Skip to main content

Theoretical Overview

  • Chapter
  • First Online:
High Jet Multiplicity Physics at the LHC

Part of the book series: Springer Theses ((Springer Theses))

  • 368 Accesses

Abstract

This chapter covers some of the basic theoretical concepts needed in the rest of the book. It is divided in four sections, three of which will cover the Standard Model of particle physics, and one which will explore one of the possible extensions of the model, supersymmetry. The first section introduces the particle content of the Standard Model, while the second one describes particle dynamics. The third section focuses on the theory of strong interactions. Finally, the fourth section discusses the need to go beyond the Standard Model and the theory of supersymmetry.

‘If I had a world of my own, everything would be nonsense. Nothing would be what it is, because everything would be what it isn’t.

And contrary wise, what is, it wouldn’t be.

And what it wouldn’t be, it would. You see?’

Lewis Carroll, Alice’s Adventures in Wonderland

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Gluons and quarks are sometimes referred to collectively as partons.

  2. 2.

    Laws of physics are said to be symmetric when they remain invariant under a certain transformation.

  3. 3.

    Note that in the full electroweak theory, the photon is actually a mix of \(SU(2)_L\) and \(U(1)_Y\) states.

  4. 4.

    The electric charge Q is related to the weak hypercharge Y and the weak isospin \(T_3\) by the relation \(Q=T_3+\frac{Y}{2}\).

  5. 5.

    Two chiral states are connected by a parity transformation. For massless particles, the chirality is equivalent to the physical helicity, which is defined as the projection of the spin onto the direction of the linear momentum. The left- and right-handed chiral states of a particle can be obtained by applying the projection operators \(P^{\overset{R}{L}}=\frac{1\pm \gamma _5}{2}\).

  6. 6.

    These are the electroweak gauge fields prior to electroweak symmetry breaking.

References

  1. Halzen, F., & Martin, A. D. (2008). Quarks & leptons: An introductory course in modern particle physics. New York: Wiley.

    Google Scholar 

  2. Aitchison, I. A. R., & Hey, A. J. G. (2012). Gauge theories in particle physics: A practical introduction, Volume 2: Non-Abelian Gauge theories: QCD and the electroweak theory. Boca Raton: CRC Press.

    Google Scholar 

  3. Aitchison, I. A. R., Hey, A. J. G., & Brewer, D. F. (2003). Gauge theories in particle physics: A practical introduction, Volume 1: From relativistic quantum mechanics to QED. Boca Raton: CRC Press.

    Google Scholar 

  4. Kane, G. L. (1993). Modern elementary particle physics. Redwood City: Addison-Wesley.

    Google Scholar 

  5. Olive, K. A., et al. (2014). Review of particle physics. Chinese Physics C, 38(9).

    Google Scholar 

  6. Davis, R., Harmer, D. S., & Hoffman, K. C. (1968). Search for neutrinos from the sun. Physical Review Letters, 20(21), 1205–1209. doi:10.1103/PhysRevLett.20.1205.

    Article  ADS  Google Scholar 

  7. Fukuda, Y., et al. (1998). Evidence for oscillation of atmospheric neutrinos. Physical Review Letters, 81(8), 1562–1567. doi:10.1103/PhysRevLett.81.1562.

    Article  ADS  Google Scholar 

  8. Ahmad, Q. R., et al. (2001). Measurement of the rate of \(\nu _{e} +d\rightarrow p+p+e^{-}\) interactions produced by \({}^{8}B\) solar neutrinos at the Sudbury neutrino observatory. Physical Review Letters, 87(7), 071301. doi:10.1103/PhysRevLett.87.071301.

  9. Ahmad, Q. R., et al. (2002). Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury neutrino observatory. Physical Review Letters, 89(1), 011301. doi:10.1103/PhysRevLett.89.011301.

    Article  ADS  Google Scholar 

  10. Eguchi, K., et al. (2003). First results from KamLAND: Evidence for reactor antineutrino disappearance. Physical Review Letters, 90(2), 021802. doi:10.1103/PhysRevLett.90.021802.

    Article  ADS  MathSciNet  Google Scholar 

  11. ATLAS Collaboration (2012). Observation of a new particle in the search for the standard model Higgs Boson with the ATLAS detector at the LHC. Physics Letters B, 716(1), 1–29. ISSN: 0370-2693. doi:10.1016/j.physletb.2012.08.020.

    Google Scholar 

  12. ATLAS Collaboration (2012). A particle consistent with the Higgs Boson observed with the ATLAS detector at the large hadron collider. Science, 338(6114), 1576–1582. doi:10.1126/science.1232005.

  13. ATLAS Collaboration (2013). Evidence for the spin-0 nature of the Higgs Boson using ATLAS data. Physics Letters B, 726, 120–144. ISSN: 0370-2693. doi:10.1016/j.physletb.2013.08.026.

    Google Scholar 

  14. Greiner, W., & Reinhardt, J. (2013). Field quantization. Heidelberg: Springer Science & Business Media.

    MATH  Google Scholar 

  15. Griffiths, D. (2008). Introduction to elementary particles. New York: Wiley.

    MATH  Google Scholar 

  16. Noether, E. (1918). Invariant variational problems. News from the Society of Sciences in Göttingen, Mathematical Physics Class, 235–257.

    Google Scholar 

  17. Higgs, P. W. (1964). Broken symmetries, massless particles and gauge fields. Physics Letters, 12, 132. doi:10.1016/0031-9163(64)91136-9.

    Article  ADS  Google Scholar 

  18. Higgs, P. W. (1964). Broken symmetries and the masses of Gauge Bosons. Physical Review Letters, 13, 508. doi:10.1103/PhysRevLett.13.508.

    Article  ADS  MathSciNet  Google Scholar 

  19. Englert, F., & Brout, R. (1964). Broken symmetry and the mass of Gauge vector mesons. Physical Review Letters, 13, 321. doi:10.1103/PhysRevLett.13.321.

    Article  ADS  MathSciNet  Google Scholar 

  20. Guralnik, G. S., Hagen, C. R., & Kibble, T. W. B. (1964). Global conservation laws and massless particles. Physical Review Letters, 13, 585. doi:10.1103/PhysRevLett.13.585.

    Article  ADS  Google Scholar 

  21. Battye, R. A., & Moss, A. (2014). Evidence for massive neutrinos from cosmic microwave background and lensing observations. Physical Review Letters, 112(5), 051303. doi:10.1103/PhysRevLett.112.051303.

    Article  ADS  Google Scholar 

  22. Park, I. H., Schnetzer, S., et al. (1989). Experimental evidence for the non-Abelian nature of QCD from a study of multijet events produced in e+ e-annihilation. Physical Review Letters, 62(15), 1713.

    Article  ADS  Google Scholar 

  23. Arnison, G., Astbury, A., et al. (1984). Angular distributions and structure functions from two-jet events at the CERN SPS pp collider. Physics Letters B, 136(4), 294–300.

    Article  ADS  Google Scholar 

  24. Chekanov, S., et al. (2002). Dijet photoproduction at HERA and the structure of the photon. The European Physical Journal C, 23(4), 615–631.

    Article  ADS  Google Scholar 

  25. Salam, G. P. (2010). Elements of QCD for hadron colliders. arXiv:1011.5131.

  26. Buckley, A., Butterworth, J., et al. (2011). General-purpose event generators for LHC physics. Physics Reports, 504(5), 145–233.

    Article  ADS  Google Scholar 

  27. Richardson, P. (2013). Introduction to Monte Carlo event generation. Lecture 1: Introduction to Monte Carlo techniques. MCNet School. https://indico.desy.de/contributionDisplay.py?sessionId=16&contribId=9&confId=7132.

  28. Alwall, J., et al. (2011). MadGraph 5: Going beyond. Journal of High Energy Physics, 06, 128. doi:10.1007/JHEP06(2011)128. arXiv:1106.0522.

    Article  ADS  MATH  Google Scholar 

  29. Mangano, M. L., Piccinini, F., et al. (2003). ALPGEN, a generator for hard multiparton processes in hadronic collisions. Journal of High Energy Physics, 2003(07), 001.

    Article  Google Scholar 

  30. Sherpa 2: https://sherpa.hepforge.org/doc/SHERPA-MC-2.0.beta.html.

  31. Berger, C. F., Bern, Z., et al. (2008). Automated implementation of on-shell methods for one-loop amplitudes. Physical Review D, 78(3), 036003.

    Article  ADS  Google Scholar 

  32. Bern, Z., Diana, G., et al. (2012). Four-jet production at the large hadron collider at next-to-leading order in QCD. Physical Review Letters, 109(4), 042001.

    Article  ADS  Google Scholar 

  33. Badger, S., et al. (2014). Next-to-leading order QCD corrections to five jet production at the LHC. Physical Review D, 89(3), 034019. doi:10.1103/PhysRevD.89.034019.

    Article  ADS  MathSciNet  Google Scholar 

  34. Badger, Simon, et al. (2013). NLO QCD corrections to multi-jet production at the LHC with a centre-of-mass energy of \(\sqrt{s}= 8\) TeV. Physics Letters B, 718, 965–978. doi:10.1016/j.physletb.2012.11.029. arXiv:1209.0098.

    Google Scholar 

  35. Catani, S., et al. (2001). QCD matrix elements+ parton showers. Journal of High Energy Physics, 2001(11), 063.

    Article  ADS  Google Scholar 

  36. Mangano, M. L., et al. (2007). Matching matrix elements and shower evolution for top-pair production in hadronic collisions. Journal of High Energy Physics, 2007(01), 013.

    Article  Google Scholar 

  37. Andersson, Bo, et al. (1983). Parton fragmentation and string dynamics. Physics Reports, 97(2), 31–145.

    Article  ADS  Google Scholar 

  38. Winter, Jan-Christopher, Krauss, Frank, & Soff, Gerhard. (2004). A Modified cluster hadronization model. The European Physical Journal C, 36, 381–395. doi:10.1140/epjc/s2004-01960-8. arXiv:hep-ph/0311085.

    Google Scholar 

  39. Webber, B. R. (1984). A QCD model for jet fragmentation including soft gluon interference. Nuclear Physics B, 238(3), 492–528.

    Article  ADS  Google Scholar 

  40. Lai, H.-L., Guzzi, M., et al. (2010). New parton distributions for collider physics. Physical Review D, 82, 074024. doi:10.1103/PhysRevD.82.074024. arXiv:1007.2241.

    Article  ADS  Google Scholar 

  41. Pumplin, J., et al. (2002). New generation of parton distributions with uncertainties from global QCD analysis. Journal of High Energy Physics, 07, 012. doi:10.1088/1126-6708/2002/07/012. arXiv:hep-ph/0201195.

    Google Scholar 

  42. Nadolsky, P. M., et al. (2008). Implications of CTEQ global analysis for collider observables. Physical Review D, 78, 013004. doi:10.1103/PhysRevD.78.013004. arXiv:0802.0007.

    Article  ADS  Google Scholar 

  43. Buttar, C., Butterworth, J. M., et al. (2005). The underlying event. HERA and the LHC-A workshop on the implications of HERA for LHC physics: Proceedings Part A (pp. 192).

    Google Scholar 

  44. Halkiadakis, E., Redlinger, G., & Shih, D. (2014). Status and implications of BSM searches at the LHC. arXiv:1411.1427.

  45. Golfand, Yu. A., & Likhtman, E. P. (1971). Extension of the algebra of Poincaré group generators and violation of P invariance. JETP Letters, 13, 323–326; Neveu, A., & Schwartz, J. H. (1971). Factorizable dual model of pions. Nuclear Physics B, 31, 86–112; Neveu, A., & Schwartz, J. H. (1971). Quark model of dual pions. Physical Review D, 4, 1109–1111; Ramond, P. (1971). Dual theory for free fermions. Physical Review D, 3, 2415–2418; Volkov, D. V., & Akulov, V. P. (1973). Diffractive dissociation of composite particles. Physics Letters B, 46, 109–130; Wess, J., & Zumino, B. (1974). Light cone approach to positivity bounds on structure functions for deep inelastic lepton scattering in Weinberg’s theory. Physics Letters B, 49, 52–60; Wess, J., & Zumino, B. (1974). Supergauge transformations in four dimensions. Nuclear Physics B, 70, 39–50.

    Google Scholar 

  46. Coleman, S., & Mandula, J. (1967). All possible symmetries of the \(S\) matrix. Physical Review, 159(5), 1251.

    Article  ADS  MATH  Google Scholar 

  47. Haag, R., Łopuszański, J. T., & Sohnius, M. (1975). All possible generators of supersymmetries of the \(S\)-matrix. Nuclear Physics B, 88(2), 257–274.

    Article  ADS  MathSciNet  Google Scholar 

  48. Martin, S. P. (1997). A supersymmetry primer. arXiv:hep-ph/9709356.

  49. Feng, J. L. (2013). Naturalness and the status of supersymmetry. arXiv:1302.6587.

  50. Dimopoulos, Savas, & Georgi, Howard. (1981). Softly broken supersymmetry and SU(5). Nuclear Physics B, 193(1), 150–162.

    Article  ADS  Google Scholar 

  51. Nath, P., & Pérez, P. F. (2007). Proton stability in grand unified theories, in strings and in branes. Physics Reports, 441(5), 191–317.

    Google Scholar 

  52. Farrar, G. R., & Fayet, P. (1978). Phenomenology of the production, decay, and detection of new hadronic states associated with supersymmetry. Physics Letters B, 76(5), 575–579.

    Article  ADS  Google Scholar 

  53. BC Allanach and Ben Gripaios. (2012). Hide and seek with natural supersymmetry at the LHC. Journal of High Energy Physics, 2012(5), 1–25.

    Google Scholar 

  54. Arkani-Hamed, N., Dimopoulos, S., & Dvali, G. (1998). The hierarchy problem and new dimensions at a millimeter. Physics Letters B, 429(3), 263–272.

    Article  ADS  Google Scholar 

  55. Klein, O. (1928). Zur Fünfdimensionalen darstellung der relativitätstheorie. Zeitschrift für Physik, 46(3–4), 188–208.

    Article  ADS  MATH  Google Scholar 

  56. Hinshaw, G., Larson, D., et al. (2013). Nine-year Wilkinson microwave anisotropy probe (WMAP) observations: Cosmological parameter results. The Astrophysical Journal Supplement Series, 208(2), 19.

    Article  ADS  Google Scholar 

  57. Cottin, G., et al. (2014). Gravitino dark matter in split supersymmetry with bilinear R-parity violation. The European Physical Journal C, 74(11), 1–17.

    Article  Google Scholar 

  58. Batell, B., Pradler, J., & Spannowsky, M. (2011). Dark matter from minimal flavor violation. Journal of High Energy Physics, 2011(8), 1–21.

    Article  MATH  Google Scholar 

  59. Djouadi, A., Kneur, J.-L., & Moultaka, G. (2007). SuSpect: A fortran code for the supersymmetric and Higgs particle spectrum in the MSSM. Computer Physics Communications, 176(6), 426–455.

    Article  ADS  MATH  Google Scholar 

  60. Kane, G. L., et al. (1994). Study of constrained minimal supersymmetry. Physical Review D, 49, 6173. doi:10.1103/PhysRevD.49.6173. arXiv:hep-ph/9312272.

    Google Scholar 

  61. Cahill-Rowley, M. W., et al. (2013). More energy, more searches, but the phenomenological MSSM lives on. Physical Review D, 88(3), 035002.

    Article  ADS  Google Scholar 

  62. ATLAS Collaboration. (2011). Search for Microscopic Black Holes in Multi-Jet Final States with the ATLAS Detector at \(\sqrt{s} = 7 TeV\). Technical report. ATLAS-CONF-2011-068. CERN: Geneva.

    Google Scholar 

  63. Kraml, Sabine, Kulkarni, Suchita, et al. (2014). SModelS: a tool for interpreting simplifiedmodel results from the LHC and its application to supersymmetry. The European Physical Journal C, 74(5), 1–23.

    Article  Google Scholar 

  64. ATLAS Collaboration. (2014). Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using \(\sqrt{s} = 8\) TeV proton-proton collision data. Journal of High Energy Physics, 1409, 176. doi:10.1007/JHEP09(2014)176. arXiv:1405.7875.

  65. ATLAS Collaboration. (2012). Search for new phenomena using large jet multiplicities and missing transverse momentum with ATLAS in 5.8 \(fb^{-1}\) of p \(\sqrt{s} = 8\) TeV protonproton collisions. Technical report. ATLAS-COM-CONF-2012-142. CERN: Geneva.

    Google Scholar 

  66. Hall, L. J., Pinner, D., & Ruderman, J. T. (2012). A natural SUSY Higgs near 125 GeV. Journal of High Energy Physics, 2012(4), 1–25.

    Article  Google Scholar 

  67. Dimopoulos, S., Howe, K., & March-Russell, J. (2014). Maximally natural supersymmetry. arXiv:1404.7554.

  68. Adam, J., Bai, X., et al. (2013). New constraint on the existence of the \(\mu \rightarrow e + \gamma \) decay. Physical Review Letters, 110(20), 201801.

    Article  ADS  Google Scholar 

  69. Gabbiani, F., et al. (1996). A complete analysis of FCNC and CP constraints in general SUSY extensions of the standard model. Nuclear Physics B, 477(2), 321–352.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mireia Crispín Ortuzar .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ortuzar, M.C. (2016). Theoretical Overview. In: High Jet Multiplicity Physics at the LHC. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-43461-2_1

Download citation

Publish with us

Policies and ethics