Skip to main content

Nano-emulsions for Drug Delivery and Biomedical Imaging

  • Chapter
  • First Online:
Intracellular Delivery III

Part of the book series: Fundamental Biomedical Technologies ((FBMT))

Abstract

Over the last decade, nano-emulsion has gained a considerable interest in biomedical applications. The reason is simple, and lies in the combination of several advantages of this nano-carrier. Nano-emulsion consists of a dispersion of oil nano-droplets in a water phase, sizing from 20 to 200 nm. First advantage of nano-emulsions is their huge stability; Second is their very simple formulation; Third is their non-toxicity; And fourth is their very important loading capability of lipophilic or oil-soluble molecules in the oily core of the nano-droplets. On the other hand, if the formulation is easy, tailoring the nano-emulsions for a given application, optimizing the processes, functionalizing the droplets surface, and targeting organs or cancerous tumors remains a challenge. This chapter aims to draw an overview of the different aspects of nano-emulsions formulations and applications. A first part regards the different fabrication processes, followed by biomedical applications of nano-emulsions, in vivo fate, biodistribution, pharmacokinetics, targeting, applications as nanomedicines and drug delivery systems. Clinical applications of nano-emulsions are also discussed, as well as their applications as contrast agent for the main different imaging modalities, X-ray imaging, fluorescence imaging and magnetic resonance imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALA:

Aminolaevulinic acid

AK:

Actinic keratosis

BF200 ALA:

BF200 aminolaevulinic acid

CMC:

Critical micelle concentration

CT:

Computed tomography

DLS:

Dynamic light scattering

DTPA- PE:

Diethylenetriaminepentaacetic acid phosphoethanolamine

DTX:

Docetaxel

EPR:

Enhanced permeation and retention

HLB:

Hydrophilic-lipophilic balance

IONPs:

Iron oxide nanoparticles

LNP:

Lipid nanoparticle

MAL:

5-aminolaevulinic acid

MRI:

Magnetic resonance imaging

NIR:

Near infrared

NIRF:

Near infrared fluorescence

NMR:

Nuclear magnetic resonance

NPs:

Nanoparticle

PAV:

Prednisolone acetate valerate

PBS:

Phosphate buffer saline

PET:

Positron emission tomography

PDI:

Polydispersity index

PEG:

Polyethylene glycol

PFCs:

Perfluorocarbons

PFPE:

Perfluoropolyether

QDs:

Quantum-dots

RES:

Rethiculoendothelial system

SPECT:

Single photon emission computed tomography

SPIO:

Superparamagnetic iron oxide

TEM:

Transmission electron microscopy

TXT:

Taxotere®

References

  • Ahrens ET, Flores R, Xu H, Morel PA (2005) In vivo imaging platform for tracking immunotherapeutic cells. Nat Biotechnol 23(8):983–987

    Article  CAS  PubMed  Google Scholar 

  • Almajdub M, Nejjari M, Poncet G, Magnier L, Chereul E, Roche C, Manier M (2007) In vivo high-resolution X-ray microtomographyfor liver and spleen tumor assessment in mice. Contrast Media Mol Imaging 2:88–93

    Article  CAS  PubMed  Google Scholar 

  • Anayama T, Nakajima T, Dunne M, Zheng J, Allen C, Driscoll B, Vines D, Keshavjee S, Jaffray D, Yasufuku K (2013) A novel minimally invasive technique to create a rabbit VX2 lung tumor model for nano-sized image contrast and interventional studies. PLoS One 8, e67355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ANSM. Résumé des caractéristiques du produit – MEDIALIPIDE 20 POUR CENT, émulsion pour perfusion - Base de données publique des médicaments.

    Google Scholar 

  • ANSM. Résumé des caractéristiques du produit – NEORAL 100 mg/ml, solution buvable - Base de données publique des médicaments.

    Google Scholar 

  • ANSM. Résumé des caractéristiques du produit – PROPOFOL LIPURO 1 % (10 mg/ml), émulsion injectable ou pour perfusion – Base de données publique des médicaments.

    Google Scholar 

  • Anton N, Vandamme TF (2009) The universality of low-energy nano-emulsification. Int J Pharm 377:142–147

    Article  CAS  PubMed  Google Scholar 

  • Aprahamian M, Bour G, Akladios CY, Fylaktakidou K, Greferath R, Soler L, Marescaux J, Egly JM, Lehn JM, Nicolau C (2011) Myo-InositolTrisPyroPhosphate treatment leads to HIF-1α suppression and eradication of early hepatoma tumors in rats. ChemBioChem 12(5):777–783

    Article  CAS  PubMed  Google Scholar 

  • Attia M, Anton N, Chiper MC, Akasov R, Anton H, Messaddeq N, Fournel S, Klymchenko A, Mély Y, Vandamme TF (2014) Biodistribution of X-ray iodinated contrast agent in nano-emulsions is controlled by the chemical nature of the oily core. ACS Nano 8(10):10537–10550

    Article  CAS  PubMed  Google Scholar 

  • Attia MF, Anton N, Akasov R, Chiper M, Markvicheva E, Vandamme TF (2015) Biodistribution and toxicity of X-ray iodinated contrast agent in nano-emulsions in function of their size. Pharm Res 33(3):603–614

    Article  PubMed  Google Scholar 

  • Béduneau A, Hindré F, Clavreul A, Leroux JC, Saulnier P, Benoit JP (2008) Brain targeting using novel lipid nanovectors. J Control Release 126(1):44–49

    Article  PubMed  Google Scholar 

  • Boll H, Nittka S, Doyon F, Neumaier M, Marx A, Kramer M, Groden C, Brockmann MA (2011) Micro-CT based experimental liver imaging using a nanoparticulate contrast agent: a longitudinal study in mice. PLoS One 6:e25692–e25697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Ipe BI, Bawendi MG, Frangioni JV (2007) Renal clearance of nanoparticles. Nat Biotechnol 25:1165–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delmas T, Piraux H, Couffin AC, Texier I, Vinet F, Poulin P, Cates ME, Bibette J (2011) How to prepare and stabilize very small nanoemulsions. Langmuir 27:1683–1692

    Article  CAS  PubMed  Google Scholar 

  • Ding J, Wang Y, Ma M, Zhang Y, Lu S, Jiang Y, Qi C, Luo S, Dong G, Wen S, An Y, Gu N (2013) CT/fluorescence dual-modal nanoemulsion platform for investigating atherosclerotic plaques. Biomaterials 34:209–216

    Article  CAS  PubMed  Google Scholar 

  • Dirschka T, Radny P, Dominicus R, Mensing H, Brüning H, Jenne L, Karl L, Sebastian M, Oster-Schmidt C, Klövekorn W, Reinhold U, Tanner M, Gröne D, Deichmann M, Simon M, Hübinger F, Hofbauer G, Krähn-Senftleben G, Borrosch F, Reich K, Berking C, Wolf P, Lehmann P, Moers-Carpi M, Hönigsmann H, Wernicke-Panten K, Helwig C, Foguet M, Schmitz B, Lübbert H, Szeimies R-M, Group A-CS (2012) Photodynamic therapy with BF-200 ALA for the treatment of actinic keratosis: results of a multicentre, randomized, observer-blind phase III study in comparison with a registered methyl-5-aminolaevulinate cream and placebo. Br J Dermatol 166:137–146

    Article  CAS  PubMed  Google Scholar 

  • Dirschka T, Radny P, Dominicus R, Mensing H, Brüning H, Jenne L, Karl L, Sebastian M, Oster-Schmidt C, Klövekorn W, Reinhold U, Tanner M, Gröne D, Deichmann M, Simon M, Hübinger F, Hofbauer G, Krähn-Senftleben G, Borrosch F, Reich K, Berking C, Wolf P, Lehmann P, Moers-Carpi M, Hönigsmann H, Wernicke-Panten K, Hahn S, Pabst G, Voss D, Foguet M, Schmitz B, Lübbert H, Szeimies R-M, Group A-CS, Group A-CS (2013) Long-term (6 and 12 months) follow-up of two prospective, randomized, controlled phase III trials of photodynamic therapy with BF-200 ALA and methyl aminolaevulinate for the treatment of actinic keratosis. Br J Dermatol 168:825–836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubey PK, Kumar A (2005) Pain on injection of lipid-free propofol and propofol emulsion containing medium-chain triglyceride: a comparative study. Anesth Analg 101(4):1060–1062

    Article  CAS  PubMed  Google Scholar 

  • Fang J, Nakamura H, Maeda H (2001) The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 63:136–151

    Article  Google Scholar 

  • Flögel U, Ding Z, Hardung H, Jander S, Reichmann G, Jacoby C, Schubert R, Schrader J (2008) In vivo monitoring of inflammation after cardiac and cerebral ischemia by fluorine magnetic resonance imaging. Circulation 118(2):140–148

    Article  PubMed  PubMed Central  Google Scholar 

  • Gianella A, Jarzyna PA, Mani V, Ramachandran S, Calcagno C, Tang J, Kann B, Dijk WJR, Thijssen VL, Griffioen AW, Storm G, Fayad ZA, Mulder WJM (2011) Multifunctional nanoemulsion platform for imaging guided therapy evaluated in experimental cancer. ACS Nano 5(6):4422–4433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goutayer M, Dufort S, Josserand V, Royère A, Heinrich E, Vinet F, Bibette J, Coll JL, Texier I (2010) Tumor targeting of functionalized lipid nanoparticles: assessment by in vivo fluorescence imaging. Eur J Pharm Biopharm 75:137–147

    Article  CAS  PubMed  Google Scholar 

  • Hallouard F, Briançon S, Anton N, Li X, Vandamme TF, Fessi H (2013) Poly(ethylene glycol)-poly(ε-caprolactone) iodinated nanocapsules as contrast agents for X-ray imaging. Pharm Res 30:2023–2035

    Article  CAS  PubMed  Google Scholar 

  • Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, Jain RK (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci U S A 95:4607–4612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ijzerman M, Backer J, Flack M, Robinson P (2010a) Efficacy of topical nanoemulsion (NB-002) for the treatment of distal subungual onychomycosis: a randomized, double-blind, vehicle-controlled trial. J Am Acad Dermatol 62:AB76

    Article  Google Scholar 

  • Ijzerman M, Backer J, Flack M, Robinson P (2010b) Forty-two–week safety study of topical nanoemulsion (NB-002) for the treatment of mild to moderate distal subungual onychomycosis: a randomized, double-blind, vehicle-controlled trial. J Am Acad Dermatol 62:AB77

    Google Scholar 

  • Jain RK (1999) Transport of molecules, particles, and cells in solid tumors. Annu Rev Biomed Eng 1:241–263

    Article  CAS  PubMed  Google Scholar 

  • Jakhmola A, Anton N, Anton H, Messaddeq N, Hallouard F, Klymchenko A, Mely Y, Vandamme TF (2014) Poly-ε-caprolactone tungsten oxide nanoparticles as a contrast agent for X-ray computed tomography. Biomaterials 35(9):2981–2986

    Article  CAS  PubMed  Google Scholar 

  • Jarzyna PA, Skajaa T, Gianella A, Cormode DP, Samber DD, Dickson SD, Chen W, Griffioen AW, Fayad ZA, Mulder WJM (2009) Iron oxide core oil-in-water emulsions as a multifunctional nanoparticle platform for tumor targeting and imaging. Biomaterials 30:6947–6954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karathanasis E, Suryanarayanan S, Balusu SR, McNeeley K, Sechopoulos I, Karellas A, Annapragada AV, Bellamkonda RV (2009) Imaging nanoprobe for prediction of outcome of nanoparticle chemotherapy by using mammography. Radiology 250(2009):398–406

    Article  PubMed  Google Scholar 

  • Khalid MN, Simard P, Hoarau D, Dragomir A, Leroux JC (2006) Long circulating poly(ethylene glycol)-decorated lipid nanocapsules deliver docetaxel to solid tumors. Pharm Res 23(4):752–758

    Article  CAS  PubMed  Google Scholar 

  • Kircik L, Jones TM, Jarratt M, Flack MR, Ijzerman M, Ciotti S, Sutcliffe J, Boivin G, Stanberry LR, Baker JR, N.-S. Group (2012) Treatment with a novel topical nanoemulsion (NB-001) speeds time to healing of recurrent cold sores. J Drugs Dermatol 11:970–977

    CAS  PubMed  Google Scholar 

  • Klibanov AL, Maruyama K, Torchilin VP, Huang L (1990) Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett 268(1):235–237

    Article  CAS  PubMed  Google Scholar 

  • Klymchenko AS, Roger E, Anton N, Anton H, Shulov I, Vermot J, Mély Y, Vandamme TF (2012) Highly lipophilic fluorescent dyes in nano-emulsions: towards bright non-leaking nano-droplets. RSC Adv 2:11876–11886

    Article  CAS  Google Scholar 

  • Kulkarni SA, Feng SS (2013) Effects of particle size and surface modification on cellular uptake and biodistribution of polymeric nanoparticles for drug delivery. Pharm Res 30:2512–2522

    Article  CAS  PubMed  Google Scholar 

  • Lanza GM, Winter PM, Neubauer AM, Caruthers SD, Hockett FD, Wickline SA (2005) 1H/19 F magnetic resonance molecular imaging with perfluorocarbon nanoparticles. Curr Top Dev Biol 70:57–76

    Article  CAS  PubMed  Google Scholar 

  • Li X, Anton N, Zubera G, Zhao M, Messaddeq N, Hallouard F, Fessie H, Vandamme TF (2013) Iodinated α-tocopherol nano-emulsions as non-toxic contrast agents for preclinical X-ray imaging. Biomaterials 34:481–491

    Article  PubMed  Google Scholar 

  • Li X, Anton N, Zuber G, Vandamme TF (2014) Contrast agents for preclinical targeted X-ray imaging. Adv Drug Deliv Rev 76:116–133

    Article  CAS  PubMed  Google Scholar 

  • Martiniova L, Schimel D, Lai EW, Limpuanfthip A, Kvetnansky R, Pacak K (2010) In vivo micro CT imaging for liver lesions in small animal models. Methods 50:20–25

    Article  CAS  PubMed  Google Scholar 

  • Neittaanmäki-Perttu N, Karppinen T t, Grönroos M, Tani T t, Snellman E (2014) Daylight photodynamic therapy for actinic keratoses: a randomized double-blinded nonsponsored prospective study comparing 5-aminolaevulinic acid nanoemulsion (BF-200) with methyl-5-aminolaevulinate. Br J Dermatol 171:1172–1180

    Article  PubMed  Google Scholar 

  • Nöth U, Morrissey SP, Deichmann R, Jung S, Adolf H, Haase A, Lutz J (1997) Perfluoro-15-crown-5-ether labelled macrophages in adoptive transfer experimental allergic encephalomyelitis. Artif Cells Blood Substit Immobil Biotechnol 25(3):243–254

    Article  PubMed  Google Scholar 

  • O’Hanlon CE, Amede KG, O’Hear MR, Janjic JM (2012) NIR-labeled perfluoropolyether nanoemulsions for drug delivery and imaging. J Fluor Chem 137:27–33

    Article  PubMed  PubMed Central  Google Scholar 

  • Owens DE, Peppas NA (2006) Opsonization, biodistribution and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307:93–102

    Article  CAS  PubMed  Google Scholar 

  • Partlow KC, Chen J, Brant JA, Neubauer AM, Meyerrose TE, Creer MH, Nolta JA, Caruthers SD, Lanza GM, Wickline SA (2007) 19F magnetic resonance imaging for stem/progenitor cell tracking with multiple unique perfluorocarbon nanobeacons. FASEB J 21(8):1647–1654

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues TA, Alexandrino RA, Kanczuk ME, Gozzani JL, Mathias LA, Da ST (2012) A comparative study of non-lipid nanoemulsion of propofol with solutol and propofol emulsion with lecithin. Rev Bras Anestesiol 62(3):325–334

    Article  CAS  PubMed  Google Scholar 

  • Stanberry LR, Simon JK, Johnson C, Robinson PL, Morry J, Flack MR, Gracon S, Myc A, Hamouda T, Baker JR Jr (2012) Safety and immunogenicity of a novel nanoemulsion mucosal adjuvant W805EC combined with approved seasonal influenza antigens. Vaccine 30:307–316

    Article  CAS  PubMed  Google Scholar 

  • Szeimies R-M, Radny P, Sebastian M, Borrosch F, Dirschka T, Krähn-Senftleben G, Reich K, Pabst G, Voss D, Foguet M, Gahlmann R, Lübbert H, Reinhold U (2010) Photodynamic therapy with BF-200 ALA for the treatment of actinic keratosis: results of a prospective, randomized, double-blind, placebo-controlled phase III study. Br J Dermatol 163:386–394

    Article  PubMed  Google Scholar 

  • Taisne L, walstra B, Cabane B (1996) Transfer of oil between emulsion droplets. J Colloid Interface Sci 184:378–390

    Article  CAS  PubMed  Google Scholar 

  • Tiwari S, Tan YM, Amiji M (2006) Preparation and in vitro characterization of multifunctional nanoemulsions for simultaneous MR imaging and targeted drug delivery. J Biomed Nanotechnol 2:1–8

    Article  Google Scholar 

  • Torchilin V-P, Trubetskoy V-S (1995) Wich polymers can make nanoparticulates drug carriers long circulating? Adv Drug Deliv Rev 16(2–3):141–155

    Article  CAS  Google Scholar 

  • Treanor JJ, Essink B, Hull S, Reed S, Izikson R, Patriarca P, Goldenthal KL, Kohberger R, Dunkle LM (2013) Evaluation of safety and immunogenicity of recombinant influenza hemagglutinin (H5/Indonesia/05/2005) formulated with and without a stable oil-in-water emulsion containing glucopyranosyl-lipid A (SE + GLA) adjuvant. Vaccine 31:5760–5765

    Article  CAS  PubMed  Google Scholar 

  • Zheng J, Jaffray D, Allen C (2009) Quantitative CT imaging of the spatial and temporal distribution of liposomes in a rabbit tumor model. Mol Pharm 6(2):571–580

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Anton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Anton, N., Hallouard, F., Attia, M.F., Vandamme, T.F. (2016). Nano-emulsions for Drug Delivery and Biomedical Imaging. In: Prokop, A., Weissig, V. (eds) Intracellular Delivery III. Fundamental Biomedical Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-43525-1_11

Download citation

Publish with us

Policies and ethics