Advertisement

Measurement of the Cross Section of Four-Jet Events

  • Mireia Crispín OrtuzarEmail author
Chapter
  • 276 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

This chapter presents a measurement of the cross section of four-jet events produced in 8 TeV collisions. The opening sections contain all the studies performed to define the analysis strategy, including the trigger criteria, kinematic selection, and the variables used to study the cross section differentially across multiple regions of phase space. The following sections focus on some of the most important steps of the analysis procedure, namely the determination of the bin widths for each variable, the unfolding process, and the calculation of the uncertainties. Finally, the results are discussed and compared to a variety of theoretical predictions.

Keywords

Systematic Uncertainty Transfer Matrix Parton Shower Reconstructed Level Shape Uncertainty 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Berger, C. F., Bern, Z., et al. (2008). Automated implementation of on-shell methods forone-loop amplitudes. Physical Review D, 78(3), 036003.ADSCrossRefGoogle Scholar
  2. 2.
  3. 3.
    ATLAS Collaboration. (2011). Measurement of multi-jet cross sections in proton-protoncollisions at a 7 TeV center-of-mass energy. European Physical Journal, C71, 1763. doi: 10.1140/epjc/s10052-011-1763-6. arXiv:1107.2092.
  4. 4.
    CMS Collaboration. (2015). Distributions of topological observables in inclusive threeandfour-jet events in pp collisions at \(\sqrt{s}=7\,TeV\). arXiv:1502.04785.
  5. 5.
    Acosta, D., et al. (2005). Comparison of three-jet events in pp-bar collisions at \(\sqrt{s}=1.8\) TeV to predictions from a next-to-leading order QCD calculation. Physical Review, D71, 032002.ADSGoogle Scholar
  6. 6.
    Abe, F., et al. (1993). Study of four-jet events and evidence for double parton interactionsin p anti-p collisions at \(\sqrt{s}1.8\) TeV. Physical Review D, 47, 4857.ADSCrossRefGoogle Scholar
  7. 7.
    D0 Collaboration. (2003). Multiple jet production at low transverse energies in pp collisions at \(\sqrt{s}=1.8\) TeV. Physical Review D, 67, 052001. arXiv:hep-ex/0207046.
  8. 8.
    D0 Collaboration. (2001). Ratios of multijet cross sections in \(p\bar{p}\) collisions at \(\sqrt{s}= 1.8\) TeV. Physical Review Letters, 86, 1955–1960. doi: 10.1103/PhysRevLett.86.1955. arXiv:hep-ex/0009012.Google Scholar
  9. 9.
    Andersen, J. R., & Smillie, J. M. (2010). High energy description of processeswith multiple hard jets. Nuclear Physics B-Proceedings Supplements, 205, 205–210.ADSCrossRefGoogle Scholar
  10. 10.
    Cacciari, M., Salam, G. P., & Soyez, G. (2008). The Anti-k(t) jet clusteringalgorithm. JHEP, 0804, 063. doi: 10.1088/1126-6708/2008/04/063. arXiv:0802.1189.ADSCrossRefGoogle Scholar
  11. 11.
    Batista, S., Begel, M., et al. (2014). Global Sequential Calibration with the ATLAS Detectorin Proton-Proton Collisions at \(\sqrt{s}= 8\) TeV with ATLAS 2012 data. Technical report. ATL-COM-PHYS-2014-753. Geneva: CERN.Google Scholar
  12. 12.
  13. 13.
    D’Agostini, G. (1995). A multidimensional unfolding method based on Bayes’ theorem. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,Spectrometers, Detectors and Associated Equipment, 362(2), 487–498.ADSCrossRefGoogle Scholar
  14. 14.
    D’Agostini, G. (2010). Improved iterative Bayesian unfolding. arXiv:1010.0632.
  15. 15.
    Adye, T. (2011). Unfolding algorithms and tests using RooUnfold. arXiv:1105.1160.
  16. 16.
    ATLAS Collaboration. (2012). Measurement of inclusive jet and dijet production in ppcollisions at \(\sqrt{s}=7\) TeV using the ATLAS detector. Physical Review D, 86(1), 014022.Google Scholar
  17. 17.
    Efron, B. (1979). Bootstrap methods: another look at the jackknife. The Annalsof Statistics, 7, 1–26.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Jogesh Babu, G., Pathak, P. K., & Rao, C. R. (1999). Second order correctness of the Poissonbootstrap. Annals of Statistics, 27(5), 1666–1683.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
  20. 20.
    ATLAS Collaboration, (2013). Improved luminosity determination in pp collisions at \(\sqrt{s}= 7\) TeV using the ATLAS detector at the LHC. European Physical Journal, C73, 2518. doi: 10.1140/epjc/s10052-013-2518-3. arXiv:1302.4393.
  21. 21.
    Sjostrand, T., Mrenna, S., & Skands, P. Z. (2008). A brief introductionto PYTHIA 8.1. Computer Physics Communications, 178, 852–867. doi: 10.1016/j.cpc.2008.01.036. arXiv:0710.3820.ADSCrossRefzbMATHGoogle Scholar
  22. 22.
    Bahr, M., et al. (2008). Herwig++ physics and manual. European Physical Journal, C58, 639–707. doi: 10.1140/epjc/s10052-008-0798-9. arXiv:0803.0883.ADSCrossRefGoogle Scholar
  23. 23.
    Katzy, J. M. (2013). QCD Monte-Carlo model tunes for the LHC. Progress in Particle and Nuclear Physics, 73, 141–187.ADSCrossRefGoogle Scholar
  24. 24.
    ATLAS Collaboration. (2012). Summary of ATLAS Pythia 8 tunes. ATL-PHYS-PUB-2012-003. Geneva.Google Scholar
  25. 25.
    Gieseke, S., Rohr, C., & Siodmok, A. (2012). Colour reconnections inHerwig++. European Physical Journal, C72, 2225. doi: 10.1140/epjc/s10052-012-2225-5. arXiv:1206.0041.ADSCrossRefGoogle Scholar
  26. 26.
    Lai, H.-L., Guzzi, M., et al. (2010). New parton distributions for collider physics. Physical Review, D82, 074024. doi: 10.1103/PhysRevD.82.074024. arXiv:1007.2241.ADSGoogle Scholar
  27. 27.
    Pumplin, J., et al. (2002). New generation of parton distributions with uncertaintiesfrom global QCD analysis. JHEP, 07, 012. doi: 10.1088/1126-6708/2002/07/012. arXiv:hep-ph/0201195.ADSCrossRefGoogle Scholar
  28. 28.
    Alwall, J., et al. (2011). MadGraph 5: going beyond. JHEP, 06, 128. doi: 10.1007/JHEP06(2011)128. arXiv:1106.0522.ADSCrossRefzbMATHGoogle Scholar
  29. 29.
    ATLAS Collaboration. (2011). ATLAS tunes of PYTHIA 6 and Pythia 8 for MC11. ATLPHYS-PUB-2011-009.Google Scholar
  30. 30.
    Höche, S., Krauss, F., et al. (2006). Matching parton showers and matrix elements. arXiv:hep-ph/0602031.
  31. 31.
    Gleisberg, T., et al. (2009). Event generation with SHERPA 1.1. JHEP, 02, 007. doi: 10.1088/1126-6708/2009/02/007. arXiv:0811.4622.ADSCrossRefGoogle Scholar
  32. 32.
    Bern, Z., Diana, G., et al. (2012). Four-jet production at the large hadron collider atnext-to-leading order in QCD. Physical Review Letters, 109(4), 042001.ADSCrossRefGoogle Scholar
  33. 33.
    Krauss, F., Kuhn, R., & Soff, G. (2002). AMEGIC++ 1.0, a matrix elementgenerator in C++. Journal of High Energy Physics, 2002(02), 044.ADSCrossRefGoogle Scholar
  34. 34.
    Gleisberg, T., & Krauss, F. (2008). Automating dipole subtraction for QCD NLO calculations. The European Physical Journal, C53(3), 501–523.ADSCrossRefGoogle Scholar
  35. 35.
    Beauchemin, H., Bona, M., et al. (2013). A measurement of the W production cross sectionand the ratio of W to Z production cross section in association with jets with theATLAS detector. Technical report. ATL-COM-PHYS-2013-590. Geneva: CERN.Google Scholar
  36. 36.
    Andersen, J. R., & Smillie, J. M. (2010). Constructing all-order corrections tomulti-jet rates. Journal of High Energy Physics, 2010(1), 1–35.CrossRefGoogle Scholar
  37. 37.
    Andersen, J. R., & Smillie, J. M. (2010). Factorization of the t-channel pole inquark-gluon scattering. Physical Review D, 81(11), 114021.ADSCrossRefGoogle Scholar
  38. 38.
    Simon Badger. Private communication.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Memorial Sloan Kettering Cancer CenterNew YorkUSA

Personalised recommendations