Skip to main content

Solar Wind Heating by the Turbulent Energy Cascade

  • Chapter
  • First Online:
Turbulence in the Solar Wind

Part of the book series: Lecture Notes in Physics ((LNP,volume 928))

  • 1111 Accesses

Abstract

The Parker theory (Parker 1958; Parker 1963) predicts an adiabatic expansion of the solar wind from the hot corona without further heating. For such a model, the proton temperature T(r) should decrease with the heliocentric distance r as T(r) ∼ r −4∕3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For a discussion on non-turbulent mechanism of solar wind heating cf. Tu and Marsch (1995a).

  2. 2.

    Of course, this is based on classical turbulence. As said before, in the solar wind the dissipative term is unknown, even if it might happens at very small kinetic scales.

  3. 3.

    It is worthwhile to remark that a turbulent fluid flows is out of equilibrium, say the cascade requires the injection of energy (input) and a dissipation mechanism (output), usually lying on well separated scales, along with a transfer of energy. Without input and output, the nonlinear term of equations works like an energy redistribution mechanism towards an equilibrium in the wave vectors space. This generates an equilibrium energy spectrum which should in general be the same as that obtained when the cascade is at work (cf., e.g., Frisch et al. 1975). However, even if the turbulent spectra could be anticipated by looking at the equilibrium spectra, the physical mechanisms are different. Of course, this should also be the case for the Hall MHD.

References

  • O. Alexandrova, V. Carbone, P. Veltri, L. Sorriso-Valvo, Small-scale energy cascade of the solar wind turbulence. Astrophys. J. 674, 1153–1157 (2008). doi:10.1086/524056

    Article  ADS  Google Scholar 

  • O. Alexandrova, J. Saur, C. Lacombe, A. Mangeney, J. Mitchell, S.J. Schwartz, P. Robert, Universality of solar-wind turbulent spectrum from MHD to electron scales. Phys. Rev. Lett. 103 (16) (2009). doi:10.1103/PhysRevLett.103.165003

    Google Scholar 

  • J.A. Araneda, E. Marsch, A. F.-Viñas, Proton core heating and beam formation via parametrically unstable Alfvén-cyclotron waves. Phys. Rev. Lett. 100 (2008). doi:10.1103/PhysRevLett.100.125003

    Google Scholar 

  • S.D. Bale, P.J. Kellogg, F.S. Mozer, T.S. Horbury, H. Reme, Measurement of the electric fluctuation spectrum of magnetohydrodynamic turbulence. Phys. Rev. Lett. 94 (2005). doi:10.1103/PhysRevLett.94.215002

    Google Scholar 

  • A. Balogh, C.M. Carr, M.H. Acuña, M.W. Dunlop, T.J. Beek, P. Brown, K.-H. Fornaçon, E. Georgescu, K.-H. Glassmeier, J. Harris, G. Musmann, T. Oddy, K. Schwingenschuh, The cluster magnetic field investigation: overview of in-flight performance and initial results. Ann. Geophys. 19, 1207–1217 (2001). doi:10.5194/angeo-19-1207-2001

    Article  ADS  Google Scholar 

  • D. Biskamp, E. Schwarz, J.F. Drake, Two-dimensional electron magnetohydrodynamic turbulence. Phys. Rev. Lett. 76, 1264–1267 (1996). doi:10.1103/PhysRevLett.76.1264

    Article  ADS  Google Scholar 

  • D. Biskamp, E. Schwarz, A. Zeiler, A. Celani, J.F. Drake, Electron magnetohydrodynamic turbulence. Phys. Plasmas 6, 751–758 (1999). doi:10.1063/1.873312

    Article  ADS  MathSciNet  Google Scholar 

  • S. Bourouaine, O. Alexandrova, E. Marsch, M. Maksimovic, On spectral breaks in the power spectra of magnetic fluctuations in fast solar wind between 0.3 and 0.9 AU. Astrophys. J. 749, 102 (2012). doi:10.1088/0004-637X/749/2/102

    Google Scholar 

  • A.J. Brizard, T.S. Hahm, Foundations of nonlinear gyrokinetic theory. Rev. Mod. Phys. 79, 421–468 (2007). doi:10.1103/RevModPhys.79.421

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • R. Bruno, V. Carbone, The solar wind as a turbulence laboratory. Living Rev. Sol. Phys. 10 (2013). doi:10.12942/lrsp-2013-2

    Google Scholar 

  • R. Bruno, L. Trenchi, Radial dependence of the frequency break between fluid and kinetic scales in the solar wind fluctuations. Astrophys. J. Lett. 787, 24 (2014). doi:10.1088/2041-8205/787/2/L24

    Article  ADS  Google Scholar 

  • R. Bruno, D. Telloni, Spectral analysis of magnetic fluctuations at proton scales from fast to slow solar wind. Astrophys. J. Lett. 811, 17 (2015). doi:10.1088/2041-8205/811/2/L17

    Article  ADS  Google Scholar 

  • R. Bruno, E. Pietropaolo, S. Servidio, A. Greco, W.H. Matthaeus, R. D’Amicis, L. Sorriso-Valvo, V. Carbone, A. Balogh, B. Bavassano, Spatial and temporal analysis of magnetic helicity in the solar wind, in AGU Fall Meeting Abstracts (2008)

    Google Scholar 

  • R. Bruno, L. Trenchi, D. Telloni, Spectral slope variation at proton scales from fast to slow solar wind. Astrophys. J. Lett. 793, 15 (2014). doi:10.1088/2041-8205/793/1/L15

    Article  ADS  Google Scholar 

  • V. Carbone, F. Malara, P. Veltri, A model for the three-dimensional magnetic field correlation spectra of low-frequency solar wind fluctuations during Alfvénic periods. J. Geophys. Res. 100 (9), 1763–1778 (1995). doi:10.1029/94JA02500

    Article  ADS  Google Scholar 

  • V. Carbone, R. Marino, L. Sorriso-Valvo, A. Noullez, R. Bruno, Scaling laws of turbulence and heating of fast solar wind: the role of density fluctuations. Phys. Rev. Lett. 103 (6) (2009). doi:10.1103/PhysRevLett.103.061102

    Google Scholar 

  • S.C. Chapman, R.M. Nicol, E. Leonardis, K. Kiyani, V. Carbone, Observation of universality in the generalized similarity of evolving solar wind turbulence as seen by Ulysses. Astrophys. J. Lett. 695, 185–188 (2009). doi:10.1088/0004-637X/695/2/L185

    Article  ADS  Google Scholar 

  • C.H.K. Chen, L. Leung, S. Boldyrev, B.A. Maruca, S.D. Bale, Ion-scale spectral break of solar wind turbulence at high and low beta. Geophys. Res. Lett. 41, 8081–8088 (2014). doi:10.1002/2014GL062009

    Article  ADS  Google Scholar 

  • J. Cho, A. Lazarian, The anisotropy of electron magnetohydrodynamic turbulence. Astrophys. J. Lett. 615, 41–44 (2004). doi:10.1086/425215

    Article  ADS  Google Scholar 

  • P.J. Coleman, Turbulence, viscosity, and dissipation in the solar-wind plasma. Astrophys. J. 153, 371 (1968). doi:10.1086/149674

    Article  ADS  Google Scholar 

  • N. Cornilleau-Wehrlin, G. Chanteur, S. Perraut, L. Rezeau, P. Robert, A. Roux, C. de Villedary, P. Canu, M. Maksimovic, Y. de Conchy, D.H.C. Lacombe, F. Lefeuvre, M. Parrot, J.L. Pinçon, P.M.E. Décréau, C.C. Harvey, P. Louarn, O. Santolik, H.S.C. Alleyne, M. Roth, T. Chust, O. Le Contel, Staff Team, First results obtained by the cluster staff experiment. Ann. Geophys. 21, 437–456 (2003). doi:10.5194/angeo-21-437-2003

    Google Scholar 

  • P. Dmitruk, W.H. Matthaeus, N. Seenu, Test particle energization by current sheets and nonuniform fields in magnetohydrodynamic turbulence. Astrophys. J. 617, 667–679 (2004). doi:10.1086/425301

    Article  ADS  Google Scholar 

  • C.P. Escoubet, M. Fehringer, M. Goldstein, Introduction: the cluster mission. Ann. Geophys. 19, 1197–1200 (2001). doi:10.5194/angeo-19-1197-2001

    Article  ADS  Google Scholar 

  • J.W. Freeman, Estimates of solar wind heating inside 0.3 AU. Geophys. Res. Lett. 15, 88–91 (1988). doi:10.1029/GL015i001p00088

    Google Scholar 

  • U. Frisch, A. Pouquet, J. Leorat, A. Mazure, Possibility of an inverse cascade of magnetic helicity in magnetohydrodynamic turbulence. J. Fluid Mech. 68, 769–778 (1975). doi:10.1017/S002211207500122X

    Article  ADS  MATH  Google Scholar 

  • S. Galtier, Wave turbulence in incompressible hall magnetohydrodynamics. J. Plasma Phys. 72, 721–769 (2006). doi:10.1017/S0022377806004521

    Article  ADS  Google Scholar 

  • S.P. Gary, J.E. Borovsky, Alfvén-cyclotron fluctuations: linear Vlasov theory. J. Geophys. Res. 109 (2004). doi:10.1029/2004JA010399

    Google Scholar 

  • S.P. Gary, J.E. Borovsky, Damping of long-wavelength kinetic Alfvén fluctuations: linear theory. J. Geophys. Res. 113 (2008). doi:10.1029/2008JA013565

    Google Scholar 

  • S.P. Gary, C.W. Smith, Short-wavelength turbulence in the solar wind: Linear theory of whistler and kinetic Alfvén fluctuations. J. Geophys. Res. 114 (2009). doi:10.1029/2009JA014525

    Google Scholar 

  • S.P. Gary, S. Saito, H. Li, Cascade of whistler turbulence: particle-in-cell simulations. Geophys. Res. Lett. 35 (2008). doi:10.1029/2007GL032327

    Google Scholar 

  • P.R. Gazis, Observations of plasma bulk parameters and the energy balance of the solar wind between 1 and 10 AU. J. Geophys. Res. 89, 775–785 (1984). doi:10.1029/JA089iA02p00775

    Article  ADS  Google Scholar 

  • P.R. Gazis, A. Barnes, J.D. Mihalov, A.J. Lazarus, Solar wind velocity and temperature in the outer heliosphere. J. Geophys. Res. 99, 6561–6573 (1994). doi:10.1029/93JA03144

    Article  ADS  Google Scholar 

  • S. Ghosh, E. Siregar, D.A. Roberts, M.L. Goldstein, Simulation of high-frequency solar wind power spectra using hall magnetohydrodynamics. J. Geophys. Res. 101, 2493–2504 (1996). doi:10.1029/95JA03201

    Article  ADS  Google Scholar 

  • K.-H. Glassmeier, U. Motschmann, M. Dunlop, A. Balogh, M.H. Acuña, C. Carr, G. Musmann, K.-H. Fornaçon, K. Schweda, J. Vogt, E. Georgescu, S. Buchert, Cluster as a wave telescope - first results from the fluxgate magnetometer. Ann. Geophys. 19, 1439–1447 (2001). doi:10.5194/angeo-19-1439-2001

    Article  ADS  Google Scholar 

  • M.L. Goldstein, D.A. Roberts, C.A. Fitch, Properties of the fluctuating magnetic helicity in the inertial and dissipation ranges of solar wind turbulence. J. Geophys. Res. 99, 11519–11538 (1994). doi:10.1029/94JA00789

    Article  ADS  Google Scholar 

  • M.L. Goldstein, Turbulence in the solar wind: kinetic effects, in Solar Wind Eight, ed. by D. Winterhalter, J.T. Gosling, S.R. Habbal, W.S. Kurth, M. Neugebauer. AIP Conference Proceedings, vol. 382 (American Institute of Physics, Woodbury, 1996), pp. 239–244. doi:10.1063/1.51391

    Google Scholar 

  • D.A. Gurnett, R.R. Anderson, Plasma wave electric fields in the solar wind: Initial results from Helios 1. J. Geophys. Res. 82, 632–650 (1977). doi:10.1029/JA082i004p00632

    Article  ADS  Google Scholar 

  • D.A. Gurnett, L.A. Frank, Ion acoustic waves in the solar wind. J. Geophys. Res. 83, 58–74 (1978). doi:10.1029/JA083iA01p00058

    Article  ADS  Google Scholar 

  • D.A. Gurnett, E. Marsch, W. Pilipp, R. Schwenn, H. Rosenbauer, Ion acoustic waves and related plasma observations in the solar wind. J. Geophys. Res. 84, 2029–2038 (1979). doi:10.1029/JA084iA05p02029

    Article  ADS  Google Scholar 

  • G. Gustafsson, M. André, T. Carozzi, A.I. Eriksson, C.-G. Fälthammar, R. Grard, G. Holmgren, J.A. Holtet, N. Ivchenko, T. Karlsson, Y. Khotyaintsev, S. Klimov, H. Laakso, P.-A. Lindqvist, B. Lybekk, G. Marklund, F. Mozer, K. Mursula, A. Pedersen, B. Popielawska, S. Savin, K. Stasiewicz, P. Tanskanen, A. Vaivads, J.-E. Wahlund, First results of electric field and density observations by cluster EFW based on initial months of operation. Ann. Geophys. 19, 1219–1240 (2001). doi:10.5194/angeo-19-1219-2001

    Google Scholar 

  • K. Hamilton, C.W. Smith, B.J. Vasquez, R.J. Leamon, Anisotropies and helicities in the solar wind inertial and dissipation ranges at 1 AU. J. Geophys. Res. (Space Phys.) 113, 01106 (2008). doi:10.1029/2007JA012559

    Google Scholar 

  • J. He, E. Marsch, C. Tu, S. Yao, H. Tian, Possible evidence of Alfvén-cyclotron waves in the angle distribution of magnetic helicity of solar wind turbulence. Astrophys. J. 731, 85 (2011). doi:10.1088/0004-637X/731/2/85

    Article  ADS  Google Scholar 

  • J. He, C. Tu, E. Marsch, S. Yao, Do oblique Alfvén/ion-cyclotron or fast-mode/whistler waves dominate the dissipation of solar wind turbulence near the proton inertial length? Astrophys. J. Lett. 745, 8 (2012a). doi:10.1088/2041-8205/745/1/L8

    Article  ADS  Google Scholar 

  • J. He, C. Tu, E. Marsch, S. Yao, Reproduction of the observed two-component magnetic helicity in solar wind turbulence by a superposition of parallel and oblique Alfvén waves. Astrophys. J. 749, 86 (2012b). doi:10.1088/0004-637X/749/1/86

    Article  ADS  Google Scholar 

  • J. Heyvaerts, E.R. Priest, Coronal heating by phase-mixed shear Alfven waves. Astron. Astrophys. 117, 220–234 (1983)

    ADS  MATH  Google Scholar 

  • J.V. Hollweg, Kinetic Alfvén wave revisited. J. Geophys. Res. 104, 14811–14820 (1999). doi:10.1029/1998JA900132

    Article  ADS  Google Scholar 

  • T.S. Horbury, M.A. Forman, S. Oughton, Anisotropic scaling of magnetohydrodynamic turbulence. Phys. Rev. Lett. 807 (17) (2008). doi:10.1103/PhysRevLett.101.175005

    Google Scholar 

  • G.G. Howes, Inertial range turbulence in kinetic plasmas. Phys. Plasmas 15 (5) (2008). doi:10.1063/1.2889005

    Google Scholar 

  • G.G. Howes, S.C. Cowley, W. Dorland, G.W. Hammett, E. Quataert, A.A. Schekochihin, T. Tatsuno, Howes et al. reply. Phys. Rev. Lett. 101 (14) (2008a). doi:10.1103/PhysRevLett.101.149502

    Google Scholar 

  • G.G. Howes, W. Dorland, S.C. Cowley, G.W. Hammett, E. Quataert, A.A. Schekochihin, T. Tatsuno, Kinetic simulations of magnetized turbulence in astrophysical plasmas. Phys. Rev. Lett. 100 (2008b). doi:10.1103/PhysRevLett.100.065004

    Google Scholar 

  • P.A. Isenberg, Turbulence-driven solar wind heating and energization of pickup protons in the outer heliosphere. Astrophys. J. 623, 502–510 (2005). doi:10.1086/428609

    Article  ADS  Google Scholar 

  • H. Karimabadi, V. Roytershteyn, M. Wan, W.H. Matthaeus, W. Daughton, P. Wu, M. Shay, B. Loring, J. Borovsky, E. Leonardis, S.C. Chapman, T.K.M. Nakamura, Coherent structures, intermittent turbulence, and dissipation in high-temperature plasmas. Phys. Plasmas 20 (1), 012303 (2013). doi:10.1063/1.4773205

    Google Scholar 

  • K.H. Kiyani, S.C. Chapman, Y.V. Khotyaintsev, M.W. Dunlop, F. Sahraoui, Global scale-invariant dissipation in collisionless plasma turbulence. Phys. Rev. Lett. 103 (7) (2009). doi:10.1103/PhysRevLett.103.075006

    Google Scholar 

  • R.J. Leamon, C.W. Smith, N.F. Ness, W.H. Matthaeus, H.K. Wong, Observational constraints on the dynamics of the interplanetary magnetic field dissipation range. J. Geophys. Res. 103, 4775–4787 (1998). doi:10.1029/97JA03394

    Article  ADS  Google Scholar 

  • R.J. Leamon, C.W. Smith, N.F. Ness, H.K. Wong, Dissipation range dynamics: kinetic Alfvén waves and the importance of β e . J. Geophys. Res. 104, 22331–22344 (1999). doi:10.1029/1999JA900158

    Article  ADS  Google Scholar 

  • E. Lee, M.E. Brachet, A. Pouquet, P.D. Mininni, D. Rosenberg, Lack of universality in decaying magnetohydrodynamic turbulence. Phys. Rev. E 81 (1) (2010). doi:10.1103/PhysRevE.81.016318

    Google Scholar 

  • B.T. MacBride, C.W. Smith, M.A. Forman, The turbulent cascade at 1 AU: energy transfer and the third-order scaling for MHD. Astrophys. J. 679, 1644–1660 (2008). doi:10.1086/529575

    Article  ADS  Google Scholar 

  • B.T. MacBride, C.W. Smith, B.J. Vasquez, Inertial-range anisotropies in the solar wind from 0.3 to 1 AU: Helios 1 observations. J. Geophys. Res. 115 (A14), 7105 (2010). doi:10.1029/2009JA014939

    Google Scholar 

  • R. Marino, L. Sorriso-Valvo, V. Carbone, A. Noullez, R. Bruno, B. Bavassano, Heating the solar wind by a magnetohydrodynamic turbulent energy cascade. Astrophys. J. 677, 71 (2008). doi:10.1086/587957

    Article  ADS  Google Scholar 

  • R. Marino, L. Sorriso-Valvo, V. Carbone, A. Noullez, R. Bruno, B. Bavassano, The energy cascade in solar wind MHD turbulence. Earth Moon Planet. 104, 115–119 (2009). doi:10.1007/s11038-008-9253-z

    Article  ADS  Google Scholar 

  • R. Marino, L. Sorriso-Valvo, V. Carbone, P. Veltri, A. Noullez, R. Bruno, The magnetohydrodynamic turbulent cascade in the ecliptic solar wind: study of Ulysses data. Planet. Space Sci. 59, 592–597 (2011). doi:10.1016/j.pss.2010.06.005

    Article  ADS  Google Scholar 

  • S.A. Markovskii, B.J. Vasquez, C.W. Smith, J.V. Hollweg, Dissipation of the perpendicular turbulent cascade in the solar wind. Astrophys. J. 639, 1177–1185 (2006). doi:10.1086/499398

    Article  ADS  Google Scholar 

  • S.A. Markovskii, B.J. Vasquez, C.W. Smith, Statistical analysis of the high-frequency spectral break of the solar wind turbulence at 1 AU. Astrophys. J. 675, 1576–1583 (2008). doi:10.1086/527431

    Article  ADS  Google Scholar 

  • E. Marsch, Radial evolution of ion distribution functions, in Solar Wind Five, ed. by M. Neugebauer. NASA Conference Publication, vol. 2280 (NASA, Washington, 1983), pp. 355–367

    Google Scholar 

  • E. Marsch, Turbulence in the solar wind, in Reviews in Modern Astronomy, ed. by G. Klare Reviews in Modern Astronomy, vol. 4 (Springer, Berlin, 1991), pp. 145–156

    Google Scholar 

  • E. Marsch, Kinetic physics of the solar corona and solar wind. Living Rev. Sol. Phys. 3 (2006a). doi:10.12942/lrsp-2006-1

    Google Scholar 

  • E. Marsch, R. Schwenn, H. Rosenbauer, K. Muehlhaeuser, W. Pilipp, F.M. Neubauer, Solar wind protons: three-dimensional velocity distributions and derived plasma parameters measured between 0.3 and 1 AU. J. Geophys. Res. 87, 52–72 (1982). doi:10.1029/JA087iA01p00052

    Google Scholar 

  • W.H. Matthaeus, Prospects for universality in MHD turbulence with cross helicity, anisotropy and shear (invited). Eos Trans. AGU 90 (52), 21–05 (2009)

    Google Scholar 

  • W.H. Matthaeus, M.L. Goldstein, D.A. Roberts, Evidence for the presence of quasi-two-dimensional nearly incompressible fluctuations in the solar wind. J. Geophys. Res. 95, 20673–20683 (1990). doi:10.1029/JA095iA12p20673

    Article  ADS  Google Scholar 

  • W.H. Matthaeus, S. Dasso, J.M. Weygand, L.J. Milano, C.W. Smith, M.G. Kivelson, Spatial correlation of solar-wind turbulence from two-point measurements. Phys. Rev. Lett. 95 (23) (2005). doi:10.1103/PhysRevLett.95.231101

    Google Scholar 

  • W.H. Matthaeus, S. Servidio, P. Dmitruk, Comment on ‘kinetic simulations of magnetized turbulence in astrophysical plasmas’. Phys. Rev. Lett. 101 (14) (2008). doi:10.1103/PhysRevLett.101.149501

    Google Scholar 

  • H.K. Moffatt, Magnetic Field Generation in Electrically Conducting Fluids. Cambridge Monographs on Mechanics and Applied Mathematics (Cambridge University Press, Cambridge, 1978)

    Google Scholar 

  • Y. Narita, K.-H. Glassmeier, F. Sahraoui, M.L. Goldstein, Wave-vector dependence of magnetic-turbulence spectra in the solar wind. Phys. Rev. Lett. 104 (17) (2010). doi:10.1103/PhysRevLett.104.171101

    Google Scholar 

  • Y. Narita, S.P. Gary, S. Saito, K.-H. Glassmeier, U. Motschmann, Dispersion relation analysis of solar wind turbulence. Geophys. Res. Lett. 38 (2011). doi:10.1029/2010GL046588

    Google Scholar 

  • E.N. Parker, Dynamics of the interplanetary gas and magnetic fields. Astrophys. J 128, 664 (1958). doi:10.1086/146579

    Article  ADS  Google Scholar 

  • E.N. Parker, Theory of solar wind, in Proceedings of the International Conference on Cosmic Rays, Vol. 1: Solar Particles and Sun-Earth Relations (Tata Institute of Fundamental Research, Bombay, 1963), p. 175

    Google Scholar 

  • S. Perri, E. Yordanova, V. Carbone, P. Veltri, L. Sorriso-Valvo, R. Bruno, M. André, Magnetic turbulence in space plasmas: scale-dependent effects of anisotropy. J. Geophys. Res. 114 (A13), 2102 (2009). doi:10.1029/2008JA013491

    Google Scholar 

  • S. Perri, V. Carbone, E. Yordanova, R. Bruno, A. Balogh, Scaling law of the reduced magnetic helicity in fast streams. Planet. Space Sci. 59, 575–579 (2011). doi:10.1016/j.pss.2010.04.017

    Article  ADS  Google Scholar 

  • S. Perri, M.L. Goldstein, J.C. Dorelli, F. Sahraoui, Detection of small-scale structures in the dissipation regime of solar-wind turbulence. Phys. Rev. Lett. 109 (19), 191101 (2012). doi:10.1103/PhysRevLett.109.191101

    Google Scholar 

  • J.J. Podesta, Dependence of solar-wind power spectra on the direction of the local mean magnetic field. Astrophys. J. 698, 986–999 (2009). doi:10.1088/0004-637X/698/2/986

    Article  ADS  Google Scholar 

  • J.J. Podesta, S.P. Gary, Magnetic helicity spectrum of solar wind fluctuations as a function of the angle with respect to the local mean magnetic field. Astrophys. J. 734, 15 (2011). doi:10.1088/0004-637X/734/1/15

    Article  ADS  Google Scholar 

  • J.D. Richardson, K.I. Paularena, A.J. Lazarus, J.W. Belcher, Radial evolution of the solar wind from IMP 8 to voyager 2. Geophys. Res. Lett. 22, 325–328 (1995). doi:10.1029/94GL03273

    Article  ADS  Google Scholar 

  • F. Sahraoui, M.L. Goldstein, P. Robert, Y.V. Khotyaintsev, Evidence of a cascade and dissipation of solar-wind turbulence at the electron gyroscale. Phys. Rev. Lett. 102 (23) (2009). doi:10.1103/PhysRevLett.102.231102

    Google Scholar 

  • F. Sahraoui, M.L. Goldstein, G. Belmont, P. Canu, L. Rezeau, Three dimensional anisotropic k spectra of turbulence at subproton scales in the solar wind. Phys. Rev. Lett. 105 (13), 131101 (2010a). doi:10.1103/PhysRevLett.105.131101

    Google Scholar 

  • F. Sahraoui, M.L. Goldstein, G. Belmont, P. Canu, L. Rezeau, Three dimensional anisotropic k spectra of turbulence at subproton scales in the solar wind. Phys. Rev. Lett. 105 (13) (2010b). doi:10.1103/PhysRevLett.105.131101

    Google Scholar 

  • S. Saito, S.P. Gary, H. Li, Y. Narita, Whistler turbulence: particle-in-cell simulations. Phys. Plasmas 15 (10) (2008). doi:10.1063/1.2997339

    Google Scholar 

  • C.S. Salem, G.G. Howes, D. Sundkvist, S.D. Bale, C.C. Chaston, C.H.K. Chen, F.S. Mozer, Identification of kinetic Alfvén wave turbulence in the solar wind. Astrophys. J. Lett. 745, 9 (2012). doi:10.1088/2041-8205/745/1/L9

    Article  ADS  Google Scholar 

  • A.A. Schekochihin, S.C. Cowley, W. Dorland, G.W. Hammett, G.G. Howes, E. Quataert, T. Tatsuno, Astrophysical gyrokinetics: kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas. Astrophys. J. Suppl. Ser. 182, 310–377 (2009). doi:10.1088/0067-0049/182/1/310

    Article  ADS  Google Scholar 

  • R. Schwenn, The ‘average’ solar wind in the inner heliosphere: structures and slow variations, in Solar Wind Five, ed. by M. Neugebauer. NASA Conference Publication, vol. 2280 (NASA, Washington, 1983), pp. 489–507

    Google Scholar 

  • S. Servidio, W.H. Matthaeus, V. Carbone, Statistical properties of ideal three-dimensional hall magnetohydrodynamics: The spectral structure of the equilibrium ensemble. Phys. Plasmas 15 (4) (2008). doi:10.1063/1.2907789

    Google Scholar 

  • S. Servidio, F. Valentini, F. Califano, P. Veltri, Local kinetic effects in two-dimensional plasma turbulence. Phys. Rev. Lett. 108 (4), 045001 (2012). doi:10.1103/PhysRevLett.108.045001

    Google Scholar 

  • C.W. Smith, M.L. Goldstein, W.H. Matthaeus, Turbulence analysis of the Jovian upstream ‘wave’ phenomenon. J. Geophys. Res. 88 (17), 5581–5593 (1983). doi:10.1029/JA088iA07p05581

    Article  ADS  Google Scholar 

  • C.W. Smith, D.J. Mullan, N.F. Ness, R.M. Skoug, J. Steinberg, Day the solar wind almost disappeared: magnetic field fluctuations, wave refraction and dissipation. J. Geophys. Res. 106, 18625–18634 (2001a). doi:10.1029/2001JA000022

    Article  ADS  Google Scholar 

  • C.W. Smith, W.H. Matthaeus, G.P. Zank, N.F. Ness, S. Oughton, J.D. Richardson, Heating of the low-latitude solar wind by dissipation of turbulent magnetic fluctuations. J. Geophys. Res. 106, 8253–8272 (2001b). doi:10.1029/2000JA000366

    Article  ADS  Google Scholar 

  • C.W. Smith, K. Hamilton, B.J. Vasquez, R.J. Leamon, Dependence of the dissipation range spectrum of interplanetary magnetic fluctuations on the rate of energy cascade. Astrophys. J. Lett. 645, 85–88 (2006). doi:10.1086/506151

    Article  ADS  Google Scholar 

  • O. Stawicki, S.P. Gary, H. Li, Solar wind magnetic fluctuation spectra: dispersion versus damping. J. Geophys. Res. 106, 8273–8282 (2001). doi:10.1029/2000JA000446

    Article  ADS  Google Scholar 

  • D. Telloni, R. Bruno, L. Trenchi, Radial evolution of spectral characteristics of magnetic field fluctuations at proton scales. Astrophys. J. 805, 46 (2015). doi:10.1088/0004-637X/805/1/46

    Article  ADS  Google Scholar 

  • J.M. TenBarge, G.G. Howes, Evidence of critical balance in kinetic Alfvén wave turbulence simulations a). Phys. Plasmas 19 (5), 055901 (2012). doi:10.1063/1.3693974

    Google Scholar 

  • C.-Y. Tu, E. Marsch, MHD structures, waves and turbulence in the solar wind: observations and theories. Space Sci. Rev. 73 (1/2), 1–210 (1995a). doi:10.1007/BF00748891

    Article  ADS  Google Scholar 

  • C.-Y. Tu, E. Marsch, MHD structures, waves and turbulence in the solar wind: observations and theories. Space Sci. Rev. 73 (1/2), 1–210 (1995b). doi:10.1007/BF00748891

    Article  ADS  Google Scholar 

  • A.J. Turner, G. Gogoberidze, S.C. Chapman, B. Hnat, W.-C. Müller, Nonaxisymmetric anisotropy of solar wind turbulence. Phys. Rev. Lett. 107 (2011). doi:10.1103/PhysRevLett.107.095002

    Google Scholar 

  • F. Valentini, P. Veltri, Electrostatic short-scale termination of solar-wind turbulence. Phys. Rev. Lett. 102 (22) (2009). doi:10.1103/PhysRevLett.102.225001

    Google Scholar 

  • F. Valentini, P. Veltri, F. Califano, A. Mangeney, Cross-scale effects in solar-wind turbulence. Phys. Rev. Lett. 101 (2) (2008). doi:10.1103/PhysRevLett.101.025006

    Google Scholar 

  • B.J. Vasquez, C.W. Smith, K. Hamilton, B.T. MacBride, R.J. Leamon, Evaluation of the turbulent energy cascade rates from the upper inertial range in the solar wind at 1 AU. J. Geophys. Res. 112 (A11), 7101 (2007). doi:10.1029/2007JA012305

    Google Scholar 

  • M.K. Verma, D.A. Roberts, M.L. Goldstein, Turbulent heating and temperature evolution in the solar wind plasma. J. Geophys. Res. 100, 19839–19850 (1995). doi:10.1029/95JA01216

    Article  ADS  Google Scholar 

  • C.F. von Weizsäcker, The evolution of galaxies and stars. Astrophys. J. 114, 165 (1951). doi:10.1086/145462

    Article  MathSciNet  Google Scholar 

  • M. Wan, W.H. Matthaeus, H. Karimabadi, V. Roytershteyn, M. Shay, P. Wu, W. Daughton, B. Loring, S.C. Chapman, Intermittent dissipation at kinetic scales in collisionless plasma turbulence. Phys. Rev. Lett. 109 (19), 195001 (2012). doi:10.1103/PhysRevLett.109.195001

    Google Scholar 

  • C.J. Wareing, R. Hollerbach, Forward and inverse cascades in decaying two-dimensional electron magnetohydrodynamic turbulence. Phys. Plasmas 16 (4) (2009). doi:10.1063/1.3111033

    Google Scholar 

  • P. Wu, S. Perri, K. Osman, M. Wan, W.H. Matthaeus, M.A. Shay, M.L. Goldstein, H. Karimabadi, S. Chapman, Intermittent heating in solar wind and kinetic simulations. Astrophys. J. 763, 30 (2013). doi:10.1088/2041-8205/763/2/L30

    Article  ADS  Google Scholar 

  • E. Yordanova, A. Vaivads, M. André, S.C. Buchert, Z. Vörös, Magnetosheath plasma turbulence and its spatiotemporal evolution as observed by the cluster spacecraft. Phys. Rev. Lett. 100 (20) (2008). doi:10.1103/PhysRevLett.100.205003

    Google Scholar 

  • E. Yordanova, A. Balogh, A. Noullez, R. von Steiger, Turbulence and intermittency in the heliospheric magnetic field in fast and slow solar wind. J. Geophys. Res. 114 (2009). doi:10.1029/2009JA014067

    Google Scholar 

  • G.P. Zank, W.H. Matthaeus, C.W. Smith, Evolution of turbulent magnetic fluctuation power with heliospheric distance. J. Geophys. Res. 101, 17093–17108 (1996). doi:10.1029/96JA01275

    Article  ADS  Google Scholar 

  • Y. Zhou, W.H. Matthaeus, Non-WKB evolution of solar wind fluctuations: a turbulence modeling approach. Geophys. Res. Lett. 16, 755–758 (1989). doi:10.1029/GL016i007p00755

    Article  ADS  Google Scholar 

  • Y. Zhou, W.H. Matthaeus, Transport and turbulence modeling of solar wind fluctuations. J. Geophys. Res. 95 (14), 10291–10311 (1990). doi:10.1029/JA095iA07p10291

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bruno, R., Carbone, V. (2016). Solar Wind Heating by the Turbulent Energy Cascade. In: Turbulence in the Solar Wind. Lecture Notes in Physics, vol 928. Springer, Cham. https://doi.org/10.1007/978-3-319-43440-7_8

Download citation

Publish with us

Policies and ethics