuloylmethane) down-regulates expression of cell proliferation and antiapoptotic and metastatic gene products through suppression of IkappaBalpha kinase and Akt activation. Mol Pharmacol 69:195–206

    CAS  PubMed  Google Scholar 

  • Alekseeva A, Kapkaeva M, Shcheglovitova O et al (2015) Interactions of antitumour Sialyl Lewis X liposomes with vascular endothelial cells. Biochim Biophys Acta 1848:1099–1110

    Article  CAS  PubMed  Google Scholar 

  • Aleku M, Fisch G, Mopert K et al (2008a) Intracellular localization of lipoplexed siRNA in vascular endothelial cells of different mouse tissues. Microvasc Res 76:31–41

    Article  CAS  PubMed  Google Scholar 

  • Aleku M, Schulz P, Keil O et al (2008b) Atu027, a liposomal small interfering RNA formulation targeting protein kinase N3, inhibits cancer progression. Cancer Res 68:9788–9798

    Article  CAS  PubMed  Google Scholar 

  • Ando H, Asai T, Koide H et al (2014) Advanced cancer therapy by integrative antitumor actions via systemic administration of miR-499. J Control Release 181:32–39

    Article  CAS  PubMed  Google Scholar 

  • Ara MN, Hyodo M, Ohga N et al (2012) Development of a novel DNA aptamer ligand targeting to primary cultured tumor endothelial cells by a cell-based SELEX method. PLoS One 7:e50174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ara MN, Hyodo M, Ohga N et al (2014a) Identification and expression of troponin T, a new marker on the surface of cultured tumor endothelial cells by aptamer ligand. Cancer Med 3:825–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ara MN, Matsuda T, Hyodo M et al (2014b) An aptamer ligand based liposomal nanocarrier system that targets tumor endothelial cells. Biomaterials 35:7110–7120

    Article  CAS  PubMed  Google Scholar 

  • Arap W, Pasqualini R, Ruoslahti E (1998) Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279:377–380

    Article  CAS  PubMed  Google Scholar 

  • Arosio D, Casagrande C (2015) Advancement in integrin facilitated drug delivery. Adv Drug Deliv Rev 97:111–143

    Article  PubMed  CAS  Google Scholar 

  • Asai T, Shimizu K, Kondo M et al (2002) Anti-neovascular therapy by liposomal DPP-CNDAC targeted to angiogenic vessels. FEBS Lett 520:167–170

    Article  CAS  PubMed  Google Scholar 

  • Asai T, Miyazawa S, Maeda N et al (2008) Antineovascular therapy with angiogenic vessel-targeted polyethyleneglycol-shielded liposomal DPP-CNDAC. Cancer Sci 99:1029–1033

    Article  CAS  PubMed  Google Scholar 

  • Asai T, Matsushita S, Kenjo E et al (2011) Dicetyl phosphate-tetraethylenepentamine-based liposomes for systemic siRNA delivery. Bioconjug Chem 22:429–435

    Article  CAS  PubMed  Google Scholar 

  • Asgeirsdottir SA, Talman EG, de Graaf IA et al (2010) Targeted transfection increases siRNA uptake and gene silencing of primary endothelial cells in vitro–a quantitative study. J Control Release 141:241–251

    Article  CAS  PubMed  Google Scholar 

  • Auerbach R (1991) Vascular endothelial cell differentiation: organ-specificity and selective affinities as the basis for developing anti-cancer strategies. Int J Radiat Biol 60:1–10

    Article  CAS  PubMed  Google Scholar 

  • Awada A, Bondarenko IN, Bonneterre J et al (2014) A randomized controlled phase II trial of a novel composition of paclitaxel embedded into neutral and cationic lipids targeting tumor endothelial cells in advanced triple-negative breast cancer (TNBC). Ann Oncol 25:824–831

    Article  CAS  PubMed  Google Scholar 

  • Baffert F, Le T, Sennino B et al (2006) Cellular changes in normal blood capillaries undergoing regression after inhibition of VEGF signaling. Am J Physiol Heart Circ Physiol 290:H547–H559

    Article  CAS  PubMed  Google Scholar 

  • Barczyk M, Carracedo S, Gullberg D (2010) Integrins. Cell Tissue Res 339:269–280

    Article  CAS  PubMed  Google Scholar 

  • Barui S, Saha S, Mondal G et al (2014) Simultaneous delivery of doxorubicin and curcumin encapsulated in liposomes of pegylated RGDK-lipopeptide to tumor vasculature. Biomaterials 35:1643–1656

    Article  CAS  PubMed  Google Scholar 

  • Benzinger P, Martiny-Baron G, Reusch P et al (2000) Targeting of endothelial KDR receptors with 3G2 immunoliposomes in vitro. Biochim Biophys Acta 1466:71–78

    Article  CAS  PubMed  Google Scholar 

  • Bird MI, Foster MR, Priest R et al (1997) Selectins: physiological and pathophysiological roles. Biochem Soc Trans 25:1199–1206

    Article  CAS  PubMed  Google Scholar 

  • Bradley KA, Mogridge J, Mourez M et al (2001) Identification of the cellular receptor for anthrax toxin. Nature 414:225–229

    Article  CAS  PubMed  Google Scholar 

  • Brandwijk RJ, Mulder WJ, Nicolay K et al (2007) Anginex-conjugated liposomes for targeting of angiogenic endothelial cells. Bioconjug Chem 18:785–790

    Article  CAS  PubMed  Google Scholar 

  • Brantley-Sieders DM, Fang WB, Hicks DJ et al (2005) Impaired tumor microenvironment in EphA2-deficient mice inhibits tumor angiogenesis and metastatic progression. FASEB J 19:1884–1886

    CAS  PubMed  Google Scholar 

  • Brekken RA, Thorpe PE (2001) Vascular endothelial growth factor and vascular targeting of solid tumors. Anticancer Res 21:4221–4229

    CAS  PubMed  Google Scholar 

  • Bruehl RE, Dasgupta F, Katsumoto TR et al (2001) Polymerized liposome assemblies: bifunctional macromolecular selectin inhibitors mimicking physiological selectin ligands. Biochemistry 40:5964–5974

    Article  CAS  PubMed  Google Scholar 

  • Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6:857–866

    Article  CAS  PubMed  Google Scholar 

  • Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473:298–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhary B, Khaled YS, Ammori BJ et al (2014) Neuropilin 1: function and therapeutic potential in cancer. Cancer Immunol Immunother 63:81–99

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Wang X, Wang Y et al (2010) Improved tumor-targeting drug delivery and therapeutic efficacy by cationic liposome modified with truncated bFGF peptide. J Control Release 145:17–25

    Article  CAS  PubMed  Google Scholar 

  • Chi L, Na MH, Jung HK et al (2015) Enhanced delivery of liposomes to lung tumor through targeting interleukin-4 receptor on both tumor cells and tumor endothelial cells. J Control Release 209:327–336

    Article  CAS  PubMed  Google Scholar 

  • Dey N, De P, Brian LJ (2015) Evading anti-angiogenic therapy: resistance to anti-angiogenic therapy in solid tumors. Am J Transl Res 7:1675–1698

    PubMed  PubMed Central  Google Scholar 

  • Ebos JM, Kerbel RS (2011) Antiangiogenic therapy: impact on invasion, disease progression, and metastasis. Nat Rev Clin Oncol 8:210–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eichbaum MH, de Rossi TM, Kaul S et al (2004) Serum levels of soluble E-selectin are associated with the clinical course of metastatic disease in patients with liver metastases from breast cancer. Oncol Res 14:603–610

    CAS  PubMed  Google Scholar 

  • Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  CAS  PubMed  Google Scholar 

  • Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186

    Article  CAS  PubMed  Google Scholar 

  • Folkman J, Long DM Jr, Becker FF (1963) Growth and metastasis of tumor in organ culture. Cancer 16:453–467

    Article  CAS  PubMed  Google Scholar 

  • Giannoni A, Giovannini S, Clerico A (2009) Measurement of circulating concentrations of cardiac troponin I and T in healthy subjects: a tool for monitoring myocardial tissue renewal? Clin Chem Lab Med 47:1167–1177

    Article  CAS  PubMed  Google Scholar 

  • Gomes-da-Silva LC, Ramalho JS, Pedroso de Lima MC et al (2013) Impact of anti-PLK1 siRNA-containing F3-targeted liposomes on the viability of both cancer and endothelial cells. Eur J Pharm Biopharm 85:356–364

    Article  CAS  PubMed  Google Scholar 

  • Gosk S, Moos T, Gottstein C et al (2008) VCAM-1 directed immunoliposomes selectively target tumor vasculature in vivo. Biochim Biophys Acta 1778:854–863

    Article  CAS  PubMed  Google Scholar 

  • Gospodarowicz D, Brown KD, Birdwell CR et al (1978) Control of proliferation of human vascular endothelial cells. Characterization of the response of human umbilical vein endothelial cells to fibroblast growth factor, epidermal growth factor, and thrombin. J Cell Biol 77:774–788

    Article  CAS  PubMed  Google Scholar 

  • Griffioen AW, van der Schaft DW, Barendsz-Janson AF et al (2001) Anginex, a designed peptide that inhibits angiogenesis. Biochem J 354:233–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Z, He B, Yuan L et al (2015) Dual targeting for metastatic breast cancer and tumor neovasculature by EphA2-mediated nanocarriers. Int J Pharm 493:380–389

    Article  CAS  PubMed  Google Scholar 

  • Gurrath M, Muller G, Kessler H et al (1992) Conformation/activity studies of rationally designed potent anti-adhesive RGD peptides. Eur J Biochem 210:911–921

    Article  CAS  PubMed  Google Scholar 

  • Gutbier B, Kube SM, Reppe K et al (2010) RNAi-mediated suppression of constitutive pulmonary gene expression by small interfering RNA in mice. Pulm Pharmacol Ther 23:334–344

    Article  CAS  PubMed  Google Scholar 

  • Hada T, Sakurai Y, Harashima H (2015) Optimization of a siRNA carrier modified with a pH-sensitive cationic lipid and a cyclic RGD peptide for efficiently targeting tumor endothelial cells. Pharmaceutics 7:320–333

    Article  PubMed  PubMed Central  Google Scholar 

  • Hayashi Y, Suemitsu E, Kajimoto K et al (2014) Hepatic monoacylglycerol O-acyltransferase 1 as a promising therapeutic target for steatosis, obesity, and type 2 diabetes. Mol Ther Nucleic Acids 3, e154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hida K, Hida Y, Amin DN et al (2004) Tumor-associated endothelial cells with cytogenetic abnormalities. Cancer Res 64:8249–8255

    Article  CAS  PubMed  Google Scholar 

  • Hirai M, Hiramatsu Y, Iwashita S et al (2010a) E-selectin targeting to visualize tumors in vivo. Contrast Media Mol Imaging 5:70–77

    CAS  PubMed  Google Scholar 

  • Hirai M, Minematsu H, Hiramatsu Y et al (2010b) Novel and simple loading procedure of cisplatin into liposomes and targeting tumor endothelial cells. Int J Pharm 391:274–283

    Article  CAS  PubMed  Google Scholar 

  • Holig P, Bach M, Volkel T et al (2004) Novel RGD lipopeptides for the targeting of liposomes to integrin-expressing endothelial and melanoma cells. Protein Eng Des Sel 17:433–441

    Article  PubMed  CAS  Google Scholar 

  • Ichikawa K, Hikita T, Maeda N et al (2005) Antiangiogenic photodynamic therapy (PDT) by using long-circulating liposomes modified with peptide specific to angiogenic vessels. Biochim Biophys Acta 1669:69–74

    Article  CAS  PubMed  Google Scholar 

  • Itoh Y, Seiki M (2006) MT1-MMP: a potent modifier of pericellular microenvironment. J Cell Physiol 206:1–8

    Article  CAS  PubMed  Google Scholar 

  • Kalra AV, Campbell RB (2006) Development of 5-FU and doxorubicin-loaded cationic liposomes against human pancreatic cancer: implications for tumor vascular targeting. Pharm Res 23:2809–2817

    Article  CAS  PubMed  Google Scholar 

  • Kannagi R (2007) Carbohydrate antigen sialyl Lewis a–its pathophysiological significance and induction mechanism in cancer progression. Chang Gung Med J 30:189–209

    PubMed  Google Scholar 

  • Katanasaka Y, Ida T, Asai T et al (2008a) Effective delivery of an angiogenesis inhibitor by neovessel-targeted liposomes. Int J Pharm 360:219–224

    Article  CAS  PubMed  Google Scholar 

  • Katanasaka Y, Ida T, Asai T et al (2008b) Antiangiogenic cancer therapy using tumor vasculature-targeted liposomes encapsulating 3-(3,5-dimethyl-1H-pyrrol-2-ylmethylene)-1,3-dihydro-indol-2-one, SU5416. Cancer Lett 270:260–268

    Article  CAS  PubMed  Google Scholar 

  • Kawahara H, Naito H, Takara K et al (2013) Tumor endothelial cell-specific drug delivery system using apelin-conjugated liposomes. PLoS One 8:e65499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keck PJ, Hauser SD, Krivi G et al (1989) Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science 246:1309–1312

    Article  CAS  PubMed  Google Scholar 

  • Keefe AD, Pai S, Ellington A (2010) Aptamers as therapeutics. Nat Rev Drug Discov 9:537–550

    Article  CAS  PubMed  Google Scholar 

  • Keunen O, Johansson M, Oudin A et al (2011) Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma. Proc Natl Acad Sci U S A 108:3749–3754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khawar IA, Kim JH, Kuh HJ (2015) Improving drug delivery to solid tumors: priming the tumor microenvironment. J Control Release 201:78–89

    Article  CAS  PubMed  Google Scholar 

  • Kibria G, Hatakeyama H, Harashima H (2011a) A new peptide motif present in the protective antigen of anthrax toxin exerts its efficiency on the cellular uptake of liposomes and applications for a dual-ligand system. Int J Pharm 412:106–114

    Article  CAS  PubMed  Google Scholar 

  • Kibria G, Hatakeyama H, Ohga N et al (2011b) Dual-ligand modification of PEGylated liposomes shows better cell selectivity and efficient gene delivery. J Control Release 153:141–148

    Article  CAS  PubMed  Google Scholar 

  • Kibria G, Hatakeyama H, Ohga N et al (2013) The effect of liposomal size on the targeted delivery of doxorubicin to Integrin alphavbeta3-expressing tumor endothelial cells. Biomaterials 34:5617–5627

    Article  CAS  PubMed  Google Scholar 

  • Kim MS, Lee DW, Park K et al (2014) Temperature-triggered tumor-specific delivery of anticancer agents by cRGD-conjugated thermosensitive liposomes. Colloids Surf B: Biointerfaces 116:17–25

    Article  CAS  PubMed  Google Scholar 

  • Kluza E, Jacobs I, Hectors SJ et al (2012) Dual-targeting of alphavbeta3 and galectin-1 improves the specificity of paramagnetic/fluorescent liposomes to tumor endothelium in vivo. J Control Release 158:207–214

    Article  CAS  PubMed  Google Scholar 

  • Koide H, Asai T, Furuya K et al (2011) Inhibition of Akt (ser473) phosphorylation and rapamycin-resistant cell growth by knockdown of mammalian target of rapamycin with small interfering RNA in vascular endothelial growth factor receptor-1-targeting vector. Biol Pharm Bull 34:602–608

    Article  CAS  PubMed  Google Scholar 

  • Koide H, Asai T, Kato H et al (2015) Susceptibility of PTEN-positive metastatic tumors to small interfering RNA targeting the mammalian target of rapamycin. Nanomedicine 11:185–194

    CAS  PubMed  Google Scholar 

  • Kondo M, Asai T, Katanasaka Y et al (2004) Anti-neovascular therapy by liposomal drug targeted to membrane type-1 matrix metalloproteinase. Int J Cancer 108:301–306

    Article  CAS  PubMed  Google Scholar 

  • Koning GA, Fretz MM, Woroniecka U et al (2004) Targeting liposomes to tumor endothelial cells for neutron capture therapy. Appl Radiat Isot 61:963–967

    Article  CAS  PubMed  Google Scholar 

  • Kowalski PS, Lintermans LL, Morselt HW et al (2013) Anti-VCAM-1 and anti-E-selectin SAINT-O-Somes for selective delivery of siRNA into inflammation-activated primary endothelial cells. Mol Pharm 10:3033–3044

    Article  CAS  PubMed  Google Scholar 

  • Kowalski PS, Zwiers PJ, Morselt HW et al (2014) Anti-VCAM-1 SAINT-O-Somes enable endothelial-specific delivery of siRNA and downregulation of inflammatory genes in activated endothelium in vivo. J Control Release 176:64–75

    Article  CAS  PubMed  Google Scholar 

  • Kunstfeld R, Wickenhauser G, Michaelis U et al (2003) Paclitaxel encapsulated in cationic liposomes diminishes tumor angiogenesis and melanoma growth in a “humanized” SCID mouse model. J Invest Dermatol 120:476–482

    Article  CAS  PubMed  Google Scholar 

  • Leung DW, Cachianes G, Kuang WJ et al (1989) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246:1306–1309

    Article  CAS  PubMed  Google Scholar 

  • Leus NG, Morselt HW, Zwiers PJ et al (2014a) VCAM-1 specific PEGylated SAINT-based lipoplexes deliver siRNA to activated endothelium in vivo but do not attenuate target gene expression. Int J Pharm 469:121–131

    Article  CAS  PubMed  Google Scholar 

  • Leus NG, Talman EG, Ramana P et al (2014b) Effective siRNA delivery to inflamed primary vascular endothelial cells by anti-E-selectin and anti-VCAM-1 PEGylated SAINT-based lipoplexes. Int J Pharm 459:40–50

    Article  CAS  PubMed  Google Scholar 

  • Liu XQ, Song WJ, Sun TM et al (2011) Targeted delivery of antisense inhibitor of miRNA for antiangiogenesis therapy using cRGD-functionalized nanoparticles. Mol Pharm 8:250–259

    Article  CAS  PubMed  Google Scholar 

  • Loges S, Mazzone M, Hohensinner P et al (2009) Silencing or fueling metastasis with VEGF inhibitors: antiangiogenesis revisited. Cancer Cell 15:167–170

    Article  CAS  PubMed  Google Scholar 

  • Luo LM, Huang Y, Zhao BX et al (2013) Anti-tumor and anti-angiogenic effect of metronomic cyclic NGR-modified liposomes containing paclitaxel. Biomaterials 34:1102–1114

    Article  CAS  PubMed  Google Scholar 

  • Maeda H, Wu J, Sawa T et al (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65:271–284

    Article  CAS  PubMed  Google Scholar 

  • Maeda N, Takeuchi Y, Takada M et al (2004a) Synthesis of angiogenesis-targeted peptide and hydrophobized polyethylene glycol conjugate. Bioorg Med Chem Lett 14:1015–1017

    Article  CAS  PubMed  Google Scholar 

  • Maeda N, Takeuchi Y, Takada M et al (2004b) Anti-neovascular therapy by use of tumor neovasculature-targeted long-circulating liposome. J Control Release 100:41–52

    Article  CAS  PubMed  Google Scholar 

  • Maeda N, Miyazawa S, Shimizu K et al (2006) Enhancement of anticancer activity in antineovascular therapy is based on the intratumoral distribution of the active targeting carrier for anticancer drugs. Biol Pharm Bull 29:1936–1940

    Article  CAS  PubMed  Google Scholar 

  • Majumder P, Bhunia S, Bhattacharyya J et al (2014) Inhibiting tumor growth by targeting liposomally encapsulated CDC20siRNA to tumor vasculature: therapeutic RNA interference. J Control Release 180:100–108

    Article  CAS  PubMed  Google Scholar 

  • Mann AP, Somasunderam A, Nieves-Alicea R et al (2010) Identification of thioaptamer ligand against E-selectin: potential application for inflamed vasculature targeting. PLoS One 5:e13050

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mann AP, Bhavane RC, Somasunderam A et al (2011) Thioaptamer conjugated liposomes for tumor vasculature targeting. Oncotarget 2:298–304

    Article  PubMed  Google Scholar 

  • Margolin K, Gordon MS, Holmgren E et al (2001) Phase Ib trial of intravenous recombinant humanized monoclonal antibody to vascular endothelial growth factor in combination with chemotherapy in patients with advanced cancer: pharmacologic and long-term safety data. J Clin Oncol 19:851–856

    CAS  PubMed  Google Scholar 

  • Martin SG, Murray JC (2000) Gene-transfer systems for human endothelial cells. stewart.martin@nottingham.ac.uk. Adv Drug Deliv Rev 41:223–233

    Article  CAS  PubMed  Google Scholar 

  • Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–6392

    CAS  PubMed  Google Scholar 

  • Meng S, Su B, Li W et al (2011) Integrin-targeted paclitaxel nanoliposomes for tumor therapy. Med Oncol 28:1180–1187

    Article  CAS  PubMed  Google Scholar 

  • Minematsu H, Otani T, Oohashi T et al (2011) Development of an active targeting liposome encapsulated with high-density colloidal gold for transmission electron microscopy. J Electron Microsc (Tokyo) 60:95–99

    Article  Google Scholar 

  • Mizushina Y, Hada T, Yoshida H (2012) In vivo antitumor effect of liposomes with sialyl Lewis X including monogalactosyl diacylglycerol, a replicative DNA polymerase inhibitor, from spinach. Oncol Rep 28:821–828

    CAS  PubMed  Google Scholar 

  • Mondal G, Barui S, Saha S et al (2013) Tumor growth inhibition through targeting liposomally bound curcumin to tumor vasculature. J Control Release 172:832–840

    Article  CAS  PubMed  Google Scholar 

  • Murase Y, Asai T, Katanasaka Y et al (2010) A novel DDS strategy, “dual-targeting”, and its application for antineovascular therapy. Cancer Lett 287:165–171

    Article  CAS  PubMed  Google Scholar 

  • Negussie AH, Miller JL, Reddy G et al (2010) Synthesis and in vitro evaluation of cyclic NGR peptide targeted thermally sensitive liposome. J Control Release 143:265–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okamoto A, Asai T, Ryu S et al (2016) Enhanced efficacy of Doxorubicin by microRNA-499-mediated improvement of tumor blood flow. J Clin Med 5:10

    Article  PubMed Central  Google Scholar 

  • Oku N, Asai T, Watanabe K et al (2002) Anti-neovascular therapy using novel peptides homing to angiogenic vessels. Oncogene 21:2662–2669

    Article  CAS  PubMed  Google Scholar 

  • Paoli EE, Ingham ES, Zhang H et al (2014) Accumulation, internalization and therapeutic efficacy of neuropilin-1-targeted liposomes. J Control Release 178:108–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasqualini R, Koivunen E, Kain R et al (2000) Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res 60:722–727

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pastorino F, Brignole C, Marimpietri D et al (2003) Vascular damage and anti-angiogenic effects of tumor vessel-targeted liposomal chemotherapy. Cancer Res 63:7400–7409

    CAS  PubMed  Google Scholar 

  • Pramanik D, Majeti BK, Mondal G et al (2008) Lipopeptide with a RGDK tetrapeptide sequence can selectively target genes to proangiogenic alpha5beta1 integrin receptor and mouse tumor vasculature. J Med Chem 51:7298–7302

    Article  CAS  PubMed  Google Scholar 

  • Raucher D, Ryu JS (2015) Cell-penetrating peptides: strategies for anticancer treatment. Trends Mol Med 21:560–570

    Article  CAS  PubMed  Google Scholar 

  • Rubio Demirovic A, Marty C, Console S et al (2005) Targeting human cancer cells with VEGF receptor-2-directed liposomes. Oncol Rep 13:319–324

    PubMed  Google Scholar 

  • Sakurai Y, Hatakeyama H, Sato Y et al (2013) Gene silencing via RNAi and siRNA quantification in tumor tissue using MEND, a liposomal siRNA delivery system. Mol Ther 21:1195–1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakurai Y, Hatakeyama H, Akita H et al (2014a) Improvement of doxorubicin efficacy using liposomal anti-polo-like kinase 1 siRNA in human renal cell carcinomas. Mol Pharm 11:2713–2719

    Article  CAS  PubMed  Google Scholar 

  • Sakurai Y, Hatakeyama H, Sato Y et al (2014b) RNAi-mediated gene knockdown and anti-angiogenic therapy of RCCs using a cyclic RGD-modified liposomal-siRNA system. J Control Release 173:110–118

    Article  CAS  PubMed  Google Scholar 

  • Sakurai Y, Kajimoto K, Harashima H (2015) Anti-angiogenic nanotherapy via active targeting systems to tumors and adipose tissue vasculature. Biomater Sci 3:1253–1265

    Article  CAS  PubMed  Google Scholar 

  • Sakurai Y, Hada T, Harashima H (2016) Preparation of a cyclic RGD: modified liposomal SiRNA formulation for use in active targeting to tumor and tumor endothelial cells. Methods Mol Biol 1364:63–69

    Article  PubMed  Google Scholar 

  • Santel A, Aleku M, Keil O et al (2006) A novel siRNA-lipoplex technology for RNA interference in the mouse vascular endothelium. Gene Ther 13:1222–1234

    Article  CAS  PubMed  Google Scholar 

  • Santel A, Aleku M, Roder N et al (2010) Atu027 prevents pulmonary metastasis in experimental and spontaneous mouse metastasis models. Clin Cancer Res 16:5469–5480

    Article  CAS  PubMed  Google Scholar 

  • Santos AO, da Silva LC, Bimbo LM et al (2010) Design of peptide-targeted liposomes containing nucleic acids. Biochim Biophys Acta 1798:433–441

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Hatakeyama H, Sakurai Y et al (2012) A pH-sensitive cationic lipid facilitates the delivery of liposomal siRNA and gene silencing activity in vitro and in vivo. J Control Release 163:267–276

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Li K, Kameyama T et al (2015) The RNA sensor RIG-I dually functions as an innate sensor and direct antiviral factor for hepatitis B virus. Immunity 42:123–132

    Article  CAS  PubMed  Google Scholar 

  • Schiffelers RM, Koning GA, ten Hagen TL et al (2003) Anti-tumor efficacy of tumor vasculature-targeted liposomal doxorubicin. J Control Release 91:115–122

    Article  CAS  PubMed  Google Scholar 

  • Schlesinger M, Bendas G (2015) Vascular cell adhesion molecule-1 (VCAM-1)–an increasing insight into its role in tumorigenicity and metastasis. Int J Cancer 136:2504–2514

    Article  CAS  PubMed  Google Scholar 

  • Schmitt-Sody M, Strieth S, Krasnici S et al (2003) Neovascular targeting therapy: paclitaxel encapsulated in cationic liposomes improves antitumoral efficacy. Clin Cancer Res 9:2335–2341

    CAS  PubMed  Google Scholar 

  • Schultheis B, Strumberg D, Santel A et al (2014) First-in-human phase I study of the liposomal RNA interference therapeutic Atu027 in patients with advanced solid tumors. J Clin Oncol 32:4141–4148

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Zhou Y, Chakraborty S et al (2011) Evaluation of in-labeled cyclic RGD peptides: effects of peptide and linker multiplicity on their tumor uptake, excretion kinetics and metabolic stability. Theranostics 1:322–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimizu K, Asai T, Fuse C et al (2005) Applicability of anti-neovascular therapy to drug-resistant tumor: suppression of drug-resistant P388 tumor growth with neovessel-targeted liposomal adriamycin. Int J Pharm 296:133–141

    Article  CAS  PubMed  Google Scholar 

  • Shishodia S, Amin HM, Lai R et al (2005) Curcumin (diferuloylmethane) inhibits constitutive NF-kappaB activation, induces G1/S arrest, suppresses proliferation, and induces apoptosis in mantle cell lymphoma. Biochem Pharmacol 70:700–713

    Article  CAS  PubMed  Google Scholar 

  • Sipkins DA, Cheresh DA, Kazemi MR et al (1998) Detection of tumor angiogenesis in vivo by alphaVbeta3-targeted magnetic resonance imaging. Nat Med 4:623–626

    Article  CAS  PubMed  Google Scholar 

  • Spragg DD, Alford DR, Greferath R et al (1997) Immunotargeting of liposomes to activated vascular endothelial cells: a strategy for site-selective delivery in the cardiovascular system. Proc Natl Acad Sci U S A 94:8795–8800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • St Croix B, Rago C, Velculescu V et al (2000) Genes expressed in human tumor endothelium. Science 289:1197–1202

    Article  CAS  PubMed  Google Scholar 

  • Strieth S, Eichhorn ME, Sauer B et al (2004) Neovascular targeting chemotherapy: encapsulation of paclitaxel in cationic liposomes impairs functional tumor microvasculature. Int J Cancer 110:117–124

    Article  CAS  PubMed  Google Scholar 

  • Strieth S, Dunau C, Michaelis U et al (2014) Phase I/II clinical study on safety and antivascular effects of paclitaxel encapsulated in cationic liposomes for targeted therapy in advanced head and neck cancer. Head Neck 36:976–984

    Article  PubMed  Google Scholar 

  • Sugiyama T, Asai T, Nedachi YM et al (2013) Enhanced active targeting via cooperative binding of ligands on liposomes to target receptors. PLoS One 8:e67550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takara K, Hatakeyama H, Ohga N et al (2010) Design of a dual-ligand system using a specific ligand and cell penetrating peptide, resulting in a synergistic effect on selectivity and cellular uptake. Int J Pharm 396:143–148

    Article  CAS  PubMed  Google Scholar 

  • Takara K, Hatakeyama H, Kibria G et al (2012) Size-controlled, dual-ligand modified liposomes that target the tumor vasculature show promise for use in drug-resistant cancer therapy. J Control Release 162:225–232

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi Y, Kurohane K, Ichikawa K et al (2003) Induction of intensive tumor suppression by antiangiogenic photodynamic therapy using polycation-modified liposomal photosensitizer. Cancer 97:2027–2034

    Article  CAS  PubMed  Google Scholar 

  • Teesalu T, Sugahara KN, Kotamraju VR et al (2009) C-end rule peptides mediate neuropilin-1-dependent cell, vascular, and tissue penetration. Proc Natl Acad Sci U S A 106:16157–16162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thijssen VL, Postel R, Brandwijk RJ et al (2006) Galectin-1 is essential in tumor angiogenesis and is a target for antiangiogenesis therapy. Proc Natl Acad Sci U S A 103:15975–15980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thijssen VL, Heusschen R, Caers J et al (2015) Galectin expression in cancer diagnosis and prognosis: a systematic review. Biochim Biophys Acta 1855:235–247

    CAS  PubMed  Google Scholar 

  • Thurston G, McLean JW, Rizen M et al (1998) Cationic liposomes target angiogenic endothelial cells in tumors and chronic inflammation in mice. J Clin Invest 101:1401–1413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  CAS  PubMed  Google Scholar 

  • van der Gun BT, Monami A, Laarmann S et al (2007) Serum insensitive, intranuclear protein delivery by the multipurpose cationic lipid SAINT-2. J Control Release 123:228–238

    Article  PubMed  CAS  Google Scholar 

  • van der Schaft DW, Dings RP, de Lussanet QG et al (2002) The designer anti-angiogenic peptide anginex targets tumor endothelial cells and inhibits tumor growth in animal models. FASEB J 16:1991–1993

    PubMed  Google Scholar 

  • Wicki A, Rochlitz C, Orleth A et al (2012) Targeting tumor-associated endothelial cells: anti-VEGFR2 immunoliposomes mediate tumor vessel disruption and inhibit tumor growth. Clin Cancer Res 18:454–464

    Article  CAS  PubMed  Google Scholar 

  • Wildiers H, Guetens G, De Boeck G et al (2003) Effect of antivascular endothelial growth factor treatment on the intratumoral uptake of CPT-11. Br J Cancer 88:1979–1986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Zhang X, Xiong Z et al (2005) microPET imaging of glioma integrin {alpha}v{beta}3 expression using (64)Cu-labeled tetrameric RGD peptide. J Nucl Med 46:1707–1718

    CAS  PubMed  Google Scholar 

  • Wu Y, Cai W, Chen X (2006) Near-infrared fluorescence imaging of tumor integrin alpha v beta 3 expression with Cy7-labeled RGD multimers. Mol Imaging Biol 8:226–236

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu J, Lee A, Lu Y et al (2007) Vascular targeting of doxorubicin using cationic liposomes. Int J Pharm 337:329–335

    Article  CAS  PubMed  Google Scholar 

  • Wurdinger T, Tannous BA, Saydam O et al (2008) miR-296 regulates growth factor receptor overexpression in angiogenic endothelial cells. Cancer Cell 14:382–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong D, Liu Z, Bian T et al (2015) GX1-mediated anionic liposomes carrying adenoviral vectors for enhanced inhibition of gastric cancer vascular endothelial cells. Int J Pharm 496:699–708

    Article  CAS  PubMed  Google Scholar 

  • Ye C, Kiriyama K, Mistuoka C et al (1995) Expression of E-selectin on endothelial cells of small veins in human colorectal cancer. Int J Cancer 61:455–460

    Article  CAS  PubMed  Google Scholar 

  • Yonezawa S, Asai T, Oku N (2007) Effective tumor regression by anti-neovascular therapy in hypovascular orthotopic pancreatic tumor model. J Control Release 118:303–309

    Article  CAS  PubMed  Google Scholar 

  • Yousefi A, Bourajjaj M, Babae N et al (2014) Anginex lipoplexes for delivery of anti-angiogenic siRNA. Int J Pharm 472:175–184

    Article  CAS  PubMed  Google Scholar 

  • Zeisig R, Stahn R, Wenzel K et al (2004) Effect of sialyl Lewis X-glycoliposomes on the inhibition of E-selectin-mediated tumour cell adhesion in vitro. Biochim Biophys Acta 1660:31–40

    Article  CAS  PubMed  Google Scholar 

  • Zetter BR (1990) The cellular basis of site-specific tumor metastasis. N Engl J Med 322:605–612

    Article  CAS  PubMed  Google Scholar 

  • Zetter BR (2008) The scientific contributions of M. Judah Folkman to cancer research. Nat Rev Cancer 8:647–654

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate Dr. Milton S. Feather for this helpful advice in writing the English manuscript. No potential conflicts of interest were disclosed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideyoshi Harashima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sakurai, Y., Harashima, H. (2016). Anti-angiogenic Therapy by Targeting the Tumor Vasculature with Liposomes. In: Prokop, A., Weissig, V. (eds) Intracellular Delivery III. Fundamental Biomedical Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-43525-1_8

Download citation

Publish with us

Policies and ethics