Advertisement

Theoretical Overview

  • Mireia Crispín OrtuzarEmail author
Chapter
  • 283 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

This chapter covers some of the basic theoretical concepts needed in the rest of the book. It is divided in four sections, three of which will cover the Standard Model of particle physics, and one which will explore one of the possible extensions of the model, supersymmetry. The first section introduces the particle content of the Standard Model, while the second one describes particle dynamics. The third section focuses on the theory of strong interactions. Finally, the fourth section discusses the need to go beyond the Standard Model and the theory of supersymmetry.

Keywords

Dark Matter Higgs Boson Gauge Boson Coupling Strength Minimal Supersymmetric Standard Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Halzen, F., & Martin, A. D. (2008). Quarks & leptons: An introductory course in modern particle physics. New York: Wiley.Google Scholar
  2. 2.
    Aitchison, I. A. R., & Hey, A. J. G. (2012). Gauge theories in particle physics: A practical introduction, Volume 2: Non-Abelian Gauge theories: QCD and the electroweak theory. Boca Raton: CRC Press.Google Scholar
  3. 3.
    Aitchison, I. A. R., Hey, A. J. G., & Brewer, D. F. (2003). Gauge theories in particle physics: A practical introduction, Volume 1: From relativistic quantum mechanics to QED. Boca Raton: CRC Press.Google Scholar
  4. 4.
    Kane, G. L. (1993). Modern elementary particle physics. Redwood City: Addison-Wesley.Google Scholar
  5. 5.
    Olive, K. A., et al. (2014). Review of particle physics. Chinese Physics C, 38(9).Google Scholar
  6. 6.
    Davis, R., Harmer, D. S., & Hoffman, K. C. (1968). Search for neutrinos from the sun. Physical Review Letters, 20(21), 1205–1209. doi: 10.1103/PhysRevLett.20.1205.ADSCrossRefGoogle Scholar
  7. 7.
    Fukuda, Y., et al. (1998). Evidence for oscillation of atmospheric neutrinos. Physical Review Letters, 81(8), 1562–1567. doi: 10.1103/PhysRevLett.81.1562.ADSCrossRefGoogle Scholar
  8. 8.
    Ahmad, Q. R., et al. (2001). Measurement of the rate of \(\nu _{e} +d\rightarrow p+p+e^{-}\) interactions produced by \({}^{8}B\) solar neutrinos at the Sudbury neutrino observatory. Physical Review Letters, 87(7), 071301. doi: 10.1103/PhysRevLett.87.071301.
  9. 9.
    Ahmad, Q. R., et al. (2002). Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury neutrino observatory. Physical Review Letters, 89(1), 011301. doi: 10.1103/PhysRevLett.89.011301.ADSCrossRefGoogle Scholar
  10. 10.
    Eguchi, K., et al. (2003). First results from KamLAND: Evidence for reactor antineutrino disappearance. Physical Review Letters, 90(2), 021802. doi: 10.1103/PhysRevLett.90.021802.ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    ATLAS Collaboration (2012). Observation of a new particle in the search for the standard model Higgs Boson with the ATLAS detector at the LHC. Physics Letters B, 716(1), 1–29. ISSN: 0370-2693. doi: 10.1016/j.physletb.2012.08.020.Google Scholar
  12. 12.
    ATLAS Collaboration (2012). A particle consistent with the Higgs Boson observed with the ATLAS detector at the large hadron collider. Science, 338(6114), 1576–1582. doi: 10.1126/science.1232005.
  13. 13.
    ATLAS Collaboration (2013). Evidence for the spin-0 nature of the Higgs Boson using ATLAS data. Physics Letters B, 726, 120–144. ISSN: 0370-2693. doi: 10.1016/j.physletb.2013.08.026.Google Scholar
  14. 14.
    Greiner, W., & Reinhardt, J. (2013). Field quantization. Heidelberg: Springer Science & Business Media.zbMATHGoogle Scholar
  15. 15.
    Griffiths, D. (2008). Introduction to elementary particles. New York: Wiley.zbMATHGoogle Scholar
  16. 16.
    Noether, E. (1918). Invariant variational problems. News from the Society of Sciences in Göttingen, Mathematical Physics Class, 235–257.Google Scholar
  17. 17.
    Higgs, P. W. (1964). Broken symmetries, massless particles and gauge fields. Physics Letters, 12, 132. doi: 10.1016/0031-9163(64)91136-9.ADSCrossRefGoogle Scholar
  18. 18.
    Higgs, P. W. (1964). Broken symmetries and the masses of Gauge Bosons. Physical Review Letters, 13, 508. doi: 10.1103/PhysRevLett.13.508.ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Englert, F., & Brout, R. (1964). Broken symmetry and the mass of Gauge vector mesons. Physical Review Letters, 13, 321. doi: 10.1103/PhysRevLett.13.321.ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Guralnik, G. S., Hagen, C. R., & Kibble, T. W. B. (1964). Global conservation laws and massless particles. Physical Review Letters, 13, 585. doi: 10.1103/PhysRevLett.13.585.ADSCrossRefGoogle Scholar
  21. 21.
    Battye, R. A., & Moss, A. (2014). Evidence for massive neutrinos from cosmic microwave background and lensing observations. Physical Review Letters, 112(5), 051303. doi: 10.1103/PhysRevLett.112.051303.ADSCrossRefGoogle Scholar
  22. 22.
    Park, I. H., Schnetzer, S., et al. (1989). Experimental evidence for the non-Abelian nature of QCD from a study of multijet events produced in e+ e-annihilation. Physical Review Letters, 62(15), 1713.ADSCrossRefGoogle Scholar
  23. 23.
    Arnison, G., Astbury, A., et al. (1984). Angular distributions and structure functions from two-jet events at the CERN SPS pp collider. Physics Letters B, 136(4), 294–300.ADSCrossRefGoogle Scholar
  24. 24.
    Chekanov, S., et al. (2002). Dijet photoproduction at HERA and the structure of the photon. The European Physical Journal C, 23(4), 615–631.ADSCrossRefGoogle Scholar
  25. 25.
    Salam, G. P. (2010). Elements of QCD for hadron colliders. arXiv:1011.5131.
  26. 26.
    Buckley, A., Butterworth, J., et al. (2011). General-purpose event generators for LHC physics. Physics Reports, 504(5), 145–233.ADSCrossRefGoogle Scholar
  27. 27.
    Richardson, P. (2013). Introduction to Monte Carlo event generation. Lecture 1: Introduction to Monte Carlo techniques. MCNet School. https://indico.desy.de/contributionDisplay.py?sessionId=16&contribId=9&confId=7132.
  28. 28.
    Alwall, J., et al. (2011). MadGraph 5: Going beyond. Journal of High Energy Physics, 06, 128. doi: 10.1007/JHEP06(2011)128. arXiv:1106.0522.ADSCrossRefzbMATHGoogle Scholar
  29. 29.
    Mangano, M. L., Piccinini, F., et al. (2003). ALPGEN, a generator for hard multiparton processes in hadronic collisions. Journal of High Energy Physics, 2003(07), 001.CrossRefGoogle Scholar
  30. 30.
  31. 31.
    Berger, C. F., Bern, Z., et al. (2008). Automated implementation of on-shell methods for one-loop amplitudes. Physical Review D, 78(3), 036003.ADSCrossRefGoogle Scholar
  32. 32.
    Bern, Z., Diana, G., et al. (2012). Four-jet production at the large hadron collider at next-to-leading order in QCD. Physical Review Letters, 109(4), 042001.ADSCrossRefGoogle Scholar
  33. 33.
    Badger, S., et al. (2014). Next-to-leading order QCD corrections to five jet production at the LHC. Physical Review D, 89(3), 034019. doi: 10.1103/PhysRevD.89.034019.ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    Badger, Simon, et al. (2013). NLO QCD corrections to multi-jet production at the LHC with a centre-of-mass energy of \(\sqrt{s}= 8\) TeV. Physics Letters B, 718, 965–978. doi: 10.1016/j.physletb.2012.11.029. arXiv:1209.0098.Google Scholar
  35. 35.
    Catani, S., et al. (2001). QCD matrix elements+ parton showers. Journal of High Energy Physics, 2001(11), 063.ADSCrossRefGoogle Scholar
  36. 36.
    Mangano, M. L., et al. (2007). Matching matrix elements and shower evolution for top-pair production in hadronic collisions. Journal of High Energy Physics, 2007(01), 013.CrossRefGoogle Scholar
  37. 37.
    Andersson, Bo, et al. (1983). Parton fragmentation and string dynamics. Physics Reports, 97(2), 31–145.ADSCrossRefGoogle Scholar
  38. 38.
    Winter, Jan-Christopher, Krauss, Frank, & Soff, Gerhard. (2004). A Modified cluster hadronization model. The European Physical Journal C, 36, 381–395. doi: 10.1140/epjc/s2004-01960-8. arXiv:hep-ph/0311085.Google Scholar
  39. 39.
    Webber, B. R. (1984). A QCD model for jet fragmentation including soft gluon interference. Nuclear Physics B, 238(3), 492–528.ADSCrossRefGoogle Scholar
  40. 40.
    Lai, H.-L., Guzzi, M., et al. (2010). New parton distributions for collider physics. Physical Review D, 82, 074024. doi: 10.1103/PhysRevD.82.074024. arXiv:1007.2241.ADSCrossRefGoogle Scholar
  41. 41.
    Pumplin, J., et al. (2002). New generation of parton distributions with uncertainties from global QCD analysis. Journal of High Energy Physics, 07, 012. doi: 10.1088/1126-6708/2002/07/012. arXiv:hep-ph/0201195.Google Scholar
  42. 42.
    Nadolsky, P. M., et al. (2008). Implications of CTEQ global analysis for collider observables. Physical Review D, 78, 013004. doi: 10.1103/PhysRevD.78.013004. arXiv:0802.0007.ADSCrossRefGoogle Scholar
  43. 43.
    Buttar, C., Butterworth, J. M., et al. (2005). The underlying event. HERA and the LHC-A workshop on the implications of HERA for LHC physics: Proceedings Part A (pp. 192).Google Scholar
  44. 44.
    Halkiadakis, E., Redlinger, G., & Shih, D. (2014). Status and implications of BSM searches at the LHC. arXiv:1411.1427.
  45. 45.
    Golfand, Yu. A., & Likhtman, E. P. (1971). Extension of the algebra of Poincaré group generators and violation of P invariance. JETP Letters, 13, 323–326; Neveu, A., & Schwartz, J. H. (1971). Factorizable dual model of pions. Nuclear Physics B, 31, 86–112; Neveu, A., & Schwartz, J. H. (1971). Quark model of dual pions. Physical Review D, 4, 1109–1111; Ramond, P. (1971). Dual theory for free fermions. Physical Review D, 3, 2415–2418; Volkov, D. V., & Akulov, V. P. (1973). Diffractive dissociation of composite particles. Physics Letters B, 46, 109–130; Wess, J., & Zumino, B. (1974). Light cone approach to positivity bounds on structure functions for deep inelastic lepton scattering in Weinberg’s theory. Physics Letters B, 49, 52–60; Wess, J., & Zumino, B. (1974). Supergauge transformations in four dimensions. Nuclear Physics B, 70, 39–50.Google Scholar
  46. 46.
    Coleman, S., & Mandula, J. (1967). All possible symmetries of the \(S\) matrix. Physical Review, 159(5), 1251.ADSCrossRefzbMATHGoogle Scholar
  47. 47.
    Haag, R., Łopuszański, J. T., & Sohnius, M. (1975). All possible generators of supersymmetries of the \(S\)-matrix. Nuclear Physics B, 88(2), 257–274.ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    Martin, S. P. (1997). A supersymmetry primer. arXiv:hep-ph/9709356.
  49. 49.
    Feng, J. L. (2013). Naturalness and the status of supersymmetry. arXiv:1302.6587.
  50. 50.
    Dimopoulos, Savas, & Georgi, Howard. (1981). Softly broken supersymmetry and SU(5). Nuclear Physics B, 193(1), 150–162.ADSCrossRefGoogle Scholar
  51. 51.
    Nath, P., & Pérez, P. F. (2007). Proton stability in grand unified theories, in strings and in branes. Physics Reports, 441(5), 191–317.Google Scholar
  52. 52.
    Farrar, G. R., & Fayet, P. (1978). Phenomenology of the production, decay, and detection of new hadronic states associated with supersymmetry. Physics Letters B, 76(5), 575–579.ADSCrossRefGoogle Scholar
  53. 53.
    BC Allanach and Ben Gripaios. (2012). Hide and seek with natural supersymmetry at the LHC. Journal of High Energy Physics, 2012(5), 1–25.Google Scholar
  54. 54.
    Arkani-Hamed, N., Dimopoulos, S., & Dvali, G. (1998). The hierarchy problem and new dimensions at a millimeter. Physics Letters B, 429(3), 263–272.ADSCrossRefGoogle Scholar
  55. 55.
    Klein, O. (1928). Zur Fünfdimensionalen darstellung der relativitätstheorie. Zeitschrift für Physik, 46(3–4), 188–208.ADSCrossRefzbMATHGoogle Scholar
  56. 56.
    Hinshaw, G., Larson, D., et al. (2013). Nine-year Wilkinson microwave anisotropy probe (WMAP) observations: Cosmological parameter results. The Astrophysical Journal Supplement Series, 208(2), 19.ADSCrossRefGoogle Scholar
  57. 57.
    Cottin, G., et al. (2014). Gravitino dark matter in split supersymmetry with bilinear R-parity violation. The European Physical Journal C, 74(11), 1–17.CrossRefGoogle Scholar
  58. 58.
    Batell, B., Pradler, J., & Spannowsky, M. (2011). Dark matter from minimal flavor violation. Journal of High Energy Physics, 2011(8), 1–21.CrossRefzbMATHGoogle Scholar
  59. 59.
    Djouadi, A., Kneur, J.-L., & Moultaka, G. (2007). SuSpect: A fortran code for the supersymmetric and Higgs particle spectrum in the MSSM. Computer Physics Communications, 176(6), 426–455.ADSCrossRefzbMATHGoogle Scholar
  60. 60.
    Kane, G. L., et al. (1994). Study of constrained minimal supersymmetry. Physical Review D, 49, 6173. doi: 10.1103/PhysRevD.49.6173. arXiv:hep-ph/9312272.Google Scholar
  61. 61.
    Cahill-Rowley, M. W., et al. (2013). More energy, more searches, but the phenomenological MSSM lives on. Physical Review D, 88(3), 035002.ADSCrossRefGoogle Scholar
  62. 62.
    ATLAS Collaboration. (2011). Search for Microscopic Black Holes in Multi-Jet Final States with the ATLAS Detector at \(\sqrt{s} = 7 TeV\). Technical report. ATLAS-CONF-2011-068. CERN: Geneva.Google Scholar
  63. 63.
    Kraml, Sabine, Kulkarni, Suchita, et al. (2014). SModelS: a tool for interpreting simplifiedmodel results from the LHC and its application to supersymmetry. The European Physical Journal C, 74(5), 1–23.CrossRefGoogle Scholar
  64. 64.
    ATLAS Collaboration. (2014). Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using \(\sqrt{s} = 8\) TeV proton-proton collision data. Journal of High Energy Physics, 1409, 176. doi: 10.1007/JHEP09(2014)176. arXiv:1405.7875.
  65. 65.
    ATLAS Collaboration. (2012). Search for new phenomena using large jet multiplicities and missing transverse momentum with ATLAS in 5.8 \(fb^{-1}\) of p \(\sqrt{s} = 8\) TeV protonproton collisions. Technical report. ATLAS-COM-CONF-2012-142. CERN: Geneva.Google Scholar
  66. 66.
    Hall, L. J., Pinner, D., & Ruderman, J. T. (2012). A natural SUSY Higgs near 125 GeV. Journal of High Energy Physics, 2012(4), 1–25.CrossRefGoogle Scholar
  67. 67.
    Dimopoulos, S., Howe, K., & March-Russell, J. (2014). Maximally natural supersymmetry. arXiv:1404.7554.
  68. 68.
    Adam, J., Bai, X., et al. (2013). New constraint on the existence of the \(\mu \rightarrow e + \gamma \) decay. Physical Review Letters, 110(20), 201801.ADSCrossRefGoogle Scholar
  69. 69.
    Gabbiani, F., et al. (1996). A complete analysis of FCNC and CP constraints in general SUSY extensions of the standard model. Nuclear Physics B, 477(2), 321–352.ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Memorial Sloan Kettering Cancer CenterNew YorkUSA

Personalised recommendations