Skip to main content

Microscopic Mass Spectrometry for the Precise Design of Drug Delivery Systems

  • Chapter
  • First Online:
Intracellular Delivery III

Part of the book series: Fundamental Biomedical Technologies ((FBMT))

  • 847 Accesses

Abstract

To bring drugs formulated in drug delivery systems (DDS) successfully into the clinic, preclinical studies have to be conducted which are aimed at obtaining pharmacological data relevant to the clinical application of such drugs. For such preclinical studies high-performance liquid chromatography (HPLC) or liquid chromatography mass spectrometry (LC-MS) is generally used. However, these methods do not generate data about the drug distribution in a specific target area, although obtained data allow optimizing the drug design in order to achieve a more efficient targeted delivery.

Microscopic mass spectrometry (MMS), in which a microscope is coupled to an atmospheric pressure matrix-assisted laser desorption/ionization (MALDI) and quadruple ion trap time-of-flight (TOF) analyzer has been developed for the investigation of the distribution of molecules such as small peptide metabolites and low-molecular weight drugs. The matrix-coated drug sample is ionized and then separated based on its mass-to-charge ratio (m/z). Images are acquired from imaging mass spectrometry or tandem mass spectrometry (MS/MS) data, respectively.

Here we introduce a drug imaging system with enhanced resolution and sensitivity which is based on using MMS. In our analysis, MS and MS/MS were used for quantification and validation, respectively. Our short review describes how the use of MMS allows the analysis of the precise distribution of a DDS drug complex including both, active and passive targeting systems. Notably, we successfully visualized and quantified the distribution of a non-radiolabeled and non-chemically modified drug in various frozen tissue slices microscopically.

In conclusion, MMS may provide a new strategy for facilitating the design of DDS with incorporated low-molecular weight drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DDS:

Drug delivery system

MALDI:

Matrix-assisted laser desorption/ionization

MMS:

Microscopic mass spectrometry

EPR:

Enhanced permeability and retention

RES:

Reticuloendothelial system

ADC:

Antibody drug conjugate

ACA:

Anticancer agent

MMAE:

Monomethyl auristatin E

PTX:

Paclitaxel

CHCA:

α-cyano-4-hydroxycinnamic acid

DHB:

2,5-Dihydroxybenzoic acid

References

  • Castellino S, Groseclose MR, Wagner D (2011) MALDI imaging mass spectrometry: bridging biology and chemistry in drug development. Bioanalysis 3:2427–2441

    Article  CAS  PubMed  Google Scholar 

  • Cornett DS, Reyzer ML, Chaurand P et al (2007) MALDI imaging mass spectrometry: molecular snapshots of biochemical systems. Nat Methods 4:828–833

    Article  CAS  PubMed  Google Scholar 

  • Flossel C, Luther T, Muller M et al (1994) Immunohistochemical detection of tissue factor (TF) on paraffin sections of routinely fixed human tissue. Histochemistry 101:449–453

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara Y, Furuta M, Manabe S et al (2016) Imaging mass spectrometry for the precise design of antibody-drug conjugates. Sci Rep 6:24954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garrett MD, Workman P (1999) Discovering novel chemotherapeutic drugs for the third millennium. Eur J Cancer 35:2010–2030

    Article  CAS  PubMed  Google Scholar 

  • Hamaguchi T, Matsumura Y, Suzuki M et al (2005) NK105, a paclitaxel-incorporating micellar nanoparticle formulation, can extend in vivo antitumour activity and reduce the neurotoxicity of paclitaxel. Br J Cancer 92:1240–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamaguchi T, Kato K, Yasui H et al (2007) A phase I and pharmacokinetic study of NK105, a paclitaxel-incorporating micellar nanoparticle formulation. Br J Cancer 97:170–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hellstrom KE, Hellstrom I, Brown JP (2013) Human tumor-associated antigens identified by monoclonal antibodies. Springer Semin Immunopathol 5:127–146

    Google Scholar 

  • Junutula JR, Raab H, Clark S et al (2008) Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat Biotechnol 26:925–932

    Article  CAS  PubMed  Google Scholar 

  • Kataoka K, Kwon GS, Yokoyama M et al (1993) Block copolymer micelles as vehicles for drug delivery. J Control Release 24:119–132

    Article  CAS  Google Scholar 

  • Kato K, Chin K, Yoshikawa K et al (2012) Phase II study of NK105, a paclitaxel-incorporating micellar nanoparticle, for previously treated advanced or recurrent gastric cancer. Investig New Drugs 30:1621–1627

    Article  CAS  Google Scholar 

  • Khorana AA, Ahrendt SA, Ryan CK et al (2007) Tissue factor expression, angiogenesis, and thrombosis in pancreatic cancer. Clin Cancer Res 13:2870–2875

    Article  CAS  PubMed  Google Scholar 

  • Kim M, Gillies RJ, Rejniak KA (2013) Current advances in mathematical modeling of anti-cancer drug penetration into tumor tissues. Front oncol 3:278

    PubMed  PubMed Central  Google Scholar 

  • Koga Y, Manabe S, Aihara Y et al (2015) Antitumor effect of anti-tissue factor antibody-MMAE conjugate in human pancreatic tumor xenografts. Int J Cancer 137:1257–1466

    Article  Google Scholar 

  • Lorenz M, Ovchinnikova OS, Kertesz V et al (2013) Laser microdissection and atmospheric pressure chemical ionisation mass spectrometry coupled for multimodal imaging. Rapid Commun Mass Spectrom 27:1429–1436

    Article  CAS  PubMed  Google Scholar 

  • Mackman N (2009) The many faces of tissue factor. J Thromb Haemost 7:136–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maeda H, Wu J, Sawa T et al (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65:271–284

    Article  CAS  PubMed  Google Scholar 

  • Matsumura Y (2012) Cancer stromal targeting (CAST) therapy. Adv Drug Deliv Rev 64:710–719

    Article  CAS  PubMed  Google Scholar 

  • Matsumura Y (2014) The drug discovery by NanoMedicine and its clinical experience. Jpn J Clin Oncol 44:515–525

    Article  PubMed  Google Scholar 

  • Matsumura Y, Kataoka K (2009) Preclinical and clinical studies of anticancer agent-incorporating polymer micelles. Cancer Sci 100:572–579

    Article  CAS  PubMed  Google Scholar 

  • Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–6392

    CAS  PubMed  Google Scholar 

  • Minchinton AI, Tannock IF (2006) Drug penetration in solid tumours. Nat Rev Cancer 6:583–592

    Article  CAS  PubMed  Google Scholar 

  • Nitori N, Ino Y, Nakanishi Y et al (2005) Prognostic significance of tissue factor in pancreatic ductal adenocarcinoma. Clin Cancer Res 11:2531–2539

    Article  CAS  PubMed  Google Scholar 

  • Römpp A, Spengler B (2013) Mass spectrometry imaging with high resolution in mass and space. Histochem Cell Biol 139:759–783

    Article  PubMed  PubMed Central  Google Scholar 

  • Rowinsky EK, Chaudhry V, Forastiere AA et al (1993) Phase I and pharmacologic study of paclitaxel and cisplatin with granulocyte colony-stimulating factor: neuromuscular toxicity is dose-limiting. J Clin Oncol 11:2010–2020

    CAS  PubMed  Google Scholar 

  • Saito Y, Waki M, Hameed S et al (2011) Development of imaging mass spectrometry. Biol Pharm Bull 35:1417–1424

    Article  Google Scholar 

  • Sanderson RJ, Hering MA, James SF et al (2005) In vivo drug-linker stability of an anti-CD30 dipeptide-linked auristatin immunoconjugate. Clin Cancer Res 11:843–852

    CAS  PubMed  Google Scholar 

  • Schwamborn K, Caprioli RM (2010) Molecular imaging by mass spectrometry – looking beyond classical histology. Nat Rev Cancer 10:639–646

    Article  CAS  PubMed  Google Scholar 

  • Sievers EL, Senter PD (2013) Antibody-drug conjugates in cancer therapy. Annu Rev Med 64:15–29

    Article  CAS  PubMed  Google Scholar 

  • Solon EG (2012) Use of radioactive compounds and autoradiography to determine drug tissue distribution. Chem Res Toxicol 25:543–555

    Article  CAS  PubMed  Google Scholar 

  • van den Berg YW, Osanto S, Reitsma PH et al (2012) The relationship between tissue factor and cancer progression: insights from bench and bedside. Blood 119:924–932

    Article  PubMed  Google Scholar 

  • Xie H, Audette C, Hoffee M et al (2004) Pharmacokinetics and biodistribution of the antitumor immunoconjugate, cantuzumab mertansine (huC242-DM1), and its two components in mice. J Pharmacol Exp Ther 308:1073–1082

    Article  CAS  PubMed  Google Scholar 

  • Yasunaga M, Furuta M, Ogata K et al (2013) The significance of microscopic mass spectrometry with high resolution in the visualisation of drug distribution. Sci Rep 3:3050

    Article  PubMed  Google Scholar 

  • Yokoyama M, Miyauchi M, Yamada N et al (1990) Polymer micelles as novel drug carrier: adriamycin-conjugted poly(ethylene glycol)-poly(aspartic acid) block copolymer. J Control Release 11:269–278

    Article  CAS  Google Scholar 

  • Yokoyama M, Okano T, Sakurai Y et al (1991) Toxicity and antitumor activity against solid tumors of micelle-forming polymeric anticancer drug and its extremely long circulation in blood. Cancer Res 51:3229–3236

    CAS  PubMed  Google Scholar 

  • Zolot RS, Basu S, Million RP (2013) Antibody-drug conjugates. Nat Rev Drug Discov 12:259–260

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Matsumura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Matsumura, Y., Yasunaga, M. (2016). Microscopic Mass Spectrometry for the Precise Design of Drug Delivery Systems. In: Prokop, A., Weissig, V. (eds) Intracellular Delivery III. Fundamental Biomedical Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-43525-1_13

Download citation

Publish with us

Policies and ethics