Skip to main content

Introduction to the Physics of Ultra-Relativistic Heavy-Ion Collisions

  • Chapter
  • First Online:
Measurement of the D0 Meson Production in Pb–Pb and p–Pb Collisions

Part of the book series: Springer Theses ((Springer Theses))

  • 217 Accesses

Abstract

The strong interaction between the elementary constituents of matter (quarks and gluons) is described by the theory of Quantum Chromodynamics (QCD). The basic ingredients of this quantum field theory will be explained in Sect. 1.1 and its peculiar properties driven by the running of the strong coupling constant will be addressed in Sect. 1.2. These properties lead to the prediction that strongly-interacting matter can exist in different phases depending on the temperature and the density of the system. Nuclear matter at extremely high temperatures and energy densities is obtained with ultra-relativistic heavy-ion collisions, which allow to create a state of matter where quarks and gluons are interacting without being confined into hadrons. According to the hot Big Bang model, this state of matter should have appeared after the electro-weak phase transition, a few microseconds after the Big Bang. The Lattice QCD approach, which is introduced in Sect. 1.3, allows to obtain quantitative predictions on the basic properties of the QCD phase diagram and on the phase transition, which are described in Sect. 1.4. The second part of the chapter (Sect. 1.5) is devoted to a review of the first results obtained by the experiments at the CERN Large Hadron Collider (LHC) in Pb–Pb collisions at the energy of \(\sqrt{s_\mathrm{NN}}=2.76\) TeV per nucleon–nucleon (NN) collision, also compared with the measurements performed at lower energies at the Relativistic Heavy-Ion Collider (RHIC) at the Brookhaven National Laboratory (BNL).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the Standard Model of particles flavour is the property that distinguishes different particles in the two groups of building blocks of matter, the quarks and the leptons. There are six flavours of subatomic particle within each of these two groups: six leptons (the electron, the muon, the tau and the three associated neutrinos) and six quarks (up, down, charm, strange, top and bottom). In QCD flavour is a global symmetry, this means that flavour changing processes are mediated only by electroweak interaction.

  2. 2.

    In a pion gas the degrees of freedom are the 3 values of the isospin for \(\pi ^+\), \(\pi ^0\) and \(\pi ^-\). In a QGP with \(n_f\) quark flavours the degrees of freedom are \(n_g+\frac{7}{8}(n_q+n_{\bar{q}})=(8\times 2)+\frac{7}{8} \) \((2\times 3\times 2 \times n_f)=(16+\frac{21}{2}n_f)\). The factor 7/8 takes into account the difference between Bose–Einstein (gluons) and Fermi–Dirac (quarks) statistics.

  3. 3.

    During LHC Run 2 the energy will reach \(\sqrt{s_\mathrm{NN}}=5.1\) TeV per nucleon pair, and during Run 3 its design value of \(\sqrt{s_\mathrm{NN}}=5.5\) TeV per nucleon pair.

  4. 4.

    Alternatively the number of nucleon–nucleon collisions is expressed as \(N_\mathrm{coll}(b)=T_\mathrm{AB}(b)\sigma _\mathrm{inel}^\mathrm{NN}\) if \(\rho _A(\mathbf {s}-z_A)\) is normalized to A. This convention is used, for example, in [21].

  5. 5.

    The pseudorapidity is defined as \(\eta = -\ln [\tan (\theta /2)]\), where \(\theta \) is the polar angle with respect to the beam direction. For a particle with velocity \(v\rightarrow c\), \(\eta \approx y\), being y the longitudinal rapidity. The longitudinal rapidity of a particle with four-momentum \((E, \vec {p})\) is defined as \(y=\frac{1}{2}\ln \left( \frac{E+p_z}{E-p_z}\right) \), being z the direction of the beam.

References

  1. W. Greiner, S. Schramm, E. Stein, Quantum Chromodynamics (Springer, Berlin, 2007)

    MATH  Google Scholar 

  2. P. Skands, Introduction to QCD. arXiv:1207.2389 [hep-ph]

  3. M. Peskin, D. Schroeder, An Introduction to Quantum Field Theory (Westview Press, Boulder, 1995)

    Google Scholar 

  4. W. Greiner, J. Reinhardt, Quantum Electrodynamics (Springer-Verlag, Berlin Heidelberg, 2009)

    MATH  Google Scholar 

  5. R. Feynman, A. Zee, QED: The Strange Theory of Light and Matter Princeton Science Library (Princeton University Press, Princeton, 2014)

    Google Scholar 

  6. T. van Ritbergen, J. Vermaseren, S. Larin, The four loop beta function in quantum chromodynamics. Phys. Lett. B 400, 379–384 (1997). arXiv:hep-ph/9701390 [hep-ph]

  7. D.J. Gross, F. Wilczek, Ultraviolet behavior of non-abelian gauge theories. Phys. Rev. Lett. 30, 1343–1346 (1973)

    Article  ADS  Google Scholar 

  8. D.J. Gross, F. Wilczek, Asymptotically free gauge theories. I. Phys. Rev. D 8, 3633–3652 (1973)

    Google Scholar 

  9. D.J. Gross, F. Wilczek, Asymptotically free gauge theories. II. Phys. Rev. D 9, 980–993 (1974)

    Google Scholar 

  10. H.D. Politzer, reliable perturbative results for strong interactions? Phys. Rev. Lett. 30, 1346–1349 (1973)

    Google Scholar 

  11. H.D. Politzer, Asymptotic freedom: an approach to strong interactions. Phys. Rep. 14(4), 129–180 (1974)

    Article  ADS  Google Scholar 

  12. Particle Data Group Collaboration, K. Olive et al., Review of particle physics. Chin. Phys. C 38, 090001 (2014)

    Google Scholar 

  13. K.G. Wilson, Confinement of quarks. Phys. Rev. D 10, 2445–2459 (1974)

    Google Scholar 

  14. R. Hagedorn, Statistical Thermodynamics of Strong Interactions at High Energy. Suppl. Nuovo Cimento 3, 147 (1965)

    Google Scholar 

  15. N. Cabibbo, G. Parisi, Exponential hadronic spectrum and quark liberation. Phys. Lett. B 59(1), 67–69 (1975)

    Article  ADS  Google Scholar 

  16. F. Karsch, “Lattice QCD at High Temperature and Density,” Lect. Notes Phys. 583 (2002) 209–249, arXiv:hep-lat/0106019 [hep-lat]

  17. B.C. Barrois, Superconducting quark matter. Nucl. Phys. B 129, 390 (1977)

    Article  ADS  Google Scholar 

  18. K. Fukushima, T. Hatsuda, The phase diagram of dense QCD. Rep. Prog. Phys. 74(1), 014001 (2011)

    Article  ADS  Google Scholar 

  19. F. Karsch, E. Laermann, Thermodynamics and in-medium hadron properties from lattice QCD. arXiv:hep-lat/0305025 [hep-lat]

  20. M.L. Miller, K. Reygers, S.J. Sanders, P. Steinberg, Glauber modeling in high-energy nuclear collisions. Ann. Rev. Nucl. Part. Sci. 57, 205–243 (2007). arXiv:nucl-ex/0701025 [nucl-ex]

    Google Scholar 

  21. ALICE Collaboration, B. Abelev et al., Centrality determination of Pb–Pb collisions at \(\sqrt{s_{\rm NN}}=2.76\) TeV with ALICE. Phys. Rev. C 88, 044909 (2013)

    Google Scholar 

  22. ALICE Collaboration, K. Aamodt et al., Charged-particle multiplicity density at midrapidity in central Pb–Pb collisions at \(\sqrt{s_{\rm NN}}=2.76\) TeV. Phys. Rev. Lett. 105, 252301 (2010)

    Google Scholar 

  23. J.D. Bjorken, Highly relativistic nucleus–nucleus collisions: the central rapidity region. Phys. Rev. D 27, 140–151 (1983)

    Google Scholar 

  24. ALICE Collaboration, K. Aamodt et al., Two-pion Bose-Einstein correlations in central Pb–Pb collisions at \(\sqrt{s_{\rm NN}}=2.76\) TeV. Phys. Lett. B 696, 328–337 (2011). arXiv:1012.4035 [nucl-ex]

  25. K.K. on behalf of the CMS Collaboration, Charged hadron multiplicity and transverse energy densities in Pb–Pb collisions from CMS. J. Phys. G: Nucl. Part. Phy. 38(12), 124041 (2011)

    Google Scholar 

  26. M.A. Lisa, S. Pratt, R. Soltz, U. Wiedemann, Femtoscopy in relativistic heavy-ion collisions. Ann. Rev. Nucl. Part. Sci. 55, 357–402 (2005). arXiv:nucl-ex/0505014 [nucl-ex]

    Google Scholar 

  27. PHENIX Collaboration, A. Adare et al., Enhanced production of direct photons in Au–Au collisions at \(\sqrt{s_{\rm NN}}=200\) GeV and implications for the initial temperature. Phys. Rev. Lett. 104, 132301 (2010). arXiv:0804.4168 [nucl-ex]

  28. T. Matsui, H. Satz, J/\(\psi \) suppression by quark-gluon plasma formation. Phys. Lett. B 178(4), 416–422 (1986)

    Article  ADS  Google Scholar 

  29. ALICE Collaboration, B. Abelev et al., Centrality, Rapidity and Transverse Momentum Dependence of \(J/\psi \) Suppression in Pb–Pb Collisions at \(\sqrt{s_{\rm NN}}=2.76\) TeV. Phys. Lett. B 734, 314–327 (2014). arXiv:1311.0214 [nucl-ex]

  30. CMS Collaboration, S. Chatrchyan et al., Suppression of non-prompt \(J/\psi \), prompt \(J/\psi \), and \(\Upsilon \)(1S) in Pb–Pb collisions at \(\sqrt{s_{\rm NN}}=2.76\) TeV. JHEP 1205, 063 (2012). arXiv:1201.5069 [nucl-ex]

  31. CMS Collaboration, S. Chatrchyan et al., Observation of sequential \(\Upsilon \) suppression in Pb–Pb collisions. Phys. Rev. Lett. 109, 222301 (2012)

    Google Scholar 

  32. ALICE Collaboration, B. Abelev et al., Suppression of \(\Upsilon \)(1S) at forward rapidity in Pb–Pb collisions at \(\sqrt{s_{\rm NN}}=2.76\) TeV. Phys. Lett. B 738, 361–372 (2014). arXiv:1405.4493 [nucl-ex]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Festanti .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Festanti, A. (2016). Introduction to the Physics of Ultra-Relativistic Heavy-Ion Collisions. In: Measurement of the D0 Meson Production in Pb–Pb and p–Pb Collisions. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-43455-1_1

Download citation

Publish with us

Policies and ethics