Skip to main content

Two-Part Hooke Model (TPHM): Theory, Validation and Applications

  • Chapter
  • First Online:
  • 1551 Accesses

Part of the book series: Theory and Applications of Transport in Porous Media ((TATP,volume 28))

Abstract

Hooke’s law was discovered by Robert Hooke (1635–1703) and states that during elastic deformation of a solid body the strain is linearly proportional to the stress. While Hooke’s law was initially developed based on experimental observations for relatively homogeneous materials, natural rocks generally contain small-scale deformation heterogeneities (such as the existence of micro-cracks). To address this issue, this chapter introduces the two-part Hooke model that was developed by conceptually dividing a natural rock into hard and soft parts that are subject to different degrees of mechanical deformation under a given stress. Remarkable consistency between the model and observations from different sources, for both rock matrix and fractures, has been achieved. The usefulness of the model in dealing with several engineering problems is also demonstrated, including coal-permeability changes caused by swelling under different stress conditions, coupled hydro-mechanical processes associated with CO2 geological sequestration in a fractured formation, and evolution of the excavation damage zone related to nuclear waste disposal in a shale formation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Al-Tahini A, Abousleiman Y (2010) Pore-pressure-coefficient anisotropy measurements for intrinsic and induced anisotropy in sandstone. SPE Reservior Eval Eng, 265–274

    Google Scholar 

  • Armero F (1999) Formulation and finite element implementation of a multiplicative model of coupled poro-plasticity at finite strains under fully saturated conditions. Comput Methods Appl Mech Eng 171:205–241

    Article  Google Scholar 

  • Armero F, Simo JC (1992) A new unconditionally stable fractional step method for nonlinear coupled thermomechanical problems. Int J Numer Methods Eng 35:737–766

    Article  Google Scholar 

  • Athy LF (1930) Density, porosity, and compaction of sedimentary rock. Am Assoc Pet Geol Bull 14:1–24

    Google Scholar 

  • Bai M, Elsworth D, Roegiers JC (1993) Multiporosity/multipermeability approach to the simulation of naturally fractured reservoirs. Water Resour Res 29:1621–1633

    Article  Google Scholar 

  • Bandis SC, Lumsden AC, Barton NR (1983) Fundamentals of rock joint deformation. Int J Rock Mech Min Sci Geomech Abstr 20(6):249–268

    Article  Google Scholar 

  • Barenblatt GI, Zheltov YP (1960) Fundamental equations of filtration of homogeneous liquids in fissured rocks. Sov Phys Dokl Engl Transl 5:522–525

    Google Scholar 

  • Barton N, Bandis S, Bakhtar K (1985) Strength, deformation and conductivity coupling of rock joints. Int J Rock Mech Min Sci Geomech Abstr 22:121–140

    Article  Google Scholar 

  • Becker K, Shapiro SA, Stanchits S et al (2007) Stress induced elastic anisotropy of the Etnean basalt: theoretical and laboratory examination. Geophy Res Lett 34:L11307

    Article  Google Scholar 

  • Berryman JG (1992) Effective stress for transport properties of inhomogeneous porous rock. J Geophys Res 97(B12):17409–17424

    Article  Google Scholar 

  • Berryman JG (2006) Estimates and rigorous bounds on pore-fluid enhanced shear modulus in poroelastic media with hard and soft anisotropy. Int J Damage 15(2):133–167

    Article  Google Scholar 

  • Berryman JG, Wang HF (1995) The elastic coefficients of double-porosity models for fluid transport in jointed rock. J Geophys Res 100(B12):24611–24627

    Article  Google Scholar 

  • Biot MA (1941) General theory of three dimensional consolidation. J Appl Phys 12:155–164

    Article  Google Scholar 

  • Biot MA (1956) General solutions of the equations of elasticity and consolidation for a porous material. J Appl Mech Trans ASME 78:91–96

    Google Scholar 

  • Blumling P, Bernier F, Lebon P et al (2007) The excavation damaged zone in clay formations time-dependent behavior and influence on performance assessment. Phys Chem Earth 32:588–599

    Article  Google Scholar 

  • Bock H (2009) RA experiment: updated review of the rock mechanics properties of the opalinus clay of the Mont Terri URL based on laboratory and field testing. Technical report 2008-04, Q+S Consult, Germany

    Google Scholar 

  • Bock H, Dehandschutter B, Martin CD (2010) Self-sealing of fractures in argillaceous formations in the context of geological disposal of radioactive waste, review and synthesis. Nuclear Energy Agency, ISBN 978-92-64-99095-1

    Google Scholar 

  • Bossart P, Thury M (2007) Mont Terri Rock Laboratory—Project, Programme 1996 to 2007 and Results. Report No. 3—Swiss Geological Survey, Wabern

    Google Scholar 

  • Bossart P, Meier PM, Moeri A et al (2002) Geological and hydraulic characterization of the excavation disturbed zone in the Opalinus Clay of the Mont Terri Rock Laboratory. Eng Geol 66:19–38

    Article  Google Scholar 

  • Bossart P, Meier PM, Moeri A et al (2004) Structural and hydrogeological characterisation of the excavation-disturbed zone in the Opalinus Clay (Mont Terri Project, Switzerland). Appl Clay Sci 26:429–448

    Article  Google Scholar 

  • Brighenti G (1989) Effect of confining pressure on gas permeability of tight sandstones. ISRM international symposium, International Society for Rock Mechanics

    Google Scholar 

  • Brooks RH, Corey AT (1964) Hydraulic properties of porous media. Hydrology paper no. 3, Civil Engineering Dep., Colorado State Univ., Colorado, USA

    Google Scholar 

  • Brown SR (1987) Fluid flow through rock joints: the effect of surface roughness. J Geophys Res Solid Earth 92:1337–1347

    Article  Google Scholar 

  • Brown SR, Scholz CH (1985) Closure of random surfaces in contact. J Geophys Res 90(B7):5531–5545

    Article  Google Scholar 

  • Brown SR, Scholz CH (1986) Closure of rock joints. J Geophys Res 91(B5):4939–4948

    Article  Google Scholar 

  • Burdine NT (1953) Relative permeability calculations from pore-size distribution data. Petr Trans Am Inst Mining Metall Eng 198:71–77

    Google Scholar 

  • Byrnes AP (1997) Reservoir characteristics of low-permeability sandstones in the Rocky Mountains. The Mountain Geologist

    Google Scholar 

  • Byrnes AP, Castle JW (2000) Comparison of core petrophysical properties between low-permeability sandstone reservoirs: Eastern US Medina group and Western US Mesaverde group and Frontier formation. Paper presented in SPE Rocky Mountain Regional/low-permeability reservoirs symposium and exhibition, Society of Petroleum Engineers

    Google Scholar 

  • Carpenter CB, Spencer GB (1940) Measurement of compressibility of consolidated oil-bearing sandstones. Report 3540, US Bureau of Mines, Denver, CO

    Google Scholar 

  • Chen CY, Horne RN (2006) Two-phase flow in rough-walled fractures: experiments and a flow structure model. Water Resour Res. doi:10.1029/2004WR003837

    Google Scholar 

  • Chen Z, Narayan SP, Yang Z et al (2000) An experimental investigation of hydraulic behavior of fractures and joints in granitic rock. Int J Rock Mech Min Sci 37:1061–1071

    Article  Google Scholar 

  • Corkum AG, Martin CD (2007a) The mechanical behavior of weak mudstone (Opalinus Clay) at low stresses. Int J Rock Mech Min Sci 21:196–209

    Article  Google Scholar 

  • Corkum AG, Martin CD (2007b) Modeling a mine-by test at the Mont Terri Rock Laboratory, Switzerland. Int J Rock Mech Min Sci 44:846–859

    Article  Google Scholar 

  • Coyner KB (1984) Effects of stress, pore pressure, and pore fluids on bulk strain, velocity, and permeability of rocks. Ph. D. thesis. Mass Inst Technol, Cambridge, MA

    Google Scholar 

  • Crease RP (2010) The great equations: breakthroughs in science from Pythagoras to Heisenberg. W W Norton & Company, New York

    Google Scholar 

  • Cui X, Bustin RM, Chikatamarla L (2007) Adsorption-induced coal swelling and stress: implications for methane production and acid gas sequestration into coal seams. J Geophys Res. doi:10.1029/2004JB003482

    Google Scholar 

  • David C, Wong TF, Zhu W (1994) Laboratory measurement of compaction-induced permeability change in porous rocks: implications for the generation and maintenance of pore pressure excess in the crust. Pure Appl Geophys 143(1–3):425–456

    Article  Google Scholar 

  • David C, Menendez B, Zhu W et al (2001) Mechanical compaction, microstructures and permeability evolution in sandstones. Phys Chem Earth Part A 26(1):45–51

    Article  Google Scholar 

  • Davis JP, Davis DK (1999) Stress-dependent permeability: characterization and modeling. SPE paper no. 56813, Society of Petroleum Engineers

    Google Scholar 

  • Davy CA, Skoczylas F, Barnichon JD et al (2007) Permeability of macro-cracked argillite under confinement: gas and water testing. Phys Chem Earth 32:667–680

    Article  Google Scholar 

  • Dewhurst DN, Aplin AC, Sarda JP et al (1998) Compaction-driven evolution of porosity and permeability in natural mudstones: an experimental study. J Geophys Res Solid Earth 103(B1):651–661

    Article  Google Scholar 

  • Diomampo GP (2001) Relative permeability through fractures. Rep. SGP-TR-170, Stanford University, CA

    Google Scholar 

  • Dong JJ, Hsu JY, Wu WJ (2010) Stress-dependence of the permeability and porosity of sandstone and shale from TCDP Hole-A. Int J Rock Mech Min Sci 47(7):1141–1157

    Article  Google Scholar 

  • Durham WB, Bonner BP (1994) Self-propping and fluid flow in slightly offset joints at high effective pressures. J Geophys Res 99(B5):9391–9399

    Article  Google Scholar 

  • Elliot GM, Brown ET (1988) Laboratory measurement of the thermo-hydro-mechanical properties of rock. Q J Eng Geol Hydrogeol 21:299–314

    Article  Google Scholar 

  • Evans JP, Forster CB, Goddard JV (1997) Permeability of fault-related rocks, and implications for hydraulic structure of fault zones. J Struct Geol 19(11):1393–1404

    Article  Google Scholar 

  • Fjær E, Holt RM, Horsrud P et al (2008) Petroleum related rock mechanics, 2nd edn. Elsevier, Boston

    Google Scholar 

  • Fourar M, Lenormand R (1998) A viscous coupling model for relative permeabilities in fractures. Paper SPE 49006 presented at the SPE annual technical conference and exhibition, New Orleans, Louisiana, USA

    Google Scholar 

  • Freed AD (1995) Natural strain. J Eng Mater Technol 117:379–385

    Article  Google Scholar 

  • Gangi AF (1978) Variation of whole and fractured porous rock permeability with confining pressure. Int J Rock Mech Min Sci Geomech Abstr 15:249–257

    Article  Google Scholar 

  • Gercek H (2007) Poisson’s ratio values for rocks. Int J Rock Mech Min Sci 44:1–13

    Article  Google Scholar 

  • Ghabezloo S, Sulem J, Martineau F (2009a) Effective stress law for the permeability of a limestone. Int J Rock Mech Min Sci 46(2):297–306

    Article  Google Scholar 

  • Ghabezloo S, Sulem J, Saint-Marc J (2009b) Evaluation of a permeability-porosity relationship in a low-permeability creeping material using a single transient test. Int J Rock Mech Min Sci 46(4):761–768

    Article  Google Scholar 

  • Goodman RE (1974) The mechanical properties of joints. In Proceedings 3rd Congress ISRM, Denver, vol 1, pp 127–140

    Google Scholar 

  • Goodman RE (1976) Method of geological engineering in discontinuous rocks. West Publishing, New York

    Google Scholar 

  • Harpalani S, Zhao X (1989) An investigation of the effect of gas desorption on gas permeability. In: Proceedings of the coalbed methane symposium, University of Alabama, Tuscaloosa, Alabama, pp 57–64

    Google Scholar 

  • Hu Y, Liu GT (2004) Behavior of soft rock under multiaxial compression and its effects on design of arch dam. Chin J Rock Mech Eng 23:2494–2498

    Google Scholar 

  • Indraratna B, Ranjith PG, Gale W (1999) Single phase water flow through rock fractures. Geotech Geol Eng 17:211–240

    Article  Google Scholar 

  • Indraratna B, Ranjith PG, Gale W (2002) Some aspects of unsaturated flow in jointed rock. Int J Rock Mech Min Sci 39:555–568

    Article  Google Scholar 

  • Inwood S (2005) The forgotten genious: the biography of Robert Hooke. MacAdam/Cage Publishing

    Google Scholar 

  • Itasca Consulting Group (2005) FLAC3D: fast lagrangian analysis of continuain 3dimensions. Itasca Consulting Group, Minneapolis

    Google Scholar 

  • Iwai K (1976) Fundamental studies of fluid flow through a single fracture. Ph. D. thesis, University of California, Berkeley, CA

    Google Scholar 

  • Iwano M (1995) Hydromechanical characteristics of a single rock joint. Ph. D. thesis, Massachusetts Institute of Technology, Cambridge, MA

    Google Scholar 

  • Jaeger JC, Cook NGW, Zimmerman RW (2007) Fundamentals of rock mechanics, 4th edn. Blackwell Publishing, Malden

    Google Scholar 

  • Jaeggi D, Nussbaum C, Vietor T (2012) MB experiment: visualization of EDZ-fractures around the MB niche by using the in-situ resin impregnation technique. Mont Terri Project TN 2010-56

    Google Scholar 

  • Jardine L (2004) The curious life of Robert Hooke: the man who measured London. Harper Collins Publishers, New York

    Google Scholar 

  • Jasinge D, Ranjith PG, Choi SK (2011) Effects of effective stress changes on permeability of latrobe valley brown coal. Fuel 90(3):1292–1300

    Article  Google Scholar 

  • Jobmann M, Wilsnack Th, Voigt HD (2010) Investigation of damage-induced permeability of Opalinus Clay. Int J Rock Mech Min Sci 46:279–285

    Article  Google Scholar 

  • Jones FO, Owens WW (1980) A laboratory study of low-permeability gas sands. J Petrol Technol 32(9):1631–1640

    Article  Google Scholar 

  • Kazemi H, Gilman JR (1993) Multiphase flow in fractured petroleum reservoirs. In: Bear J, Tsang CF, de Marsily G (eds) Flow and transport in fractured rock. Academic Press, Berkeley, CA

    Google Scholar 

  • Kilmer NH, Morrow NR, Pitman JK (1987) Pressure sensitivity of low permeability sandstones. J Petrol Sci Eng 1(1):65–81

    Article  Google Scholar 

  • Konecny P, Kozusnikova A (2011) Influence of stress on the permeability of coal and sedimentary rocks of the Upper Silesian basin. Int J Rock Mech Min Sci 48(2):347–352

    Article  Google Scholar 

  • Kwon O, Kronenberg AK, Gangi AF et al (2012) Permeability of Wilcox shale and its effective pressure law. J Geophys Res Solid Earth 106(B9):19339–19353

    Article  Google Scholar 

  • Lei Q, Xiong W, Yuan J et al (2007) Analysis of stress sensitivity and its influence on oil production from tight reservoirs. Paper SPE 111148 presented at the 2007 SPE Eastern Regional meeting held in Lexington, Kentucky, USA, 17–19 Oct 2007

    Google Scholar 

  • Li L, Liu HH, Birkholzer J et al (2014) The use of two-part Hooke’s model (TPHM) to model the mine-by test at Mont Terri Site, Switzerland. Comput Geotech 58:28–46

    Article  Google Scholar 

  • Lin W, Tang GQ, Kovscek AR (2008) Sorption-induced permeability changes of coal during gas-injection processes. SPE Reserv Eval Eng 11(4):792–802

    Article  Google Scholar 

  • Liu HH, Rutqvist J (2010) A new coal-permeability model: internal swelling stress and fracture–matrix interaction. Transp Porous Media 82:157–171

    Article  Google Scholar 

  • Liu HH, Rutqvist J (2013) Coupled hydro-mechanical processes associated with multiphase flow in a dual-continuum system: formulations and an application. Rock Mech Rock Eng 46(5):1103–1112

    Article  Google Scholar 

  • Liu HH, Doughty C, Bodvarsson GS (1998) An active fracture model for unsaturated flow and transport in fractured rocks. Water Resour Res 34:2633–2646

    Article  Google Scholar 

  • Liu HH, Bodvarsson GS, Finsterle S (2002) A note on unsaturated flow in two-dimensional fracture networks. Water Resour Res 38(9):15-1–15-9

    Article  Google Scholar 

  • Liu HH, Rutqvist J, Berryman JG (2009) On the relationship between stress and elastic strain for porous and fractured rock. Int J Rock Mech Min Sci 46:289–296

    Article  Google Scholar 

  • Liu HH, Rutqvist J, Birkholzer JT (2011) Constitutive relationships for elastic deformation of clay rock: data analysis. Rock Mech Rock Eng. doi:10.1007/s00603-010-0131-4

    Google Scholar 

  • Liu HH, Wei MY, Rutqvist J (2013) Normal-stress dependence of fracture hydraulic properties including two-phase flow properties. Hydrogeol J 21(2):371–382

    Article  Google Scholar 

  • MacBeth C (2004) A classification for the pressure-sensitivity properties of a sandstone rock frame. Geophysics 69:497–510

    Article  Google Scholar 

  • Mainguy M, Longuemare P (2002) Coupling fluid flow and rock mechanics: formulations of partial coupling between reservoir and geomechanical simulators. Oil Gas Sci Technol 57:355–367

    Article  Google Scholar 

  • Malama B, Kulatilake PHSW (2003) Models for normal fracture deformation under compressive loading. Int J Rock Mech Min Sci 40:893–901

    Article  Google Scholar 

  • Matsuki K, Wang EQ, Sakaguchi K et al (2001) Time-dependent closure of a fracture with rough surfaces under constant normal stress. Int J Rock Mech Min Sci 38:607–619

    Article  Google Scholar 

  • Mavko G, Jizba D (1991) Estimating grain-scale fluid effects on velocity dispersion in rocks. Geophysics 56:1940–1949

    Article  Google Scholar 

  • Mavko G, Nur A (1978) Melt squirt in the asthenosphere. J Geophys Res 80:1444–1448

    Article  Google Scholar 

  • Mavor MJ, Vaughn JE (1997) Increasing absolute permeability in the San Juan basin Fruitland formation. In: Proceedings of the coalbed methane symposium, University of Alabama, Tuscaloosa, AL

    Google Scholar 

  • McDermott CI, Kolditz O (2006) Geomechanical model for fracture deformation under hydraulic, mechanical and thermal loads. Hydrogeol J 14(4):487–498

    Article  Google Scholar 

  • McLatchie A, Hemstock RA, Young JW (1958) The effective compressibility of reservoir rock and its effects on permeability. J Petrol Technol 10(06):49–51

    Article  Google Scholar 

  • Metwally YM, Sondergeld CH (2011) Measuring low permeabilities of gas-sands and shales using a pressure transmission technique. Int J Rock Mech Min Sci 48(7):1135–1144

    Article  Google Scholar 

  • Mohiuddin M, Kovin G, Abdulraheem A et al (2000) Stress-dependent porosity and permeability of a suite of samples from Saudi Arabian sandstone and limestone reservoirs. Paper SCA2033 presented in symposium of core analysts, Abu Dhabi, UAE

    Google Scholar 

  • Mont Terri Consortium (2009) Characterisation of the dry shotcrete sprayed in MB niche for modelling works. Final report, Geotechnisches Institut AG, Bern

    Google Scholar 

  • Morgenstern NR, Tamuly Phukan AL (1969) Nonlinear stress-strain relations for a homogeneous sandstone. Int J Rock Mech Min Sci 6:127–142

    Article  Google Scholar 

  • Moyer AE (1977) Robert Hooke ambiguous presentation of “Hooke’s Law”. Isis 68(2):266–275

    Article  Google Scholar 

  • Mualem Y (1976) A new model of predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res 12:513–522

    Article  Google Scholar 

  • Nagra (2002) Projekt Opalinuston – Synthese der geowissenschaftlichen Untersuchungsergebnisse. Entsorgungsnachweis für abgebrannte Brennelemente, verglaste hochaktive sowie langlebige mittelaktive Abfälle. Nagra technical report NTB 02-03, Nagra, Wettingen, Switzerland

    Google Scholar 

  • National Research Council (1996) Rock fractures and fluid flow: contemporary understanding and applications. National Academy Press, Washington DC

    Google Scholar 

  • Neuzil CE (2003) Hydromechanical coupling in geologic processes. Hydrogeol J 11:41–83

    Article  Google Scholar 

  • Nur A (1971) Effects of stress on velocity anisotropy in rocks with cracks. J Geophys Res 76:2022–2034

    Article  Google Scholar 

  • Olalla C, Martin M, Sáez J (1999) ED-B experiment: geotechnical laboratory test on Opalinus Clay rock samples. Technical report TN98-57, Mont Terri Project

    Google Scholar 

  • Olivella S, Carrera J, Gens A et al (1994) Nonisothermal multiphase flow of brine and gas through saline media. Transp Porous Media 15:271–293

    Article  Google Scholar 

  • Olsson R, Barton N (2001) An improved model for hydromechanical coupling during shearing of rock joints. Int J Rock Mech Min Sci 39:555–568

    Google Scholar 

  • Olsson WA, Brown SR (1993) Hydromechanical response of a fracture undergoing compression and shear. Int J Rock Mech Min Sci Geomech Abstr 30:845–851

    Article  Google Scholar 

  • Oron AP, Berkowitz B (1998) Flow in rock fractures: the local cubic law assumption reexamined. Water Resour Res 34:2811–2825

    Article  Google Scholar 

  • Palmer I, Mansoori J (1998) How permeability depends on stress and pore pressure in coalbeds: a new model. SPE Reserv Eval Eng 1(6):539–544

    Article  Google Scholar 

  • Peng SP, Zhang JC (2007) Engineering geology for underground rocks. Springer, Berlin

    Google Scholar 

  • Poisson SD (1829) Mémoire sur les equations generates de l’équilibre et du nouvement des corps silides élastiques et de fluids. Journal de l’École Poly technique 13:1–174

    Google Scholar 

  • Popp T, Salzer K, Minkley W (2008) Influence of bedding planes to EDZ-evolution and the coupled HM properties of Opalinus clay. Phys Chem Earth 33:5374–5387

    Article  Google Scholar 

  • Poulos HG, Davis EH (1974) Elastic solutions for soil and rock mechanics. Wiley, New York

    Google Scholar 

  • Power WL, Tullis TE (1992) Euclidean and fractal models for the description of rock surface roughness. J Geophys Res Solid Earth 96:415–424

    Article  Google Scholar 

  • Pruess K (1991) TOUGH2—a general purpose numerical simulator for multiphase fluid and heat flow. Lawrence Berkeley National Laboratory report LBL-29400

    Google Scholar 

  • Pruess K, Tsang YW (1990) On two-phase relative permeability and capillary pressure of rough-walled rock fractures. Water Resour Res 26(9):1915–1926

    Article  Google Scholar 

  • Pyrak-Nolte LJ, Myer LR, Cook NGW et al (1987) Hydraulic and mechanical properties of natural fractures in low-permeability rock. In: 6th ISRM congress, Montreal, Canada

    Google Scholar 

  • Raven KG, Gale JE (1985) Water flow in a natural rock fracture as a function of stress and sample size. Int J Rock Mech Min Sci Geomech Abstr 22(4):251–261

    Article  Google Scholar 

  • Robertson EP (2005) Measurement and modeling of sorption-induced strain and permeability changes in coal. Report INL/EXT-06-11832, Idaho National Laboratory

    Google Scholar 

  • Rutqvist J, Borgesson L, Chijimatsu M et al (2001) Thermohydromechanics of partially saturated geological media: governing equations and formulation of four finite element models. Int J Rock Mech Min Sci 38:105–127

    Article  Google Scholar 

  • Rutqvist J, Wu YS, Tsang CF et al (2002) A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock. Int J Rock Mech Min Sci 39:429–442

    Article  Google Scholar 

  • Sayers CM, Kachanov M (1995) Microcrack-induced elastic wave anisotropy of brittle rocks. J Geophys Res 100:4149–4156

    Article  Google Scholar 

  • Schoenberg M, Sayers CM (1995) Seismic anisotropy of fractured rock. Geophysics 60:204–211

    Article  Google Scholar 

  • Schrauf TW, Evans DD (1986) Laboratory studies of gas flow through a single natural fracture. Water Resour Res 22(7):1038–1050

    Article  Google Scholar 

  • Settari A, Mourits FM (1998) A coupled reservoir and geomechanical simulation system. Soc Pet Eng J 3(3):219–226

    Google Scholar 

  • Settari A, Walters DA (2001) Advances in coupled geomechanical and reservoir modeling with applications to reservoir compaction. Soc Pet Eng J 6(3):334–342

    Google Scholar 

  • Shapiro SA (2003) Piezosensitivity of porous and fractured rocks. Geophysics 68:482–486

    Article  Google Scholar 

  • Shapiro SA, Kaslow A (2005) Porosity and elastic anisotropy of rocks under tectonic stress and pore pressure changes. Geophysics 70:N27–N38

    Article  Google Scholar 

  • Sharifzadeh M, Mitani Y, Esaki T (2008) Rock joint surface measurement and analysis of aperture distribution under different normal and shear loading using GIS. Rock Mech Rock Eng 41(2):299–323

    Article  Google Scholar 

  • Shi Y, Wang CY (1986) Pore pressure generation in sedimentary basins: overloading versus aquathermal. J Geophys Res Solid Earth 91(B2):2153–2162

    Article  Google Scholar 

  • Spencer CW (1989) Review of characteristics of low-permeability gas reservoirs in western United States. AAPG Bull 73(5):613–629

    Google Scholar 

  • Therrien R, Sudicky EA (1996) Three-dimensional analysis of variably-saturated flow and solute transport in discretely-fractured porous media. J Contam Hydrol 23:1–44

    Article  Google Scholar 

  • Thomas RD, Ward DC (1972) Effect of overburden pressure and water saturation on gas permeability of tight sandstone cores. J Petrol Technol 24(02):120–124

    Article  Google Scholar 

  • Tsang CF, Barnichon JD, Birkholzer J et al (2012) Coupled thermo-hydro-mechanical processes in the near field of a high-level radioactive waste repository in clay formations. Int J Rock Mech Min Sci 49:31–44

    Article  Google Scholar 

  • Vairogs J, Hearn CL, Dareing DW et al (1971) Effect of rock stress on gas production from low-permeability reservoirs. J Petrol Technol 23(09):1161–1167

    Article  Google Scholar 

  • Vietor T (2011) Mine-by test in Mont Terri rock laboratory-MB experiment report: data base for the predictive model. Nagra, Switzerland

    Google Scholar 

  • Walls JD, Nur AM, Bourbie T (1982) Effects of pressure and partial water saturation on gas permeability in tight sands: experimental results. J Petrol Technol 34(04):930–936

    Article  Google Scholar 

  • Walsh JB (1965a) The effect of cracks on the compressibility of rock. J Geophys Res 70:381–389

    Article  Google Scholar 

  • Walsh JB (1965b) The effect of cracks on the uniaxial elastic compression of rocks. J Geophys Res 70:399–411

    Article  Google Scholar 

  • Walsh R, McDermott C, Kolditz O (2008) Numerical modeling of stress-permeability coupling in rough fractures. Hydrogeol J 16:613–627

    Article  Google Scholar 

  • Warren JE, Root PJ (1963) The behavior of naturally fractured reservoirs. Soc Pet Eng J 3:245–255

    Article  Google Scholar 

  • Weerakone WMSB, Wong RCK, Mehrotra AK (2011) Single-phase (Brine) and two-phase (DNAPL-Brine) flow in induced fractures. Transp Porous Med 89:75–95

    Article  Google Scholar 

  • Wei MY, Liu HH, Li LC et al (2013) A fractal-based model for fracture deformation under shearing and compression. Rock Mech Rock Eng 46(6):1539–1549

    Article  Google Scholar 

  • Wheeler MF, Gai X (2007) Iteratively coupled mixed and Galerkin finite element methods for poro-elasticity. Numer Meth PDEs 23:785–797

    Article  Google Scholar 

  • White CM, Smith DH, Jones KL et al (2005) Sequestration of carbon dioxide in coal with enhanced coalbed methane recovery—a review. Energy Fuels 19:559–724

    Article  Google Scholar 

  • Wilson RK, Aifantis EC (1982) On the theory of consolidation with double porosity. Int J Eng Sci 20:1009–1035

    Article  Google Scholar 

  • Witherspoon PA, Wang JSW, Iwai K et al (1980) Validity of cubic law for fluid flow in deformable rock fracture. Water Resour Res 16(6):1016–1024

    Article  Google Scholar 

  • Wong RCK, Pan X, Maini BB (2008) Correlation between pressure gradient and phase saturation for oil-water flow in smooth- and rough-walled parallel plate models. Water Resour Res. doi:10.1029/2007/WR006043

    Google Scholar 

  • Wright I (2008) Satellite monitoring at In Salah. Seventh annual conference on carbon capture and sequestration, Pittsburg, Pennsylvania, 5–8 May

    Google Scholar 

  • Wyble DO (1958) Effect of applied pressure on the conductivity, porosity, and permeability of sandstones. Petrol Trans AIME 213:430–432

    Google Scholar 

  • Xu GM, Liu QS, Peng WW (2006) Experimental study on basic mechanical behaviors of rocks under low temperatures. Chin J Rock Mech Eng 25:2502–2508

    Google Scholar 

  • Yale DP, Nur A (1985) Network modeling of flow storage and deformation in porous rocks. SEG annual meeting, Society of Exploration Geophysicists

    Google Scholar 

  • Zhang CL, Rothfuchs T (2008) Damage and sealing of clay rocks detected by measurements of gas permeability. Phys Chem Earth 33:5363–5373

    Article  Google Scholar 

  • Zhang CL, Rothfuchs T, Dittrich J et al (2008) Investigations on self-sealing of indurated clay. GRS report GRS-230:1-67, ISBN 978-3-939355-04-5

    Google Scholar 

  • Zhao J, Brown ET (1992) Hydro-thermo-mechanical properties of joints in the Carnmenellis granite. Q J Eng Geol 25:279–290

    Article  Google Scholar 

  • Zhao Y, Liu HH (2012) An elastic strain-stress relationship for porous rock under anisotropic stress conditions. Rock Mech Rock Eng. doi:10.1007/s00603-011-0193-y

    Google Scholar 

  • Zheng JT, Zheng LG, Liu HH et al (2015) Relationships between permeability, porosity and effective stress for low-permeability sedimentary rock. Int J Rock Mech Min Sci 78:304–318

    Google Scholar 

  • Zienkiewicz OC, Paul DK, Chan AHC (1988) Unconditionally stable staggered solution procedure for soil-pore fluid interaction problems. Int J Numer Methods Eng 26(5):1039–1055

    Article  Google Scholar 

  • Zimmerman RW (1991) Compressibility of sandstones. Elsevier, Amsterdam

    Google Scholar 

  • Zimmerman RW, Bodvarsson GS (1996) Hydraulic conductivity of rock fractures. Transp Porous Media 23(1):1–30

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Hai Liu .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Liu, HH. (2017). Two-Part Hooke Model (TPHM): Theory, Validation and Applications. In: Fluid Flow in the Subsurface. Theory and Applications of Transport in Porous Media, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-319-43449-0_3

Download citation

Publish with us

Policies and ethics