Introduction to the Physics of Ultra-Relativistic Heavy-Ion Collisions

  • Andrea FestantiEmail author
Part of the Springer Theses book series (Springer Theses)


The strong interaction between the elementary constituents of matter (quarks and gluons) is described by the theory of Quantum Chromodynamics (QCD). The basic ingredients of this quantum field theory will be explained in Sect. 1.1 and its peculiar properties driven by the running of the strong coupling constant will be addressed in Sect. 1.2. These properties lead to the prediction that strongly-interacting matter can exist in different phases depending on the temperature and the density of the system. Nuclear matter at extremely high temperatures and energy densities is obtained with ultra-relativistic heavy-ion collisions, which allow to create a state of matter where quarks and gluons are interacting without being confined into hadrons. According to the hot Big Bang model, this state of matter should have appeared after the electro-weak phase transition, a few microseconds after the Big Bang. The Lattice QCD approach, which is introduced in Sect. 1.3, allows to obtain quantitative predictions on the basic properties of the QCD phase diagram and on the phase transition, which are described in Sect. 1.4. The second part of the chapter (Sect. 1.5) is devoted to a review of the first results obtained by the experiments at the CERN Large Hadron Collider (LHC) in Pb–Pb collisions at the energy of \(\sqrt{s_\mathrm{NN}}=2.76\) TeV per nucleon–nucleon (NN) collision, also compared with the measurements performed at lower energies at the Relativistic Heavy-Ion Collider (RHIC) at the Brookhaven National Laboratory (BNL).


Large Hadron Collider Polyakov Loop Chiral Condensate Asymptotic Freedom Nucleon Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    W. Greiner, S. Schramm, E. Stein, Quantum Chromodynamics (Springer, Berlin, 2007)zbMATHGoogle Scholar
  2. 2.
    P. Skands, Introduction to QCD. arXiv:1207.2389 [hep-ph]
  3. 3.
    M. Peskin, D. Schroeder, An Introduction to Quantum Field Theory (Westview Press, Boulder, 1995)Google Scholar
  4. 4.
    W. Greiner, J. Reinhardt, Quantum Electrodynamics (Springer-Verlag, Berlin Heidelberg, 2009)zbMATHGoogle Scholar
  5. 5.
    R. Feynman, A. Zee, QED: The Strange Theory of Light and Matter Princeton Science Library (Princeton University Press, Princeton, 2014)Google Scholar
  6. 6.
    T. van Ritbergen, J. Vermaseren, S. Larin, The four loop beta function in quantum chromodynamics. Phys. Lett. B 400, 379–384 (1997). arXiv:hep-ph/9701390 [hep-ph]
  7. 7.
    D.J. Gross, F. Wilczek, Ultraviolet behavior of non-abelian gauge theories. Phys. Rev. Lett. 30, 1343–1346 (1973)ADSCrossRefGoogle Scholar
  8. 8.
    D.J. Gross, F. Wilczek, Asymptotically free gauge theories. I. Phys. Rev. D 8, 3633–3652 (1973)Google Scholar
  9. 9.
    D.J. Gross, F. Wilczek, Asymptotically free gauge theories. II. Phys. Rev. D 9, 980–993 (1974)Google Scholar
  10. 10.
    H.D. Politzer, reliable perturbative results for strong interactions? Phys. Rev. Lett. 30, 1346–1349 (1973)Google Scholar
  11. 11.
    H.D. Politzer, Asymptotic freedom: an approach to strong interactions. Phys. Rep. 14(4), 129–180 (1974)ADSCrossRefGoogle Scholar
  12. 12.
    Particle Data Group Collaboration, K. Olive et al., Review of particle physics. Chin. Phys. C 38, 090001 (2014)Google Scholar
  13. 13.
    K.G. Wilson, Confinement of quarks. Phys. Rev. D 10, 2445–2459 (1974)Google Scholar
  14. 14.
    R. Hagedorn, Statistical Thermodynamics of Strong Interactions at High Energy. Suppl. Nuovo Cimento 3, 147 (1965)Google Scholar
  15. 15.
    N. Cabibbo, G. Parisi, Exponential hadronic spectrum and quark liberation. Phys. Lett. B 59(1), 67–69 (1975)ADSCrossRefGoogle Scholar
  16. 16.
    F. Karsch, “Lattice QCD at High Temperature and Density,” Lect. Notes Phys. 583 (2002) 209–249, arXiv:hep-lat/0106019 [hep-lat]
  17. 17.
    B.C. Barrois, Superconducting quark matter. Nucl. Phys. B 129, 390 (1977)ADSCrossRefGoogle Scholar
  18. 18.
    K. Fukushima, T. Hatsuda, The phase diagram of dense QCD. Rep. Prog. Phys. 74(1), 014001 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    F. Karsch, E. Laermann, Thermodynamics and in-medium hadron properties from lattice QCD. arXiv:hep-lat/0305025 [hep-lat]
  20. 20.
    M.L. Miller, K. Reygers, S.J. Sanders, P. Steinberg, Glauber modeling in high-energy nuclear collisions. Ann. Rev. Nucl. Part. Sci. 57, 205–243 (2007). arXiv:nucl-ex/0701025 [nucl-ex]
  21. 21.
    ALICE Collaboration, B. Abelev et al., Centrality determination of Pb–Pb collisions at \(\sqrt{s_{\rm NN}}=2.76\) TeV with ALICE. Phys. Rev. C 88, 044909 (2013)Google Scholar
  22. 22.
    ALICE Collaboration, K. Aamodt et al., Charged-particle multiplicity density at midrapidity in central Pb–Pb collisions at \(\sqrt{s_{\rm NN}}=2.76\) TeV. Phys. Rev. Lett. 105, 252301 (2010)Google Scholar
  23. 23.
    J.D. Bjorken, Highly relativistic nucleus–nucleus collisions: the central rapidity region. Phys. Rev. D 27, 140–151 (1983)Google Scholar
  24. 24.
    ALICE Collaboration, K. Aamodt et al., Two-pion Bose-Einstein correlations in central Pb–Pb collisions at \(\sqrt{s_{\rm NN}}=2.76\) TeV. Phys. Lett. B 696, 328–337 (2011). arXiv:1012.4035 [nucl-ex]
  25. 25.
    K.K. on behalf of the CMS Collaboration, Charged hadron multiplicity and transverse energy densities in Pb–Pb collisions from CMS. J. Phys. G: Nucl. Part. Phy. 38(12), 124041 (2011)Google Scholar
  26. 26.
    M.A. Lisa, S. Pratt, R. Soltz, U. Wiedemann, Femtoscopy in relativistic heavy-ion collisions. Ann. Rev. Nucl. Part. Sci. 55, 357–402 (2005). arXiv:nucl-ex/0505014 [nucl-ex]
  27. 27.
    PHENIX Collaboration, A. Adare et al., Enhanced production of direct photons in Au–Au collisions at \(\sqrt{s_{\rm NN}}=200\) GeV and implications for the initial temperature. Phys. Rev. Lett. 104, 132301 (2010). arXiv:0804.4168 [nucl-ex]
  28. 28.
    T. Matsui, H. Satz, J/\(\psi \) suppression by quark-gluon plasma formation. Phys. Lett. B 178(4), 416–422 (1986)ADSCrossRefGoogle Scholar
  29. 29.
    ALICE Collaboration, B. Abelev et al., Centrality, Rapidity and Transverse Momentum Dependence of \(J/\psi \) Suppression in Pb–Pb Collisions at \(\sqrt{s_{\rm NN}}=2.76\) TeV. Phys. Lett. B 734, 314–327 (2014). arXiv:1311.0214 [nucl-ex]
  30. 30.
    CMS Collaboration, S. Chatrchyan et al., Suppression of non-prompt \(J/\psi \), prompt \(J/\psi \), and \(\Upsilon \)(1S) in Pb–Pb collisions at \(\sqrt{s_{\rm NN}}=2.76\) TeV. JHEP 1205, 063 (2012). arXiv:1201.5069 [nucl-ex]
  31. 31.
    CMS Collaboration, S. Chatrchyan et al., Observation of sequential \(\Upsilon \) suppression in Pb–Pb collisions. Phys. Rev. Lett. 109, 222301 (2012)Google Scholar
  32. 32.
    ALICE Collaboration, B. Abelev et al., Suppression of \(\Upsilon \)(1S) at forward rapidity in Pb–Pb collisions at \(\sqrt{s_{\rm NN}}=2.76\) TeV. Phys. Lett. B 738, 361–372 (2014). arXiv:1405.4493 [nucl-ex]

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Physics, INFN-Sezione di PadovaUniversità degli Studi di PadovaPaduaItaly

Personalised recommendations