Skip to main content

Systems Biology: Salivary Gland Development, Disease, and Regenerative Medicine

  • Chapter
  • First Online:
  • 944 Accesses

Abstract

There are multiple challenges currently facing clinical salivary gland research, encompassing a wide range of topics from understanding development to understanding disease etiology and from diagnosing disease to designing more effective, personalized therapies. Systems analysis complements traditional reductionist approaches, and the integration of these two approaches is starting to provide a more comprehensive understanding of the causal relationships leading to normal and abnormal biology. Understanding normal developmental processes is critical for understanding development of disease. Morphogenesis and differentiation are complex developmental processes involving orchestrated interactions between heterotypic cell types that have proven difficult to understand through reductionist approaches alone. It has become clear that it is not possible to understand the complex molecular, cellular, and physical process integration that is required for any developmental or disease process without the use of systems biology approaches. In this chapter, we demonstrate examples in the use of systems approaches to better characterize the difference between embryonic submandibular salivary glands grown in vivo and ex vivo as 3D organ explants and to identify potential signaling networks in heterotypic subpopulations of cells that lead to the prediction of a function for endothelial cells in salivary gland development. We conclude with examples of how systems biology-based approaches using both tissue samples and saliva from patients are currently being used in many laboratories to make progress in salivary gland disease diagnosis, understanding disease etiology, and informing therapeutic development for cancer and regenerative medicine strategies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://sgmap.nidcr.nih.gov/sgmap/sgexp.html

References

  1. Ambatipudi KS, Swatkoski S, Moresco JJ, Tu PG, Coca A, Anolik JH, Gucek M, Sanz I, Yates 3rd JR, Melvin JE. Quantitative proteomics of parotid saliva in primary Sjogren’s syndrome. Proteomics. 2012;12(19–20):3113–20. doi:10.1002/pmic.201200208.

    Article  PubMed  Google Scholar 

  2. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G. Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet. 2000;25(1):25–9. doi:10.1038/75556.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Aure MH, Konieczny SF, Ovitt CE. Salivary gland homeostasis is maintained through acinar cell self-duplication. Dev Cell. 2015;33(2):231–7. doi:10.1016/j.devcel.2015.02.013.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bilgin CC, Ray S, Baydil B, Daley WP, Larsen M, Yener B. Multiscale feature analysis of salivary gland branching morphogenesis. PLoS One. 2012;7(3):e32906. doi:10.1371/journal.pone.0032906.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Borghese E. The development in vitro of the submandibular and sublingual glands of Mus musculus. J Anat. 1950a;84(3):287–302.

    PubMed  PubMed Central  Google Scholar 

  6. Borghese E. Explanation experiments on the influence of the connective tissue capsule on the development of the epithelial part of the submandibular gland of Mus musculus. J Anat. 1950b;84(3):303–18.

    PubMed  PubMed Central  Google Scholar 

  7. Boukheris H, Curtis RE, Land CE, Dores GM. Incidence of carcinoma of the major salivary glands according to the WHO classification, 1992 to 2006: a population-based study in the United States. Cancer Epidemiol Biomarkers Prev Publ Am Assoc Cancer Res cosponsored Am Soc Prev Oncol. 2009;18(11):2899–2906.

    Google Scholar 

  8. Castagnola M, Cabras T, Iavarone F, Fanali C, Nemolato S, Peluso G, Bosello SL, Faa G, Ferraccioli G, Messana I. The human salivary proteome: a critical overview of the results obtained by different proteomic platforms. Expert Rev Proteomics. 2012;9(1):33–46. doi:10.1586/epr.11.77.

    Article  PubMed  Google Scholar 

  9. Cutler LS. The dependent and independent relationships between cytodifferentiation and morphogenesis in developing salivary gland secretory cells. Anat Rec. 1980;196(3):341–7.

    Article  PubMed  Google Scholar 

  10. Daley WP, Gulfo KM, Sequeira SJ, Larsen M. Identification of a mechanochemical checkpoint and negative feedback loop regulating branching morphogenesis. Dev Biol. 2009;336(2):169–82. doi:10.1016/j.ydbio.2009.09.037.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Davies J. Branching morphogenesis. Molecular biology intelligence unit, 1st ed. Boston: Springer; 2005.

    Google Scholar 

  12. Delaleu N, Immervoll H, Cornelius J, Jonsson R. Biomarker profiles in serum and saliva of experimental Sjogren’s syndrome: associations with specific autoimmune manifestations. Arthritis Res Ther. 2008;10(1):R22. doi:10.1186/ar2375.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Delaleu N, Jonsson R, Koller MM. Sjogren’s syndrome. Eur J Oral Sci. 2005;113(2):101–113.

    Google Scholar 

  14. Denny P, Hagen FK, Hardt M, Liao L, Yan W, Arellanno M, Bassilian S, Bedi GS, Boontheung P, Cociorva D, Delahunty CM, Denny T, Dunsmore J, Faull KF, Gilligan J, Gonzalez-Begne M, Halgand F, Hall SC, Han X, Henson B, Hewel J, S H, Jeffrey S, Jiang J, Loo JA, Ogorzalek Loo RR, Malamud D, Melvin JE, Miroshnychenko O, Navazesh M, Niles R, Park SK, Prakobphol A, Ramachandran P, Richert M, Robinson S, Sondej M, Souda P, Sullivan MA, Takashima J, Than S, Wang J, Whitelegge JP, Witkowska HE, Wolinsky L, Xie Y, Xu T, Yu W, Ytterberg J, Wong DT, Yates 3rd JR, Fisher SJ. The proteomes of human parotid and submandibular/sublingual gland salivas collected as the ductal secretions. J Proteome Res. 2008;7(5):1994–2006.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Deutsch O, Krief G, Konttinen YT, Zaks B, Wong DT, Aframian DJ, Palmon A. Identification of Sjogren’s syndrome oral fluid biomarker candidates following high-abundance protein depletion. Rheumatology (Oxford). 2015;54(5):884–90. doi:10.1093/rheumatology/keu405.

    Article  Google Scholar 

  16. Discher D, Dong C, Fredberg JJ, Guilak F, Ingber D, Janmey P, Kamm RD, Schmid-Schonbein GW, Weinbaum S. Biomechanics: cell research and applications for the next decade. Ann Biomed Eng. 2009;37(5):847–59. doi:10.1007/s10439-009-9661-x.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Donadio E, Giusti L, Seccia V, Ciregia F, da Valle Y, Dallan I, Ventroni T, Giannaccini G, Sellari-Franceschini S, Lucacchini A. New insight into benign tumours of major salivary glands by proteomic approach. PLoS One. 2013;8(8):e71874. doi:10.1371/journal.pone.0071874.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dumache R, Rogobete AF, Andreescu N, Puiu M. Genetic and epigenetic biomarkers of molecular alterations in oral carcinogenesis. Clin Lab. 2015;61(10):1373–81.

    PubMed  Google Scholar 

  19. Grobstein C. Inductive epitheliomesenchymal interaction in cultured organ rudiments of the mouse. Science. 1953a;118(3054):52–5.

    Article  PubMed  Google Scholar 

  20. Grobstein C. Morphogenetic interaction between embryonic mouse tissues separated by a membrane filter. Nature. 1953b;172(4384):869–70.

    Article  PubMed  Google Scholar 

  21. Harunaga J, Hsu JC, Yamada KM. Dynamics of salivary gland morphogenesis. J Dent Res. 2011;90(9):1070–7. doi:10.1177/0022034511405330.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hoffman MP, Kidder BL, Steinberg ZL, Lakhani S, Ho S, Kleinman HK, Larsen M. Gene expression profiles of mouse submandibular gland development: FGFR1 regulates branching morphogenesis in vitro through BMP- and FGF-dependent mechanisms. Development. 2002;129(24):5767–78.

    Article  PubMed  Google Scholar 

  23. Hsu JC, Di Pasquale G, Harunaga JS, Onodera T, Hoffman MP, Chiorini JA, Yamada KM. Viral gene transfer to developing mouse salivary glands. J Dent Res. 2012;91(2):197–202. doi:10.1177/0022034511429346.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hu S, Wang J, Meijer J, Ieong S, Xie Y, Yu T, Zhou H, Henry S, Vissink A, Pijpe J, Kallenberg C, Elashoff D, Loo JA, Wong DT. Salivary proteomic and genomic biomarkers for primary Sjogren’s syndrome. Arthritis Rheum. 2007;56(11):3588–600. doi:10.1002/art.22954.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hu S, Zhou M, Jiang J, Wang J, Elashoff D, Gorr S, Michie SA, Spijkervet FK, Bootsma H, Kallenberg CG, Vissink A, Horvath S, Wong DT. Systems biology analysis of Sjogren’s syndrome and mucosa-associated lymphoid tissue lymphoma in parotid glands. Arthritis Rheum. 2009;60(1):81–92.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, Guo Y, Stephens R, Baseler MW, Lane HC, Lempicki RA. DAVID bioinformatics resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 2007;35(Web Server issue):W169–75. doi:10.1093/nar/gkm415.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Jaskoll T, Melnick M. Embryonic salivary gland branching morphogenesis. In: Davies JA, editor. Branching morphogenesis. New York: Landes Bioscience/Springer; 2005. p. 160–75.

    Chapter  Google Scholar 

  28. Joo EE, Yamada KM. MYPT1 regulates contractility and microtubule acetylation to modulate integrin adhesions and matrix assembly. Nat Commun. 2014;5:3510. doi:10.1038/ncomms4510.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kageyama G, Saegusa J, Irino Y, Tanaka S, Tsuda K, Takahashi S, Sendo S, Morinobu A. Metabolomics analysis of saliva from patients with primary Sjogren’s syndrome. Clin Exp Immunol. 2015;182(2):149–53. doi:10.1111/cei.12683.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Knosp WM, Knox SM, Hoffman MP. Salivary gland organogenesis. Wiley Interdiscip Rev Dev Biol. 2012;1(1):69–82. doi:10.1002/wdev.4.

    Article  PubMed  Google Scholar 

  31. Knosp WM, Knox SM, Lombaert IM, Haddox CL, Patel VN, Hoffman MP. Submandibular parasympathetic gangliogenesis requires sprouty-dependent Wnt signals from epithelial progenitors. Dev Cell. 2015;32(6):667–77. doi:10.1016/j.devcel.2015.01.023.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Knox SM, Lombaert IM, Reed X, Vitale-Cross L, Gutkind JS, Hoffman MP. Parasympathetic innervation maintains epithelial progenitor cells during salivary organogenesis. Science. 2010;329(5999):1645–7. doi:10.1126/science.1192046.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kovacs L, Szodoray P, Kiss E. Secondary tumours in Sjogren’s syndrome. Autoimmunity reviews; 2009.

    Google Scholar 

  34. Kwon HR, Larsen M. The contribution of specific cell subpopulations to submandibular salivary gland branching morphogenesis. Curr Opin Gen Dev (in press). 2015. doi:10.1016/j.gde.2015.01.007.

  35. Lammert E, Cleaver O, Melton D. Role of endothelial cells in early pancreas and liver development. Mech Dev. 2003;120(1):59–64.

    Article  PubMed  Google Scholar 

  36. Larsen M, Hoffman MP, Sakai T, Neibaur JC, Mitchell JM, Yamada KM. Role of PI 3-kinase and PIP3 in submandibular gland branching morphogenesis. Dev Biol. 2003;255(1):178–91.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Larsen M, Wei C, Yamada KM. Cell and fibronectin dynamics during branching morphogenesis. J Cell Sci. 2006;119(Pt 16):3376–84.

    Article  PubMed  Google Scholar 

  38. Larsen M, Yamada KM, Musselmann K. Systems analysis of salivary gland development and disease. Wiley Interdiscip Rev Syst Biol Med. 2010;2(6):670–82. doi:10.1002/wsbm.94.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lazarus A, Del-Moral PM, Ilovich O, Mishani E, Warburton D, Keshet E. A perfusion-independent role of blood vessels in determining branching stereotypy of lung airways. Development. 2011;138(11):2359–68. doi:10.1242/dev.060723.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lee BH, Tudares MA, Nguyen CQ. Sjogren’s syndrome: an old tale with a new twist. Arch Immunol Ther Exp. 2009;57(1):57–66. doi:10.1007/s00005-009-0002-4.

    Article  Google Scholar 

  41. Liu XY, Liu ZJ, He H, Zhang C, Wang YL. MicroRNA-101-3p suppresses cell proliferation, invasion and enhances chemotherapeutic sensitivity in salivary gland adenoid cystic carcinoma by targeting Pim-1. Am J Cancer Res. 2015;5(10):3015–29.

    PubMed  PubMed Central  Google Scholar 

  42. Lombaert IM, Brunsting JF, Wierenga PK, Faber H, Stokman MA, Kok T, Visser WH, Kampinga HH, de Haan G, Coppes RP. Rescue of salivary gland function after stem cell transplantation in irradiated glands. PLoS One. 2008;3(4):e2063. doi:10.1371/journal.pone.0002063.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lubkin SR, Li Z. Force and deformation on branching rudiments: cleaving between hypotheses. Biomech Model Mechanobiol. 2002;1(1):5–16.

    Article  PubMed  Google Scholar 

  44. Lubkin SR, Murray JD. A mechanism for early branching in lung morphogenesis. J Math Biol. 1995;34(1):77–94.

    Article  PubMed  Google Scholar 

  45. Magenheim J, Ilovich O, Lazarus A, Klochendler A, Ziv O, Werman R, Hija A, Cleaver O, Mishani E, Keshet E, Dor Y. Blood vessels restrain pancreas branching, differentiation and growth. Development. 2011;138(21):4743–52. doi:10.1242/dev.066548.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Maimets M, Rocchi C, Bron R, Pringle S, Kuipers J, Giepmans BN, Vries RG, Clevers H, de Haan G, van Os R, Coppes RP. Long-term in vitro expansion of salivary gland stem cells driven by Wnt signals. Stem Cell Rep. 2016;6(1):150–62. doi:10.1016/j.stemcr.2015.11.009.

    Article  Google Scholar 

  47. Makino S, Kunimoto K, Muraoka Y, Mizushima Y, Katagiri K, Tochino Y. Breeding of a non-obese, diabetic strain of mice. Jikken Dobutsu. 1980;29(1):1–13.

    PubMed  Google Scholar 

  48. Mammoto T, Mammoto A, Jiang A, Jiang E, Hashmi B, Ingber DE. Mesenchymal condensation-dependent accumulation of collagen VI stabilizes organ-specific cell fates during embryonic tooth formation. Dev Dyn Off Publ Am Assoc Anatomists. 2015;244(6):713–23. doi:10.1002/dvdy.24264.

    Google Scholar 

  49. Mammoto T, Mammoto A, Torisawa YS, Tat T, Gibbs A, Derda R, Mannix R, de Bruijn M, Yung CW, Huh D, Ingber DE. Mechanochemical control of mesenchymal condensation and embryonic tooth organ formation. Dev Cell. 2011;21(4):758–69. doi:10.1016/j.devcel.2011.07.006.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Maron JL. The neonatal salivary transcriptome. Cold Spring Harb Perspect Med. 2015;6(3):a026369. doi:10.1101/cshperspect.a026369.

    Article  PubMed  Google Scholar 

  51. Maruyama EO, Aure MH, Xie X, Myal Y, Gan L, Ovitt CE. Cell-specific cre strains for genetic manipulation in salivary glands. PLoS One. 2016;11(1):e0146711. doi:10.1371/journal.pone.0146711.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Mathews SA, Kurien BT, Scofield RH. Oral manifestations of Sjogren’s syndrome. J Dent Res. 2008;87(4):308–18. doi:87/4/308 [pii].

    Google Scholar 

  53. Matsumoto K, Yoshitomi H, Rossant J, Zaret KS. Liver organogenesis promoted by endothelial cells prior to vascular function. Science. 2001;294(5542):559–63. doi:10.1126/science.1063889.

    Article  PubMed  Google Scholar 

  54. Mauri P, Scarpa A, Nascimbeni AC, Benazzi L, Parmagnani E, Mafficini A, Della Peruta M, Bassi C, Miyazaki K, Sorio C. Identification of proteins released by pancreatic cancer cells by multidimensional protein identification technology: a strategy for identification of novel cancer markers. FASEB J. 2005;19(9):1125–7.

    PubMed  Google Scholar 

  55. Melnick M, Jaskoll T. Mouse submandibular gland morphogenesis: a paradigm for embryonic signal processing. Crit Rev Oral Biol Med Off Publ Am Assoc Oral Biologists. 2000;11(2):199–215.

    Article  Google Scholar 

  56. Metzler MA, Venkatesh SG, Lakshmanan J, Carenbauer AL, Perez SM, Andres SA, Appana S, Brock GN, Wittliff JL, Darling DS. A systems biology approach identifies a regulatory network in parotid acinar cell terminal differentiation. PLoS One. 2015;10(4):e0125153. doi:10.1371/journal.pone.0125153.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Michael A, Bajracharya SD, Yuen PS, Zhou H, Star RA, Illei GG, Alevizos I. Exosomes from human saliva as a source of microRNA biomarkers. Oral Dis. 2010;16(1):34–8. doi:10.1111/j.1601-0825.2009.01604.x.

    Article  PubMed  Google Scholar 

  58. Miletich I. Introduction to salivary glands: structure, function and embryonic development. Front Oral Biol. 2010;14:1–20. doi:10.1159/000313703.

    Article  PubMed  Google Scholar 

  59. Musselmann K, Green JA, Sone K, Hsu JC, Bothwell IR, Johnson SA, Harunaga JS, Wei Z, Yamada KM. Salivary gland gene expression atlas identifies a new regulator of branching morphogenesis. J Dent Res. 2011;90(9):1078–84. doi:10.1177/0022034511413131.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Nanduri LS, Lombaert IM, van der Zwaag M, Faber H, Brunsting JF, van Os RP, Coppes RP. Salisphere derived c-Kit+ cell transplantation restores tissue homeostasis in irradiated salivary gland. Radiother Oncol. 2013;108(3):458–63. doi:10.1016/j.radonc.2013.05.020.

    Article  PubMed  Google Scholar 

  61. Napenas JJ, Brennan MT, Fox PC. Diagnosis and treatment of xerostomia (dry mouth). Odontol Soc Nippon Dent Univ. 2009;97(2):76–83.

    Article  Google Scholar 

  62. Nedvetsky PI, Emmerson E, Finley JK, Ettinger A, Cruz-Pacheco N, Prochazka J, Haddox CL, Northrup E, Hodges C, Mostov KE, Hoffman MP, Knox SM. Parasympathetic innervation regulates tubulogenesis in the developing salivary gland. Dev Cell. 2014;30(4):449–62. doi:10.1016/j.devcel.2014.06.012.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Nelson DA, Larsen M. Heterotypic control of basement membrane dynamics during branching morphogenesis. Dev Biol. 2015;401(1):103–9. doi:10.1016/j.ydbio.2014.12.011.

    Article  PubMed  Google Scholar 

  64. Onodera T, Sakai T, Hsu JC, Matsumoto K, Chiorini JA, Yamada KM. Btbd7 regulates epithelial cell dynamics and branching morphogenesis. Science. 2010;329(5991):562–5. doi:10.1126/science.1191880.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Palk L, Sneyd J, Patterson K, Shuttleworth TJ, Yule DI, Maclaren O, Crampin EJ. Modelling the effects of calcium waves and oscillations on saliva secretion. J Theor Biol. 2012;305:45–53. doi:10.1016/j.jtbi.2012.04.009.

    Article  PubMed  Google Scholar 

  66. Patel VN, Hoffman MP. Salivary gland development: a template for regeneration. Semin Cell Dev Biol. 2014;25-26:52–60. doi:10.1016/j.semcdb.2013.12.001.

    Article  PubMed  Google Scholar 

  67. Patel VN, Rebustini IT, Hoffman MP. Salivary gland branching morphogenesis. Differ Res Biol Divers. 2006;74(7):349–64. doi:10.1111/j.1432-0436.2006.00088.x.

    Article  Google Scholar 

  68. Patterson K, Catalan MA, Melvin JE, Yule DI, Crampin EJ, Sneyd J. A quantitative analysis of electrolyte exchange in the salivary duct. Am J Physiol Gastrointest Liver Physiol. 2012;303(10):G1153–63. doi:10.1152/ajpgi.00364.2011.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Patti GJ, Yanes O, Siuzdak G. Innovation: metabolomics: the apogee of the omics trilogy. Nature Rev. 2012;13(4):263–9. doi:10.1038/nrm3314.

    Article  Google Scholar 

  70. Peters SB, Naim N, Nelson DA, Mosier AP, Cady NC, Larsen M. Biocompatible tissue scaffold compliance promotes salivary gland morphogenesis and differentiation. Tissue Eng A. 2014;20(11–12):1632–42. doi:10.1089/ten.TEA.2013.0515.

    Article  Google Scholar 

  71. Peters SB, Nelson DA, Kwon HR, Koslow M, DeSantis KA, Larsen M. TGFbeta signaling promotes matrix assembly during mechanosensitive embryonic salivary gland restoration. Matrix Biol. 2015;43:109–24. doi:10.1016/j.matbio.2015.01.020.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Petrakova OS, Terskikh VV, Chernioglo ES, Ashapkin VV, Bragin EY, Shtratnikova VY, Gvazava IG, Sukhanov YV, Vasiliev AV. Comparative analysis reveals similarities between cultured submandibular salivary gland cells and liver progenitor cells. Springerplus. 2014;3:183. doi:10.1186/2193-1801-3-183.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Proctor GB, Carpenter GH. Regulation of salivary gland function by autonomic nerves. Auton Neurosci Basic Clin. 2007;133(1):3–18. doi:10.1016/j.autneu.2006.10.006.

    Article  Google Scholar 

  74. Rafii S, Butler JM, Ding BS. Angiocrine functions of organ-specific endothelial cells. Nature. 2016;529(7586):316–25. doi:10.1038/nature17040.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Ray S, Fanti JA, Macedo DP, Larsen M. LIM kinase regulation of cytoskeletal dynamics is required for salivary gland branching morphogenesis. Mol Biol Cell. 2014;25(16):2393–407. doi:10.1091/mbc.E14-02-0705.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Ray S, Yuan D, Dhulekar N, Oztan B, Yener B, Larsen M. Cell-based multi-parametric model of cleft progression during submandibular salivary gland branching morphogenesis. PLOS Computational Biology (in press). 2013.

    Google Scholar 

  77. Sakai T, Larsen M, Yamada KM. Microanalysis of gene expression in tissues using T7-SAGE: Serial Analysis of Gene Expression after high-fidelity T7-Based RNA amplification. In: Current protocols in cell biology. New York: John Wiley & Sons ; 2002.pp. 19.13.11–19.14.10.

    Google Scholar 

  78. Sakai T, Larsen M, Yamada KM. Fibronectin requirement in branching morphogenesis. Nature. 2003;423(6942):876–81.

    Article  PubMed  Google Scholar 

  79. Sakai T, Larsen M, Yamada KM. Morphogenesis and branching of salivary glands: characterization of new matrix and signaling regulators. Oral Biosci Med. 2005;2(2/3):105–13.

    Google Scholar 

  80. Sequeira SJ, Gervais EM, Ray S, Larsen M. Genetic modification and recombination of salivary gland organ cultures. J Vis Exp JoVE. 2013;71:e50060. doi:10.3791/50060.

    Google Scholar 

  81. Singh P, Schimenti JC, Bolcun-Filas E. A mouse geneticist’s practical guide to CRISPR applications. Genetics. 2015;199(1):1–15. doi:10.1534/genetics.114.169771.

    Article  PubMed  Google Scholar 

  82. Sivadasan P, Kumar Gupta M, Sathe GJ, Balakrishnan L, Palit P, Gowda H, Suresh A, Abraham Kuriakose M, Sirdeshmukh R. Data from human salivary proteome – A resource of potential biomarkers for oral cancer. Data Brief. 2015;4:374–8. doi:10.1016/j.dib.2015.06.014.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Sneyd J, Crampin E, Yule D. Multiscale modelling of saliva secretion. Math Biosci. 2014;257:69–79. doi:10.1016/j.mbs.2014.06.017.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Speight PM, Barrett AW. Salivary gland tumours. Oral Dis. 2002;8(5):229–40.

    Article  PubMed  Google Scholar 

  85. Speight PM, Barrett AW. Prognostic factors in malignant tumours of the salivary glands. Br J Oral Maxillofac Surg. 2009;47(8):587–93.

    Article  PubMed  Google Scholar 

  86. Sun L, Liu B, Lin Z, Yao Y, Chen Y, Li Y, Chen J, Yu D, Tang Z, Wang B, Zeng S, Fan S, Wang Y, Li Y, Song E, Li J. MiR-320a acts as a prognostic factor and Inhibits metastasis of salivary adenoid cystic carcinoma by targeting ITGB3. Mol Cancer. 2015;14:96. doi:10.1186/s12943-015-0344-y.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Tucker AS. Salivary gland development. Semin Cell Dev Biol. 2007;18(2):237–44. doi:10.1016/j.semcdb.2007.01.006.

    Article  PubMed  Google Scholar 

  88. Waddington CH. The strategy of the genes. London: George Allen & Unwin; 1957. p. 11–58.

    Google Scholar 

  89. Washburn MP, Wolters D, Yates 3rd JR. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol. 2001;19(3):242–7. doi:10.1038/85686.

    Article  PubMed  Google Scholar 

  90. Wells KL, Gaete M, Matalova E, Deutsch D, Rice D, Tucker AS. Dynamic relationship of the epithelium and mesenchyme during salivary gland initiation: the role of Fgf10. Biol Open. 2013;2(10):981–9. doi:10.1242/bio.20135306.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Wren ME, Shirtcliff EA, Drury SS. Not all biofluids are created equal: chewing over salivary diagnostics and the epigenome. Clin Ther. 2015;37(3):529–39. doi:10.1016/j.clinthera.2015.02.022.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Wu CC, Chu HW, Hsu CW, Chang KP, Liu HP. Saliva proteome profiling reveals potential salivary biomarkers for detection of oral cavity squamous cell carcinoma. Proteomics. 2015;15(19):3394–404. doi:10.1002/pmic.201500157.

    Article  PubMed  Google Scholar 

  93. Xiao N, Lin Y, Cao H, Sirjani D, Giaccia AJ, Koong AC, Kong CS, Diehn M, Le QT. Neurotrophic factor GDNF promotes survival of salivary stem cells. J Clin Invest. 2014;124(8):3364–77. doi:10.1172/JCI74096.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Yamamoto S, Fukumoto E, Yoshizaki K, Iwamoto T, Yamada A, Tanaka K, Suzuki H, Aizawa S, Arakaki M, Yuasa K, Oka K, Chai Y, Nonaka K, Fukumoto S. Platelet-derived growth factor receptor regulates salivary gland morphogenesis via fibroblast growth factor expression. J Biol Chem. 2008;283(34):23139–49. doi:10.1074/jbc.M710308200.

    Article  PubMed  Google Scholar 

  95. Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell. 2013;154(6):1370–9. doi:10.1016/j.cell.2013.08.022.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Zhang A. Advanced analysis of gene expression microarray data. Singapore: World Scientific; 2006.

    Book  Google Scholar 

  97. Stiubea-Cohen R, David R, Neumann Y, Krief G, Deutsch O, Zacks B, Aframian DJ, Palmon A. Effect of irradiation on cell transcriptome and proteome of rat submandibular salivary glands. PloS One. 2012;7:e40636

    Google Scholar 

Download references

Acknowledgments

The authors thank Kenneth Yamada and Matthew Hoffman for reviewing the manuscript. This work was sponsored in part by the University at Albany, SUNY, and by NIH grants R01DE022467 and C06 RR015464.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melinda Larsen PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Larsen, M. et al. (2017). Systems Biology: Salivary Gland Development, Disease, and Regenerative Medicine. In: Cha, S. (eds) Salivary Gland Development and Regeneration. Springer, Cham. https://doi.org/10.1007/978-3-319-43513-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43513-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43511-4

  • Online ISBN: 978-3-319-43513-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics