Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 369 Accesses

Abstract

This introductory chapter introduces the “Standard Model” of particle physics, including its achievements and outstanding problems/issues. It then goes on to discuss the most promising “Beyond Standard Model” possibilities to resolve these issues, focusing on and discussing Supersymmetry and Effective Field Theories. It concludes by explaining the plan for the rest of the thesis.

The original version of this chapter was revised: For detailed information please see Erratum. The erratum to this chapter is available at 10.1007/978-3-319-43452-0_7.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The value of \(\alpha _\mathrm{em}\) is set by a measurement of the anomalous magnetic moment of the electron, which allows a prediction of the Rydberg constant which matches experiment to 11 significant figures.

  2. 2.

    There are 19 free parameters if we include the QCD CP violating term responsible for the strong CP problem, and exclude neutrino masses and mixing.

  3. 3.

    The supermultiplets also contain an auxiliary field which is required to ensure the SUSY algebra closes off-shell. However these can be eliminated from the Lagrangian by using the equations of motion to rewrite them in terms of the other fields.

  4. 4.

    The minimum particle content of a realistic SUSY model is actually more than this as discussed in Sect. 1.3.2 on the Minimal Supersymmetric Standard Model (MSSM).

  5. 5.

    This is discussed further in Sect. 4.2.

  6. 6.

    The reason that this anomaly cancellation must occur can be seen by noting that the second Higgs doublet has the quantum numbers of the conjugate of the first Higgs doublet. Therefore its introduction is analogous to introducing the conjugate of the first Higgs, making their combination a real representation of its Lie groups, which therefore must be anomaly free.

References

  1. M.L. Perl, G.S. Abrams, A. Boyarski, M. Breidenbach, D. Briggs et al., Evidence for anomalous lepton production in e+ - e- annihilation. Phys. Rev. Lett. 35, 1489–1492 (1975)

    Article  ADS  Google Scholar 

  2. J.J. Aubert et al., Experimental observation of a heavy particle. J. Phys. Rev. Lett. 33, 1404–1406 (1974)

    Google Scholar 

  3. J.E. Augustin et al., Discovery of a narrow resonance in e+ e- annihilation. Phys. Rev. Lett. 33, 1406–1408 (1974)

    Article  ADS  Google Scholar 

  4. S.W. Herb, D.C. Hom, L.M. Lederman, J.C. Sens, H.D. Snyder et al., Observation of a dimuon resonance at 9.5-GeV in 400-GeV proton-nucleus collisions. Phys. Rev. Lett. 39, 252–255 (1977)

    Article  ADS  Google Scholar 

  5. M. Banner et al., Observation of single isolated electrons of high transverse momentum in events with missing transverse energy at the CERN anti-p p collider. Phys. Lett. B 122, 476–485 (1983)

    Google Scholar 

  6. G. Arnison et al., Experimental observation of isolated large transverse energy electrons with associated missing energy at s**(1/2) = 540-GeV. Phys. Lett. B 122, 103–116 (1983)

    Article  ADS  Google Scholar 

  7. G. Arnison et al., Experimental observation of lepton pairs of invariant mass around 95-GeV/c**2 at the CERN SPS collider. Phys. Lett. B 126, 398–410 (1983)

    Google Scholar 

  8. V.M. Abazov et al., Observation of single top quark production. Phys. Rev. Lett. 103, 092001 (2009)

    Article  ADS  Google Scholar 

  9. K. Kodama et al., Observation of tau neutrino interactions. Phys. Lett. B 504, 218–224 (2001)

    Article  ADS  Google Scholar 

  10. G. Aad et al., Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716, 1–29 (2012)

    Article  ADS  Google Scholar 

  11. S. Chatrchyan et al., Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 716, 30–61 (2012)

    Article  ADS  Google Scholar 

  12. G. Gabrielse, D. Hanneke, T. Kinoshita, M. Nio, B.C. Odom, New Determination of the Fine Structure Constant from the Electron g Value and QED. Phys. Rev. Lett. 97, Erratum-ibid. 99 (2007) 039902, 030802 (2006)

    Google Scholar 

  13. P. Clade, E. de Mirandes, M. Cadoret, S. Guellati-Khelifa, C. Schwob et al., Determination of the fine structure constant based on bloch oscillations of ultracold atoms in a vertical optical lattice. Phys. Rev. Lett. 96, 033001 (2006)

    Article  ADS  Google Scholar 

  14. L. Canetti, M. Drewes, M. Shaposhnikov, Matter and antimatter in the universe. New J. Phys. 14, 095012 (2012)

    Article  ADS  Google Scholar 

  15. M.R. Lovell, V. Eke, C.S. Frenk, L. Gao, A. Jenkins et al., The haloes of bright satellite galaxies in a warm dark matter universe. Mon. Not. Roy. Astron. Soc. 420, 2318–2324 (2012)

    Article  ADS  Google Scholar 

  16. C.A. Baker, D.D. Doyle, P. Geltenbort, K. Green, M.G.D. van der Grinten et al., An Improved experimental limit on the electric dipole moment of the neutron. Phys. Rev. Lett. 97, 131801 (2006)

    Article  ADS  Google Scholar 

  17. C.P. Burgess, Introduction to effective field theory. Ann. Rev. Nucl. Part. Sci. 57, 329–362 (2007)

    Article  ADS  Google Scholar 

  18. I.Z. Rothstein, TASI lectures on effective field theories. (2003)

    Google Scholar 

  19. S.R. Coleman, J. Mandula, All possible symmetries of the S matrix. Phys. Rev. 159, 1251–1256 (1967)

    Article  ADS  MATH  Google Scholar 

  20. R. Haag, J.T. Lopuszanski, M. Sohnius, All possible generators of supersymmetries of the S matrix. Nucl. Phys. B 88, 257 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  21. J. Beringer et al., Particle data group. Phys. Rev. D 86, 010001 (2012)

    Article  ADS  Google Scholar 

  22. G.W. Bennett et al., Measurement of the positive muon anomalous magnetic moment to 0.7 ppm. Phys. Rev. Lett. 89, 101804 (2002)

    Article  ADS  Google Scholar 

  23. G.W. Bennett et al., Measurement of the negative muon anomalous magnetic moment to 0.7 ppm. Phys. Rev. Lett. 92, 161802 (2004)

    Article  ADS  Google Scholar 

  24. G.W. Bennett et al., Final report of the muon E821 anomalous magnetic moment measurement at BNL. Phys. Rev. D 73, 072003 (2006)

    Article  ADS  Google Scholar 

  25. P.J. Mohr, B.N. Taylor, D.B. Newell, CODATA recommended values of the fundamental physical constants: 2010. Rev. Mod. Phys. 84, 1527–1605 (2012)

    Google Scholar 

  26. A. Czarnecki, W.J. Marciano, The Muon anomalous magnetic moment: A Harbinger for ’new physics’. Phys. Rev. D 64, 013014 (2001)

    Article  ADS  Google Scholar 

  27. A. Djouadi, The Anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model. Phys. Rept. 459, 1–241 (2008)

    Google Scholar 

  28. S.P. Martin, A Supersymmetry primer. Adv. Ser. Direct. High Energy Phys. 18, 1 (1998); (1997). doi:10.1142/9789812839657_0001, 10.1142/9789814307505_0001

    Google Scholar 

  29. H. Baer, X. Tata, Weak scale supersymmetry: from superfields to scattering events. (Cambridge University Press, Cambridge, 2006)

    Google Scholar 

  30. J. Wess, J. Bagger, Supersymmetry and supergravity. (Princeton University, Princeton, 1992) p. 259

    Google Scholar 

  31. Updated coupling measurements of the Higgs boson with the ATLAS detector using up to 25 fb\(^{-1}\) of proton-proton collision data. ATLAS-CONF-2014-009, ATLASCOM-CONF-2014-013 (2014)

    Google Scholar 

  32. V. Khachatryan et al., Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV. arXiv:1412.8662 (2014)

  33. G. Aad et al., “Search for \(H \rightarrow \gamma \gamma \) produced in association with top quarks and constraints on the Yukawa coupling between the top quark and the Higgs boson using data taken at 7 TeV and 8 TeV with the ATLAS detector". Phys. Lett. B 740, 222–242 (2015)

    Article  ADS  Google Scholar 

  34. A. Belyaev, A.C.A. Oliveira, R. Rosenfeld, M.C. Thomas, Multi Higgs and vector boson production beyond the standard model. JHEP 1305, 005 (2013)

    Article  ADS  Google Scholar 

  35. A. Belyaev, S. Khalil, S. Moretti, M.C. Thomas, Light sfermion interplay in the 125 GeV MSSM Higgs production and decay at the LHC. JHEP 1405, 076 (2014)

    Article  ADS  Google Scholar 

  36. A. Belyaev, V. Sanz, M. Thomas, Towards model-independent exclusion of light stops. JHEP 01, 102 (2016)

    Article  ADS  Google Scholar 

  37. G. Brooijmans, R. Contino, B. Fuks, F. Moortgat, P. Richardson, et al., Les houches 2013: physics at TeV colliders: new physics working group report (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Christopher Thomas .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Thomas, M.C. (2016). Introduction. In: Beyond Standard Model Collider Phenomenology of Higgs Physics and Supersymmetry. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-43452-0_1

Download citation

Publish with us

Policies and ethics