Advertisement

Heavy-Flavour Probes in Heavy-Ion Collisions

  • Andrea FestantiEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Heavy quarks (charm and beauty) provide sensitive probes of the heavy-ion collision dynamics at both short and long timescales. On one hand, heavy-flavour production is an intrinsically perturbative phenomenon which involves large momentum transfer due to the large mass of the quarks (\(m_c\simeq 1.5\) GeV/\(c^2\) and \(m_b\simeq 5\) GeV/\(c^2\)) and, thus, takes place on a short timescale, smaller than the formation time of the QGP. On the other hand, the long lifetime of charm and beauty quarks allows them to live through the thermalization phase of the plasma and to possibly interact with the constituents of the medium. The measurement of charm and beauty production in proton–proton and proton–nucleus collisions provides the necessary baseline for the study of medium effects in nucleus–nucleus collisions, and it is of great interest per se, as a test of both perturbative and non-perturbative sectors of QCD. Moreover, proton–nucleus collisions allow to investigate the cold nuclear matter effects, which are present also in nucleus–nucleus collisions and need to be disentangled from final state effects in order to understand the heavy-flavour interaction mechanisms with the medium. In this chapter, after a brief introduction on the heavy-flavour production in proton–proton collisions in Sect. 2.1, the interaction mechanisms of heavy quarks and the relation to the medium properties will be discussed in Sects. 2.2 and 2.3. Finally, in Sect. 2.4, the cold nuclear matter effects, which can be investigated in proton–nucleus collisions, are described.

Keywords

Transverse Momentum Heavy Quark Parton Distribution Function Nucleus Collision Charm Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M.L. Mangano, P. Nason, G. Ridolfi, Heavy-quark correlations in hadron collisions at next-to-leading order. Nucl. Phys. B 373, 295–345 (1992)ADSCrossRefGoogle Scholar
  2. 2.
    B. Kniehl, G. Kramer, I. Schienbein, H. Spiesberger, Hadroproduction of D and B mesons in a massive VFNS. AIP Conf. Proc. 792, 867–870 (2005). arXiv:hep-ph/0507068 [hep-ph]
  3. 3.
    B. Kniehl, G. Kramer, I. Schienbein, H. Spiesberger, Collinear subtractions in hadroproduction of heavy quarks. Eur. Phys. J. C 41, 199–212 (2005). arXiv:hep-ph/0502194 [hep-ph]
  4. 4.
    B. Kniehl, G. Kramer, I. Schienbein, H. Spiesberger, Inclusive charmed-meson production at the CERN LHC. Eur. Phys. J. C 72, 2082 (2012). arXiv:1202.0439 [hep-ph]ADSCrossRefGoogle Scholar
  5. 5.
    S. Frixione, B.R. Webber, Matching NLO QCD computations and parton shower simulations. JHEP 0206, 029 (2002). arXiv:hep-ph/0204244 [hep-ph]ADSCrossRefGoogle Scholar
  6. 6.
    S. Frixione, P. Nason, B.R. Webber, Matching NLO QCD and parton showers in heavy-flavor production. JHEP 0308, 007 (2003). arXiv:hep-ph/0305252 [hep-ph]ADSCrossRefGoogle Scholar
  7. 7.
    M. Cacciari, M. Greco, P. Nason, The \(p_{\rm T}\) spectrum in heavy-flavor hadroproduction. JHEP 9805, 007 (1998). arXiv:hep-ph/9803400 [hep-ph]ADSCrossRefGoogle Scholar
  8. 8.
    M. Cacciari, S. Frixione, P. Nason, The \(p_{\rm T}\) spectrum in heavy-flavor photoproduction. JHEP 0103, 006 (2001). arXiv:hep-ph/0102134 [hep-ph]
  9. 9.
    M. Cacciari, S. Frixione, N. Houdeau, M.L. Mangano, P. Nason et al., Theoretical predictions for charm and bottom production at the LHC. JHEP 1210, 137 (2012). arXiv:1205.6344 [hep-ph]ADSCrossRefGoogle Scholar
  10. 10.
    S. Alekhin, G. Altarelli, N. Amapane, J. Andersen, V. Andreev et al., HERA and the LHC: a workshop on the implications of HERA for LHC physics. Proceedings, Part B. arXiv:hep-ph/0601013 [hep-ph]
  11. 11.
    ALICE Collaboration, B. Abelev et al., Measurement of charm production at central rapidity in proton–proton collisions at \(\sqrt{s}=7\) TeV. JHEP 2012(1) (2012)Google Scholar
  12. 12.
    ALICE Collaboration, B. Abelev et al., Measurement of charm production at central rapidity in proton–proton collisions at \(\sqrt{s}=2.76\) TeV. JHEP 2012(7) (2012)Google Scholar
  13. 13.
    ATLAS Collaboration, Comparison of \(D^*\) meson production cross sections with FONLL and GM-VFNS predictionsGoogle Scholar
  14. 14.
    ATLAS Collaboration, Measurement of \(D^*\) meson production cross sections in pp collisions at \(\sqrt{s}=7\) TeV with the ATLAS detectorGoogle Scholar
  15. 15.
    LHCb Collaboration, Prompt charm production in \(pp\) collisions at \(\sqrt{s}=7\) TeVGoogle Scholar
  16. 16.
    P.M. Nadolsky, H.-L. Lai, Q.-H. Cao, J. Huston, J. Pumplin et al., Implications of CTEQ global analysis for collider observables. Phys. Rev. D 78, 013004 (2008). arXiv:0802.0007 [hep-ph]ADSCrossRefGoogle Scholar
  17. 17.
    PHENIX Collaboration, A. Adare et al., Heavy quark production in pp and energy loss and flow of heavy quarks in Au–Au collisions at \(\sqrt{s_{\rm NN}}=200\) GeV. Phys. Rev. C 84, 044905 (2011). arXiv:1005.1627 [nucl-ex]
  18. 18.
    STAR Collaboration, L. Adamczyk et al., Measurements of \(D^{0}\) and \(D^{*}\) production in \(pp\) collisions at \(\sqrt{s} = 200\) GeV. Phys. Rev. D 86, 072013 (2012). arXiv:1204.4244 [nucl-ex]
  19. 19.
    C. Lourenco, H. Wohri, Heavy-flavour hadroproduction from fixed-target to collider energies. Phys. Rep. 433, 127–180 (2006). arXiv:hep-ph/0609101 [hep-ph]
  20. 20.
    R. Fries, B. Muller, C. Nonaka, S. Bass, Hadronization in heavy-ion collisions: recombination and fragmentation of partons. Phys. Rev. Lett. 90, 202303 (2003). arXiv:nucl-th/0301087 [nucl-th]ADSCrossRefGoogle Scholar
  21. 21.
    P. Koch, B. Muller, J. Rafelski, Strangeness in relativistic heavy-ion collisions. Phys. Rep. 142, 167–262 (1986)ADSCrossRefGoogle Scholar
  22. 22.
    I. Kuznetsova, J. Rafelski, Heavy-flavor hadrons in statistical hadronization of strangeness-rich QGP. Eur. Phys. J. C 51, 113–133 (2007). arXiv:hep-ph/0607203 [hep-ph]
  23. 23.
    M. He, R.J. Fries, R. Rapp, \(\rm {D_s}\)-meson as quantitative probe of diffusion and hadronization in nuclear collisions. Phys. Rev. Lett. 110(11), 112301 (2013). arXiv:1204.4442 [nucl-th]
  24. 24.
    S. Peigne, A. Peshier, Collisional energy loss of a fast heavy quark in a quark-gluon plasma. Phys. Rev. D 77, 114017 (2008). arXiv:0802.4364 [hep-ph]ADSCrossRefGoogle Scholar
  25. 25.
    R. Rapp, H. van Hees, Heavy quarks in the quark-gluon plasma. arXiv:0903.1096 [hep-ph]
  26. 26.
    H. van Hees, M. Mannarelli, V. Greco, R. Rapp, Nonperturbative heavy-quark diffusion in the quark-gluon plasma. Phys. Rev. Lett. 100, 192301 (2008). arXiv:0709.2884 [hep-ph]ADSCrossRefGoogle Scholar
  27. 27.
    A. Peshier, Turning on the charm. Nucl. Phys. A 888, 7–22 (2012). arXiv:0801.0595 [hep-ph]ADSCrossRefGoogle Scholar
  28. 28.
    P. Gossiaux, J. Aichelin, Towards an understanding of the RHIC single electron data. Phys. Rev. C 78, 014904 (2008). arXiv:0802.2525 [hep-ph]ADSCrossRefGoogle Scholar
  29. 29.
    S.S. Gubser, Comparing the drag force on heavy quarks in N \(=\) 4 super-Yang-Mills theory and QCD. Phys. Rev. D 76, 126003 (2007). arXiv:hep-th/0611272 [hep-th]
  30. 30.
    R. Baier, Y.L. Dokshitzer, A.H. Mueller, S. Peigne, D. Schiff, Radiative energy loss of high-energy quarks and gluons in a finite volume quark-gluon plasma. Nucl. Phys. B 483, 291–320 (1997). arXiv:hep-ph/9607355 [hep-ph]
  31. 31.
    R. Baier, Y.L. Dokshitzer, A.H. Mueller, S. Peigne, D. Schiff, Radiative energy loss and \(p_{\rm T}\)-broadening of high-energy partons in nuclei. Nucl. Phys. B 484, 265–282 (1997). arXiv:hep-ph/9608322 [hep-ph]
  32. 32.
    Y.L. Dokshitzer, D. Kharzeev, Heavy-quark colorimetry of QCD matter. Phys. Lett. B 519, 199–206 (2001). arXiv:hep-ph/0106202 [hep-ph]
  33. 33.
    ATLAS Collaboration, G. Aad et al., Observation of a centrality-dependent dijet asymmetry in lead–lead collisions at \(\sqrt{s_{\rm NN}}=2.76\) TeV with the ATLAS detector at the LHC. Phys. Rev. Lett. 105, 252303 (2010). arXiv:1011.6182 [hep-ex]
  34. 34.
    CMS Collaboration, S. Chatrchyan et al., Observation and studies of jet quenching in Pb-Pb collisions at nucleon-nucleon center-of-mass energy = 2.76 TeV. Phys. Rev. C 84, 024906 (2011). arXiv:1102.1957 [nucl-ex]
  35. 35.
    STAR Collaboration, L. Adamczyk et al., Observation of D\(^0\) meson nuclear modifications in Au-Au collisions at \(\sqrt{s_{\rm NN}}=200\) GeV. Phys. Rev. Lett. 113, 142301 (2014). arXiv:1404.6185 [nucl-ex]
  36. 36.
    ALICE Collaboration, B. Abelev et al., Suppression of high-transverse momentum D mesons in central Pb–Pb collisions at \(\sqrt{s_{\rm NN}}=2.76\) TeV. JHEP 1209, 112 (2012). arXiv:1203.2160 [nucl-ex]
  37. 37.
    CMS Collaboration, J/\(\psi \) results from CMS in Pb–Pb collisions, with 150\(\mu b^{-1}\) data. Technical report, CERN (2012)Google Scholar
  38. 38.
    M. Djordjevic, M. Djordjevic, LHC jet suppression of light and heavy-flavor observables. Phys. Lett. B 734, 286–289 (2014). arXiv:1307.4098 [hep-ph]ADSCrossRefGoogle Scholar
  39. 39.
    P. Kovtun, D.T. Son, A.O. Starinets, Viscosity in strongly-interacting quantum field theories from black hole physics. Phys. Rev. Lett. 94, 111601 (2005). arXiv:hep-th/0405231 [hep-th]ADSCrossRefGoogle Scholar
  40. 40.
    ALICE Collaboration, B. Abelev et al., D meson elliptic flow in non-central Pb–Pb collisions at \(\sqrt{s_{\rm NN}}=2.76\) TeV. Phys. Rev. Lett. 111, 102301 (2013). arXiv:1305.2707 [nucl-ex]
  41. 41.
    ATLAS Collaboration, G. Aad et al., Measurement of the azimuthal anisotropy for charged particle production in \(\sqrt{s_{\rm NN}}=2.76\) TeV lead–lead collisions with the ATLAS detector. Phys. Rev. C 86, 014907 (2012). arXiv:1203.3087 [hep-ex]
  42. 42.
    CMS Collaboration, S. Chatrchyan et al., Measurement of the elliptic anisotropy of charged particles produced in Pb-Pb collisions at nucleon-nucleon center-of-mass energy \(=\) 2.76 TeV. Phys. Rev. C 87, 014902 (2013). arXiv:1204.1409 [nucl-ex]
  43. 43.
    STAR Collaboration, J. Adams et al., Azimuthal anisotropy in Au–Au collisions at \(\sqrt{s_{\rm NN}}=200\) GeV. Phys. Rev. C 72, 014904 (2005)Google Scholar
  44. 44.
    ALICE Collaboration, K. Aamodt et al., Higher harmonic anisotropic flow measurements of charged particles in Pb–Pb collisions at \(\sqrt{s_{\rm NN}}=2.76\) TeV. Phys. Rev. Lett. 107, 032301 (2011). arXiv:1105.3865 [nucl-ex]
  45. 45.
    M. Arneodo, Nuclear effects in structure functions. Phys. Rep. 240, 301–393 (1994)ADSCrossRefGoogle Scholar
  46. 46.
    K. Eskola, H. Paukkunen, C. Salgado, EPS09: a new generation of NLO and LO nuclear parton distribution functions. JHEP 0904, 065 (2009). arXiv:0902.4154 [hep-ph]ADSCrossRefGoogle Scholar
  47. 47.
    M. Hirai, S. Kumano, T. Nagai, Determination of nuclear parton distribution functions and their uncertainties in next-to-leading order. Phys. Rev. C 76, 065207 (2007). arXiv:0709.3038 [hep-ph]ADSCrossRefGoogle Scholar
  48. 48.
    D. de Florian, R. Sassot, Nuclear parton distributions at next-to-leading order. Phys. Rev. D 69, 074028 (2004). arXiv:hep-ph/0311227 [hep-ph]ADSCrossRefGoogle Scholar
  49. 49.
    ALICE Collaboration, ALICE: physics performance report, volume II. J. Phys. G: Nucl. Part. Phys. 32(10), 1295 (2006)Google Scholar
  50. 50.
    H. Fujii, K. Watanabe, Heavy-quark pair production in high-energy pA collisions: open heavy flavors. Nucl. Phys. A 920, 78–93 (2013). arXiv:1308.1258 [hep-ph]ADSCrossRefGoogle Scholar
  51. 51.
    P. Tribedy, R. Venugopalan, QCD saturation at the LHC: comparisons of models to pp and AA data and predictions for p-Pb collisions. Phys. Lett. B 710, 125–133 (2012). arXiv:1112.2445 [hep-ph]ADSCrossRefGoogle Scholar
  52. 52.
    J.L. Albacete, A. Dumitru, H. Fujii, Y. Nara, CGC predictions for p-Pb collisions at the LHC. Nucl. Phys. A 897, 1–27 (2013). arXiv:1209.2001 [hep-ph]ADSCrossRefGoogle Scholar
  53. 53.
    A.H. Rezaeian, CGC predictions for p-A collisions at the LHC and signature of QCD saturation. Phys. Lett. B 718, 1058–1069 (2013). arXiv:1210.2385 [hep-ph]ADSCrossRefGoogle Scholar
  54. 54.
    J. Cronin, H.J. Frisch, M. Shochet, J. Boymond, R. Mermod et al., Production of hadrons with large transverse momentum at 200 GeV, 300 GeV, and 400 GeV. Phys. Rev. D 11, 3105 (1975)ADSCrossRefGoogle Scholar
  55. 55.
    B. Kopeliovich, J. Nemchik, A. Schafer, A. Tarasov, Cronin effect in hadron production off nuclei. Phys. Rev. Lett. 88, 232303 (2002). arXiv:hep-ph/0201010 ADSCrossRefGoogle Scholar
  56. 56.
    X.-N. Wang, Systematic study of high-\(p_{\rm T}\) hadron spectra in pp, pA and AA collisions from SPS to RHIC energies. Phys. Rev. C 61, 064910 (2000). arXiv:nucl-th/9812021 [nucl-th]ADSCrossRefGoogle Scholar
  57. 57.
    M. Lev, B. Petersson, Nuclear effects at large transverse momentum in a QCD parton model. Z. Phys. C 21, 155 (1983)ADSCrossRefGoogle Scholar
  58. 58.
    I. Vitev, Non-abelian energy loss in cold nuclear matter. Phys. Rev. C 75, 064906 (2007). arXiv:hep-ph/0703002 [hep-ph]ADSCrossRefGoogle Scholar
  59. 59.
    CMS Collaboration, S. Chatrchyan et al., Observation of long-range near-side angular correlations in proton–lead collisions at the LHC. Phys. Lett. B 718, 795–814 (2013). arXiv:1210.5482 [nucl-ex]
  60. 60.
    ALICE Collaboration, B. Abelev et al., Long-range angular correlations on the near and away side in p–Pb collisions at \(\sqrt{s_{\rm NN}}=5.02\) TeV. Phys. Lett. B 719, 29–41 (2013). arXiv:1212.2001 [nucl-ex]
  61. 61.
    ALICE Collaboration, B. Abelev et al., Long-range angular correlations of \(\pi \), K and p in p–Pb collisions at \(\sqrt{s_{\rm NN}}=5.02\) TeV. Phys. Lett. B 726, 164–177 (2013). arXiv:1307.3237 [nucl-ex]
  62. 62.
    ATLAS Collaboration, G. Aad et al., Observation of associated near-side and away-side long-range correlations in \(\sqrt{s_{\rm NN}}=5.02\) TeV proton-lead collisions with the ATLAS detector. Phys. Rev. Lett. 110(18), 182302 (2013). arXiv:1212.5198 [hep-ex]
  63. 63.
    PHENIX Collaboration, S. Adler et al., Nuclear effects on hadron production in d–Au and pp collisions at \(\sqrt{s_{\rm NN}}=200\) GeV. Phys. Rev. C 74, 024904 (2006). arXiv:nucl-ex/0603010 [nucl-ex]
  64. 64.
    PHENIX Collaboration, A. Adare et al., Nuclear modification of \(\psi ^{^{\prime }}, \chi _c\), and \(J/\psi \) production in d–Au collisions at \(\sqrt{s_{\rm NN}}=200\) GeV. Phys. Rev. Lett. 111(20), 202301 (2013). arXiv:1305.5516 [nucl-ex]
  65. 65.
    ALICE Collaboration, B. Abelev et al., Suppression of \(\psi \)(2S) production in p-Pb collisions at \(\sqrt{s_{\rm NN}} = 5.02\) TeV. JHEP 1412, 073 (2014). arXiv:1405.3796 [nucl-ex]
  66. 66.
    A.M. Sickles, Possible evidence for radial flow of heavy mesons in d–Au collisions. Phys. Lett. B 731, 51–56 (2014). arXiv:1309.6924 [nucl-th]
  67. 67.
    STAR Collaboration, B. Abelev et al., Systematic measurements of identified particle spectra in pp, d-Au and Au-Au collisions from STAR. Phys. Rev. C 79, 034909 (2009). arXiv:0808.2041 [nucl-ex]
  68. 68.
    ALICE Collaboration, B. Abelev et al., Multiplicity dependence of pion, kaon, proton and lambda production in p–Pb collisions at \(\sqrt{s_{\rm NN}}=5.02\) TeV. Phys. Lett. B 728, 25–38 (2014). arXiv:1307.6796 [nucl-ex]
  69. 69.
    PHENIX Collaboration, A. Adare et al., Cold-nuclear-matter effects on heavy-quark production in d–Au collisions at \(\sqrt{s_{\rm NN}}=200\) GeV. Phys. Rev. Lett. 109(24), 242301 (2012). arXiv:1208.1293 [nucl-ex]

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Physics, INFN-Sezione di PadovaUniversità degli Studi di PadovaPaduaItaly

Personalised recommendations