Skip to main content

Adaptive Combinatorial Neural Control for Robust Locomotion of a Biped Robot

  • Conference paper
  • First Online:
From Animals to Animats 14 (SAB 2016)

Abstract

Humans can perform natural and robust walking behavior. They can even quickly adapt to different situations, like changing their walking speed to synchronize with the speed of a treadmill. Reproducing such complex abilities with artificial bipedal systems is still a difficult problem. To tackle this problem, we present here an adaptive combinatorial neural control circuit consisting of reflex-based and central pattern generator (CPG)-based mechanisms. The reflex-based control mechanism basically generates energy-efficient bipedal locomotion while the CPG-based mechanism with synaptic plasticity ensures robustness against loss of global sensory feedback (e.g., foot contact sensors) as well as allows for adaptation within a few steps to deal with environmental changes. We have successfully applied our control approach to the biomechanical bipedal robot DACBOT. As a result, the robot can robustly walk with energy efficiency and quickly adapt to different speeds of a treadmill.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Orlovsky, G.N., Deliagina, T.G., Grillner, S.: Neuronal Control of Locomotion: From Mollusk to Man. Oxford University Press, Oxford (1999)

    Book  Google Scholar 

  2. Dickinson, M.H., Farley, C.T., Full, R.J., Koehl, M.A.R., Kram, R., Lehman, S.: How animals move: an integrative view. Science 288(5463), 100–106 (2000)

    Article  Google Scholar 

  3. Okada, k., Ogura, T., Haneda, A., Kousaka, N.H., Inaba, M., Inoue, H.: Integrated system software for HRP2 humanoid. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 3207–3212 (2004)

    Google Scholar 

  4. Ogura, Y., Kondo, H., Morishima, A., Lim, H., Takanishi, A.: Development of a new humanoid robot WABIAN-2. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 76–81 (2006)

    Google Scholar 

  5. Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., Hirukawa, H.: Bipedal walking pattern generation by using preview control of zero-moment point. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 1620–1626 (2003)

    Google Scholar 

  6. Chevallereau, C., Djoudi, D., Grizzle, J.: Stable bipedal walking with foot rotation through direct regulation of the zero moment point. IEEE Trans. Robot. 24(2), 390–401 (2008). IEEE

    Article  Google Scholar 

  7. Endo, G., Nakanishi, J., Morimoto, J., Cheng, G.: Experimental studies of a neural oscillator for biped locomotion with QRIO. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 596–602 (2005)

    Google Scholar 

  8. Woosung, Y., Chong, N.Y., Ra, S., Chang, H.K., Bum, J.Y.: Self-stabilizing bipedal locomotion employing neural oscillators. In: Proceedings of IEEE International Conference on Humanoid Robots, pp. 8–15 (2008)

    Google Scholar 

  9. Manoonpong, P., Geng, T., Kulvicius, T., Porr, B., Woergoetter, F.: Adaptive, fast walking in a biped robot under neuronal control and learning. PLOS Comput. Biol. 3(7), e134 (2007)

    Article  Google Scholar 

  10. Pratt, J., Chew, C.-M., Torres, A., Dilworth, P., Pratt, G.: Virtual model control: an intuitive approach for bipedal locomotion. Int. J. Robot. Res. 20, 129–143 (2001)

    Article  Google Scholar 

  11. Calandra, R., Gopalan, N., Seyfarth, A., Peters, J., Deisenroth, M.P.: Bayesian gait optimization for bipedal locomotion. In: Pardalos, P.M., Resende, M.G.C., Vogiatzis, C., Walteros, J.L. (eds.) Lion 8. LNCS, vol. 8426, pp. 274–290. Springer, Switzerland (2014)

    Google Scholar 

  12. Nakanishi, J., Morimoto, J., Endo, G., Cheng, G., Schaala, S., Kawato, M.: Learning from demonstration and adaptation of biped locomotion. Robot. Auton. Syst. 47, 79–91 (2004)

    Article  Google Scholar 

  13. Matsubara, T., Morimoto, J., Nakanishi, J., Sato, M.A., Doya, K.: Learning CPG-based biped locomotion with a policy gradient method. Robot. Auton. Syst. 54(11), 911–920 (2006)

    Article  Google Scholar 

  14. Reil, T., Husbands, P.: Evolution of central pattern generators for bipedal walking in a real-time physics environment. IEEE Trans. Evol. Comput. 6(2), 159–168 (2002)

    Article  Google Scholar 

  15. Dip, G., Prahlad, V., Kien, P.D.: Genetic algorithm-based optimal bipedal walking gait synthesis considering tradeoff between stability margin and speed. Robotica 27, 355–365 (2009)

    Article  Google Scholar 

  16. Nachstedt, T., Wörgötter, F., Manoonpong, P.: Adaptive neural oscillator with synaptic plasticity enabling fast resonance tuning. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds.) ICANN 2012, Part I. LNCS, vol. 7552, pp. 451–458. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  17. Pasemann, F., Hild, M., Zahedi, K.: SO(2)-networks as neural oscillators. In: Mira, J., Álvarez, J.R. (eds.) IWANN 2003. LNCS, vol. 2686, pp. 144–151. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Acknowledgments

This research was supported partly by Bernstein Center for Computational Neuroscience II Goettingen (BCCN grant 01GQ1005A, project D1) and Center for BioRobotics (CBR) at the University of Southern Denmark (SDU).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Giuliano Di Canio or Poramate Manoonpong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Di Canio, G., Stoyanov, S., Balmori, I.T., Larsen, J.C., Manoonpong, P. (2016). Adaptive Combinatorial Neural Control for Robust Locomotion of a Biped Robot. In: Tuci, E., Giagkos, A., Wilson, M., Hallam, J. (eds) From Animals to Animats 14. SAB 2016. Lecture Notes in Computer Science(), vol 9825. Springer, Cham. https://doi.org/10.1007/978-3-319-43488-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43488-9_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43487-2

  • Online ISBN: 978-3-319-43488-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics