Skip to main content

MRI Preprocessing

  • Chapter
  • First Online:
Imaging Biomarkers

Abstract

MR image preprocessing is a fundamental step to assure the success of any quantitative analysis pipeline. Such preprocessing can be composed of different processes, each of them aimed either to improve image quality or to standardize its geometric and intensity patterns. In this chapter, several of these techniques will be presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mohan J, Krishnaveni V, Guo Y. A survey on the magnetic resonance image denoising methods. Biomed Signal Process Control. 2014;9:56–69.

    Article  Google Scholar 

  2. Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Machine Intell. 1990;12:629–39.

    Article  Google Scholar 

  3. Gerig G, Kikinis R, Kubler O, Jolesz FA. Nonlinear anisotropic filtering of MRI data. IEEE Trans Med Imaging. 1992;11:221–32.

    Article  CAS  PubMed  Google Scholar 

  4. Donoho DL, Johnstone IM. Ideal spatial adaptation via wavelet shrinkage. Biometrika. 1994;81:425–55.

    Article  Google Scholar 

  5. Kuwamura S. Wavelet denoising for tomographically reconstructed image. Opt Rev. 2006;13:129–37.

    Article  Google Scholar 

  6. Nowak R. Wavelet-based Rician noise removal for magnetic resonance imaging. IEEE Trans Image Process. 1999;8:1408–19.

    Article  CAS  PubMed  Google Scholar 

  7. Pizurica A, Philips W, Lemahieu I, Acheroy M. A versatile wavelet domain noise filtration technique for medical imaging. IEEE Trans Med Imaging. 2003;22:323–31.

    Article  PubMed  Google Scholar 

  8. Guleryuz OG. Weighted overcomplete denoising. In: Proceedings of the Asilomar Conference on Signals and Systems. 2003.

    Google Scholar 

  9. Yaroslavsky LP, Egiazarian K, Astola J. Transform domain image restoration methods: review, comparison and interpretation. TICSP Series #9, TUT, Tampere; 2000. ISBN: 952-15-0471-4.

    Google Scholar 

  10. Elad M, Aharon M. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans Image Process. 2006;15(12):3736–45.

    Article  PubMed  Google Scholar 

  11. Mairal J, Elad M, Sapiro G. Sparse learned representations for image restoration. In: IASC2008. Yokohama; 2008.

    Google Scholar 

  12. Protter M, Elad M. Image sequence denoising via sparse and redundant representations. IEEE Trans Image Process. 2009;18(1):27–36.

    Article  PubMed  Google Scholar 

  13. Aharon M, Elad M, Bruckstein AM. K-SVD: an algorithm for designing over complete dictionaries for sparse representation. IEEE Trans Sig Process. 2006;54:4311–22.

    Article  Google Scholar 

  14. Bao L, Liu W, Zhu Y, Pu Z, Magnin I. Sparse representation based MRI denoising with total variation. In: ICSP2008 Proceedings. 2008.

    Google Scholar 

  15. Bao L, Robini M, Liu W, Zhu Y. Structure-adaptive sparse denoising for diffusion-tensor MRI. Med Image Anal. 2013;17(4):442–57.

    Article  PubMed  Google Scholar 

  16. Patel V, Shi, Y, Thompson, PM, Toga, AW. K-SVD for Hardi denoising. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro. 2011.

    Google Scholar 

  17. Buades A, Coll B, Morel JM. A non-local algorithm for image denoising. In: IEEE International Conference on Computer Vision and Pattern Recognition (CPVR), 2005;2: p. 60–5.

    Google Scholar 

  18. Coupé P, Yger P, Prima S, Hellier P, Kervrann C, Barillot C. An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images. IEEE Trans Med Imaging. 2008;27:425–41.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Manjón JV, Carbonell-Caballero J, Lull JJ, Garcia-Martí G, Martí-Bonmatí L, Robles M. MRI denoising using non-local means. Med Image Anal. 2008;4:514–23.

    Article  Google Scholar 

  20. Manjón JV, Tohka J, García-Martí G, et al. Robust MRI brain tissue parameter estimation by multistage outlier rejection. Magn Reson Med. 2008;59(4):866–73.

    Article  PubMed  Google Scholar 

  21. Manjón JV, Thacker NA, Lull JJ, Garcia-Martí G, Martí-Bonmatí L, Robles M. Multicomponent MR image denoising. Int J Biomed Imaging. Article ID 756897. 2009.

    Google Scholar 

  22. Manjón JV, Coupé P, Martí-Bonmatí L, Robles M, Collins DL. Adaptive non-local means denoising of MR images with spatially varying noise levels. J Magn Reson Imaging. 2010;31:192–203.

    Article  PubMed  Google Scholar 

  23. Manjón JV, Coupé P, Buades A, Collins DL, Robles M. New methods for MRI denoising based on sparseness and self-similarity. Med Image Anal. 2012;16(1):18–27.

    Article  PubMed  Google Scholar 

  24. Tristán-Vega A, Aja-Fernández S. DWI filtering using joint information for DTI and HARDI. Med Image Anal. 2010;14(2):205–18.

    Article  PubMed  Google Scholar 

  25. He L, Greenshields IR. A nonlocal maximum likelihood estimation method for Rician noise reduction in MR images. IEEE Trans Med Imaging. 2009;28:165–72.

    Article  PubMed  Google Scholar 

  26. Katkovnik V, Foi A, Egiazarian K, Astola J. From local kernel to nonlocal multiple-model image denoising. Int J Comput Vis. 2010;86(1):1–32.

    Article  Google Scholar 

  27. Rajan J, Den Dekker A, Sijbers J. A new non local maximum likelihood estimation method for Rician noise reduction in magnetic resonance images using the Kolmogorov-Smirnov test. Sig Process. 2014;103:16–23.

    Article  Google Scholar 

  28. Manjón JV, Coupé P, Buades A, Fonov V, Louis Collins D, Robles M. Non-local MRI upsampling. Med Image Anal. 2010a;14(6):784–92.

    Google Scholar 

  29. Manjón JV, Coupé P, Buades A, Louis Collins D, Robles M. MRI superresolution using self similarity and image priors. Int J Biomed Imaging. Article ID 425891. 2010b.

    Google Scholar 

  30. J. Rajan, J. Veraat, J.V. Audekerke, M. Verhoye, J. Sijbers, Nonlocal maximumlikelihood estimation method for denoising multiple-coil magnetic resonanceimages, Magn. Reson. Imaging 30 (2012) 1512–1518.

    Google Scholar 

  31. Nicolas Wiest-Daesslé, Sylvain Prima, Pierrick Coupé,Sean Patrick Morrissey, and Christian Barillot. Rician noise removal by non-Local Means filtering for low signal-to-noise ratio MRI: applications to DT-MRI. MICCAI 2008; 11(Pt 2): 171–179.

    Google Scholar 

  32. Manjón JV, Coupe P, Buades A. MRI noise estimation and denoising using non-local PCA. Med Image Anal. 2015;22:35–47.

    Article  PubMed  Google Scholar 

  33. Manjón JV, Coupé P, Concha L, Buades A, Collins DL, Robles M. Diffusion weighted image denoising using overcomplete local PCA. PLoS One. 2013;8(9), e73021. doi:10.1371/journal.pone.0073021.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Belaroussi B, Milles J, Carme S, Min Zhu Y, Benoit H. Intensity non-uniformity correction in MRI: existing methods and their validation. Med Image Anal. 2005;10:121–32.

    Google Scholar 

  35. Axel L, Constantini J, Listerud J. Intensity correction in surfacecoil MR imaging. Am J Roentgenol. 1987;148:418–20.

    Article  CAS  Google Scholar 

  36. Dawant B, Zijdenbos A, Margolin R. Correction of intensity variations in MR images for computer-aided tissue classification. IEEE Trans Med Imaging. 1993;12(4):770–81.

    Article  CAS  PubMed  Google Scholar 

  37. Meyer C, Bland P, Pipe J. Retrospective correction of intensity inhomogeneities in MRI. IEEE Trans Med Imaging. 1995;14(1):36–41.

    Article  CAS  PubMed  Google Scholar 

  38. Wells III W, Grimson W, Kikinis R, Jolesz F. Adaptative segmentation of MRI data. IEEE Trans Med Imaging. 1996;15(4):429–42.

    Article  CAS  PubMed  Google Scholar 

  39. Van Leemput K, Maes F, Vandermeulen D, Suetens P. Automated model-based bias field correction of MR images of the brain. IEEE Trans Med Imaging. 1999;18(10):885–96.

    Article  PubMed  Google Scholar 

  40. Gispert J, Reig S, Pascau J, Vaquero J, Garca-Barreno P, Desco M. Method for bias field correction of brain T1-weighted magnetic resonance images minimizing segmentation error. Hum Brain Mapp. 2004;22(2):133–44.

    Article  PubMed  Google Scholar 

  41. Guillemaud R, Brady M. Estimating the bias field of MR images. IEEE Trans Med Imaging. 1997;16(3):238–51.

    Article  CAS  PubMed  Google Scholar 

  42. van Leemput K, Maes F, Vandermeulen D, Suetens P. Automated model-based tissue classification of MR images of the brain. IEEE Trans Med Imag. 1999;18:897–908.

    Article  Google Scholar 

  43. Dempster A, Laird N, Rubing D. Maximum likelihood from incomplete data via EM algorithm. J Royal Soc. 1977;39:1–38.

    Google Scholar 

  44. Ashburner J. Another MRI bias correction approach. In: Eighth International Conference on Functional Mapping of the Human Brain. Sendai; 2002.

    Google Scholar 

  45. Mangin JF. Entropy minimization for automatic correction of intensity nonuniformity. In: IEEE Workshop on Mathematical Methods in Biomedical Image Analysis. 2000. p. 162–9.

    Google Scholar 

  46. Likar B, Viergever M, Pernus F. Retrospective correction of MR intensity inhomogeneity by information minimization. IEEE Trans Med Imaging. 2001;20(12):1398–410.

    Article  CAS  PubMed  Google Scholar 

  47. Vovk U, Pernus F, Likar B. MRI intensity inhomogeneity correction by combining intensity and spatial information. Phys Med Biol. 2004;49(17):4119–33.

    Article  PubMed  Google Scholar 

  48. Manjón JV, Lull JJ, Carbonell-Caballero J, García-Martí G, Martí-Bonmatí L, Robles M. A nonparametric MRI inhomogeneity correction method. Med Image Anal. 2007;11(4):336–45.

    Article  PubMed  Google Scholar 

  49. Tustison NJ, Avants BB, Cook P, Zheng Y, Egan A, Yushkevich P, Gee JC. N4ITK: improved N3 bias correction. IEEE Trans Med Imaging. 2010;29(6):1310–20.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Atkins MS, Siu K, Law B, Orchard J, Rosenbaum W. Difficulties of T1 brain MRI segmentation techniques. In: The International Society for Optical Engineering, vol. 4684 of Proceedings of SPIE. 2002. p. 1837–44.

    Google Scholar 

  51. Vansteenkiste E, Vandemeulebroucke J, Philips W. 2D/3D registration of neonatal brain images. In: Proceedings of the The Workshop on Biomedical Image Registration (WBIR ’06), 2006; p. 272–79.

    Google Scholar 

  52. Thevenaz P, Blu T, Unser M. Interpolation revisited. IEEE Trans Med Imaging. 2000;19(7):739–58.

    Article  CAS  PubMed  Google Scholar 

  53. Lehmann TM, G¨onner C, Spitzer K. Survey: interpolation methods in medical image processing. IEEE Trans Med Imaging. 1999;18(11):1049–75.

    Article  CAS  PubMed  Google Scholar 

  54. Carmi E, Liu S, Alon N, Fiat A, Fiat D. Resolution enhancement in MRI. Magn Reson Imaging. 2006;24(2):133–54.

    Article  PubMed  Google Scholar 

  55. Sijbers J. Signal and noise estimation from magnetic resonance images, Doctoral thesis, Antwepen, 1998.

    Google Scholar 

  56. Kornprobst P, Peelers R, Nikolova M, Deriche R, Ng M, Van Hecke P. A superresolution framework for fMRI sequences and its impact on resulting activation maps. In: Proceedings 6th International Conference Medical Image Computing and Computer-Assisted Intervention (MICCAI ’03). 2003;2879; p. 117–25.

    Google Scholar 

  57. Peled S, Yeshurun Y. Superresolution in MRI: application to human white matter fiber tract visualization by diffusion tensor imaging. Magn Reson Med. 2001;45(1):29–35.

    Article  CAS  PubMed  Google Scholar 

  58. Coupé P, Manjon JV, Chamberland M, Descoteaux M. Collaborative patch-based super-resolution for diffusion-weighted images. Neuroimage. 2013;83:245–61.

    Article  PubMed  Google Scholar 

  59. Lin S, Liu W, Zhang H, Xie Y, Wang D. A survey of GPU-based medical image computing techniques. Quant Imaging Med Surg. 2012;2(3):188–206.

    Google Scholar 

  60. Klein A, Andersson J, Ardekani BA, Ashburner J, Avants B, et al. Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. Neuroimage. 2009;46:786–802.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Woods RP, Cherry SR, Mazziotta JC. Rapid automated algorithm for aligning and reslicing PET images. J Comput Assist Tomo. 1992;16:620–33.

    Article  CAS  Google Scholar 

  62. Collins D, Holmes C, Peters T, Evans A. Automatic 3D model-based neuroanatomical segmentation. Hum Brain Mapp. 1995;3(3):190–208.

    Article  Google Scholar 

  63. Ardekani BA, Bachman AH. Model-based automatic detection of the anterior and posterior commissures on MRI scans. Neuroimage. 2009;46(3):677–82.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Andersson J, Smith S, Jenkinson M. FNIRT—FMRIB’ non-linear image registration tool. Hum Brain Map. 2008; Poster #496.

    Google Scholar 

  65. Rueckert D, Sonoda LI, Hayes C, Hill DLG, Leach MO, Hawkes DJ. Non-rigid registration using free-form deformations: Application to breast MR images. IEEE Trans Med Imaging. 1999;18(8):712–21.

    Article  CAS  PubMed  Google Scholar 

  66. Chiang M-C, Dutton RA, Hayashi KM, Lopez OL, Aizenstein HJ, Toga AW, Becker JT, Thompson PM. 3D pattern of brain atrophy in HIV/AIDS visualized using tensor-based morphometry. Neuroimage. 2007;34:44–60.

    Article  PubMed  Google Scholar 

  67. Christensen G, Johnson H. Consistent image registration. IEEE Trans Med Imag. 2001;20:568–82.

    Article  CAS  Google Scholar 

  68. Ashburner J, Friston KJ. Nonlinear spatial normalization using basis functions. Hum Brain Map. 1999;7:254–66.

    Article  CAS  Google Scholar 

  69. Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage. 2007;38:95–113.

    Article  PubMed  Google Scholar 

  70. Ashburner J, Friston KJ. Unified segmentation. Neuroimage. 2005;26:839–51.

    Article  PubMed  Google Scholar 

  71. Gonzalez RC, Woods RE. Digital Image Processing. 3rd ed. Upper Saddle River, NJ: Prentice Hall; 2008. p. 128. ISBN 9780131687288.

    Google Scholar 

  72. Hellier P. Consistent intensity correction of MR images. In: Proceedings of the International Conference on Image Processing (ICIP ’03), 2003; p. 1109–12.

    Google Scholar 

  73. Nyul LG, Udupa JK, Zhang X. New variants of a method of MRI scale standardization. IEEE Trans Med Imaging. 2000;19(2):143–50.

    Article  CAS  PubMed  Google Scholar 

  74. Jager F, Nyul L, Frericks B, Wacker F, Hornegger J. Whole body MRI intensity standardization. In: Horsch A, Deserno TM, Handels H, Meinzer H-P, Tolxdorff T, editors. Bildverarbeitung fur dieMedizin. Berlin: Springer; 2007. p. 459–63.

    Google Scholar 

  75. Lötjönen JM, Wolz R, Koikkalainen JR, et al. Fast and robust multi-atlas segmentation of brain magnetic resonance images. Neuroimage. 2010;49(3):2352–65.

    Article  PubMed  Google Scholar 

  76. Manjón JV, Eskildsen SF, Coupé P, Romero JE, Louis Collins D, Robles M. Non-local intracranial cavity extraction. IJBI. Article ID 820205. 2014.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José V. Manjón .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Manjón, J.V. (2017). MRI Preprocessing. In: Martí-Bonmatí, L., Alberich-Bayarri, A. (eds) Imaging Biomarkers. Springer, Cham. https://doi.org/10.1007/978-3-319-43504-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43504-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43502-2

  • Online ISBN: 978-3-319-43504-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics