Azimuthal Anisotropy of D\({^0}\) Production in Pb–Pb Collisions

  • Andrea FestantiEmail author
Part of the Springer Theses book series (Springer Theses)


The results on the azimuthal anisotropy of D meson production in Pb–Pb collisions at \(\sqrt{s_\mathrm{NN}}=2.76\) TeV are presented in this chapter. The azimuthal anisotropy was quantified in terms of the elliptic flow \(v_2\) and of the nuclear modification factor \(R_\mathrm{AA}\), measured in the direction of the event plane and orthogonal to it. Section 7.1 is devoted to the \(v_2\) results: the \(\mathrm{D}^{0}\) elliptic flow is presented as a function of \(p_\mathrm{T}\) in the 30–50 % centrality class. \(v_2\) was also measured in the 0–10 % and 10–30 % centrality classes to investigate its dependence on the collision centrality. The average D meson elliptic flow is compared in this section with the charged-particle \(v_2\) measured with the event-plane method. The results of the \(\mathrm{D}^{0}\) \(R_\mathrm{AA}\) measured in the in-plane and in the out-of-plane regions, in the 30–50 % centrality class, are presented in Sect. 7.3. Section 7.4 is devoted to the comparison of the average D meson \(v_2\) in the 30–50 % centrality class, the average D meson nuclear modification factor in 0–20 % Pb–Pb collisions, and the \(\mathrm{D}^{0}\) meson \(R_\mathrm{AA}\) in-plane and out-of-plane to theoretical calculations.


Heavy Quark Charm Quark Centrality Class Event Plane Azimuthal Anisotropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    W. Alberico, A. Beraudo, A. De Pace, A. Molinari, M. Monteno et al., Heavy-flavour spectra in high energy nucleus-nucleus collisions. Eur. Phys. J. C 71, 1666 (2011). arXiv:1101.6008 [hep-ph]ADSCrossRefGoogle Scholar
  2. 2.
    ALICE Collaboration, B. Abelev et al., Anisotropic flow of charged hadrons, pions and (anti-) protons measured at high transverse momentum in Pb–Pb collisions at \(\sqrt{s_{\rm NN}}=2.76\) TeV. Phys. Lett. B 719, 18–28 (2013). arXiv:1205.5761 [nucl-ex]
  3. 3.
    ALICE Collaboration, B. Abelev et al., Azimuthal anisotropy of D Meson production in Pb–Pb collisions at \(\sqrt{s_{\rm NN}} = 2.76\) TeV. Phys. Rev. C 90, 034904 (2014). arXiv:1405.2001 [nucl-ex]
  4. 4.
    ALICE Collaboration, B. Abelev et al., D Meson elliptic flow in non-central Pb–Pb collisions at \(\sqrt{s_{\rm NN}}=2.76\) TeV. Phys. Rev. Lett. 111, 102301 (2013). arXiv:1305.2707 [nucl-ex]
  5. 5.
    ALICE Collaboration, B. Abelev et al., Suppression of high-transverse momentum D Mesons in central Pb–Pb collisions at \(\sqrt{s_{\rm NN}}=2.76\) TeV. JHEP 1209, 112 (2012). arXiv:1203.2160 [nucl-ex]
  6. 6.
    R. Baier, D. Schiff, B. Zakharov, Energy loss in perturbative QCD. Ann. Rev. Nucl. Part. Sci. 50, 37–69 (2000). arXiv:hep-ph/0002198 [hep-ph]ADSCrossRefGoogle Scholar
  7. 7.
    S. Bass, M. Belkacem, M. Bleicher, M. Brandstetter, L. Bravina et al., Microscopic models for ultra-relativistic heavy-ion collisions. Prog. Part. Nucl. Phys. 41, 255–369 (1998). arXiv:nucl-th/9803035 [nucl-th]ADSCrossRefGoogle Scholar
  8. 8.
    A. Bilandzic, R. Snellings, S. Voloshin, Flow analysis with cumulants: direct calculations. Phys. Rev. C 83, 044913 (2011). arXiv:1010.0233 [nucl-ex]ADSCrossRefGoogle Scholar
  9. 9.
    M. Bleicher, E. Zabrodin, C. Spieles, S. Bass, C. Ernst et al., Relativistic hadron–hadron collisions in the ultra-relativistic quantum molecular dynamics model. J. Phys. G 25, 1859–1896 (1999). arXiv:hep-ph/9909407 [hep-ph]ADSCrossRefGoogle Scholar
  10. 10.
    S. Cao, G.-Y. Qin, S.A. Bass, Heavy-quark dynamics and hadronization in ultra-relativistic heavy-ion collisions: collisional versus radiative energy loss. Phys. Rev. C 88(4), 044907 (2013). arXiv:1308.0617 [nucl-th]ADSCrossRefGoogle Scholar
  11. 11.
    M. Djordjevic, M. Gyulassy, Heavy-quark radiative energy loss in QCD matter. Nucl. Phys. A 733, 265–298 (2004). arXiv:nucl-th/0310076 [nucl-th]ADSCrossRefGoogle Scholar
  12. 12.
    O. Fochler, J. Uphoff, Z. Xu, C. Greiner, Jet quenching and elliptic flow at RHIC and LHC within a pQCD-based partonic transport model. J. Phys. G 38, 124152 (2011). arXiv:1107.0130 [hep-ph]ADSCrossRefGoogle Scholar
  13. 13.
    M. He, R.J. Fries, R. Rapp, Heavy flavor at the large hadron collider in a strong coupling approach. Phys. Lett. B 735, 445–450 (2014). arXiv:1401.3817 [nucl-th]ADSCrossRefGoogle Scholar
  14. 14.
    W. Horowitz, Testing pQCD and AdS/CFT energy loss at RHIC and LHC. AIP Conf. Proc. 1441, 889–891 (2012). arXiv:1108.5876 [hep-ph]ADSCrossRefGoogle Scholar
  15. 15.
    W. Horowitz, M. Gyulassy, The surprising transparency of the sQGP at LHC. Nucl. Phys. A 872, 265–285 (2011). arXiv:1104.4958 [hep-ph]ADSCrossRefGoogle Scholar
  16. 16.
    T. Lang, H. van Hees, J. Steinheimer, M. Bleicher, Heavy-quark transport in heavy-ion collisions at RHIC and LHC within the UrQMD transport model. arXiv:1211.6912 [hep-ph]
  17. 17.
    T. Lang, H. van Hees, J. Steinheimer, Y.-P. Yan, M. Bleicher, Heavy-quark transport at RHIC and LHC. J. Phys. Conf. Ser. 426, 012032 (2013). arXiv:1212.0696 [hep-ph]ADSCrossRefGoogle Scholar
  18. 18.
    M.L. Miller, K. Reygers, S.J. Sanders, P. Steinberg, Glauber modeling in high-energy nuclear collisions. Ann. Rev. Nucl. Part. Sci. 57, 205–243 (2007). arXiv:nucl-ex/0701025 [nucl-ex]ADSCrossRefGoogle Scholar
  19. 19.
    M. Monteno, W. Alberico, A. Beraudo, A. De Pace, A. Molinari et al., Heavy-flavor dynamics in nucleus-nucleus collisions: from RHIC to LHC. J. Phys. G 38, 124144 (2011). arXiv:1107.0256 [hep-ph]ADSCrossRefGoogle Scholar
  20. 20.
    M. Nahrgang, J. Aichelin, P.B. Gossiaux, K. Werner, Influence of hadronic bound states above \(T_c\) on heavy-quark observables in Pb-Pb collisions at the CERN large hadron collider. Phys. Rev. C 89(1), 014905 (2014). arXiv:1305.6544 [hep-ph]ADSCrossRefGoogle Scholar
  21. 21.
    STAR Collaboration, C. Adler et al., Elliptic flow from two and four particle correlations in Au+Au collisions at \(\sqrt{s_{\rm NN}}=130\) GeV. Phys. Rev. C 66, 034904 (2002). arXiv:nucl-ex/0206001 [nucl-ex]
  22. 22.
    J. Uphoff, O. Fochler, Z. Xu, C. Greiner, Elliptic flow and energy loss of heavy quarks in ultra-relativistic heavy-ion collisions. Phys. Rev. C 84, 024908 (2011). arXiv:1104.2295 [hep-ph]ADSCrossRefGoogle Scholar
  23. 23.
    J. Uphoff, O. Fochler, Z. Xu, C. Greiner, Open heavy flavor in Pb-Pb collisions at \(\sqrt{s_{\rm NN}}=2.76\) TeV within a transport model. Phys. Lett. B 717, 430–435 (2012). arXiv:1205.4945 [hep-ph]ADSCrossRefGoogle Scholar
  24. 24.
    K. Werner, I. Karpenko, T. Pierog, M. Bleicher, K. Mikhailov, Event-by-event simulation of the three-dimensional hydrodynamic evolution from flux tube initial conditions in ultra-relativistic heavy-ion collisions. Phys. Rev. C 82, 044904 (2010). arXiv:1004.0805 [nucl-th]ADSCrossRefGoogle Scholar
  25. 25.
    K. Werner, I. Karpenko, M. Bleicher, T. Pierog, S. Porteboeuf-Houssais, Jets, bulk matter, and their interaction in heavy-ion collisions at several TeV. Phys. Rev. C 85, 064907 (2012). arXiv:1203.5704 [nucl-th]ADSCrossRefGoogle Scholar
  26. 26.
    S. Wicks, W. Horowitz, M. Djordjevic, M. Gyulassy, Elastic, inelastic, and path length fluctuations in jet tomography. Nucl. Phys. A 784, 426–442 (2007). arXiv:nucl-th/0512076 [nucl-th]ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Physics, INFN-Sezione di PadovaUniversità degli Studi di PadovaPaduaItaly

Personalised recommendations