Skip to main content

Compressive Turbulence

  • Chapter
  • First Online:
Turbulence in the Solar Wind

Part of the book series: Lecture Notes in Physics ((LNP,volume 928))

  • 1108 Accesses

Abstract

Interplanetary medium is slightly compressive, magnetic field intensity and proton number density experience fluctuations over all scales and the compression depends on both the scale and the nature of the wind. As a matter of fact, slow wind is generally more compressive than fast wind, as shown in Fig. 5.1 where, following Bavassano et al. (1982b) and Bruno and Bavassano (1991), we report the ratio between the power density associated with magnetic field intensity fluctuations and that associated with the fluctuations of the three components. In addition, as already shown by Bavassano et al. (1982b), this parameter increases with heliocentric distance for both fast and slow wind as shown in the bottom panel, where the ratio between the compression at 0.9 AU and that at 0.3 AU is generally greater than 1. It is also interesting to notice that within the Alfvénic fast wind, the lowest compression is observed in the middle frequency range, roughly between 10−4 and 10−3 Hz. On the other hand, this frequency range has already been recognized as the most Alfvénic one, within the inner heliosphere (Bruno et al. 1996).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • A. Barnes, Hydromagnetic waves and turbulence in the solar wind, in Solar System Plasma Physics, vol. 1, ed. by E.N. Parker, C.F. Kennel, L.J. Lanzerotti (North-Holland, Amsterdam, 1979), pp. 249–319

    Google Scholar 

  • B. Bavassano, R. Bruno, Density fluctuations and turbulent mach number in the inner solar wind. J. Geophys. Res. 100, 9475–9480 (1995)

    Article  ADS  Google Scholar 

  • B. Bavassano, M. Dobrowolny, F. Mariani, N.F. Ness, Radial evolution of power spectra of interplanetary Alfvénic turbulence. J. Geophys. Res. 87, 3617–3622 (1982a). doi:10.1029/JA087iA05p03617

    Article  ADS  Google Scholar 

  • B. Bavassano, M. Dobrowolny, G. Fanfoni, F. Mariani, N.F. Ness, Statistical properties of MHD fluctuations associated with high-speed streams from Helios 2 observations. Solar Phys. 78, 373–384 (1982b). doi:10.1007/BF00151617

    Article  ADS  Google Scholar 

  • B. Bavassano, R. Bruno, L. Klein, Density–temperature correlation in solar wind MHD fluctuations: a test for nearly incompressible models. J. Geophys. Res. 100, 5871–5875 (1995). doi:10.1029/94JA02571

    Article  ADS  Google Scholar 

  • B. Bavassano, R. Bruno, H. Rosenbauer, Compressive fluctuations in the solar wind and their polytropic index. Ann. Geophys. 14 (5), 510–517 (1996a). doi:10.1007/s00585-996-0510-z

    Article  ADS  Google Scholar 

  • B. Bavassano, R. Bruno, H. Rosenbauer, MHD compressive turbulence in the solar wind and the nearly incompressible approach. Astrophys. Space Sci. 243, 159–169 (1996b). doi:10.1007/BF00644047

    Article  ADS  Google Scholar 

  • B. Bavassano, E. Pietropaolo, R. Bruno, Compressive fluctuations in high-latitude solar wind. Ann. Geophys. 22 (2), 689–696 (2004). doi:10.5194/angeo-22-689-2004

    Article  ADS  Google Scholar 

  • R. Bruno, B. Bavassano, Origin of low cross-helicity regions in the solar wind. J. Geophys. Res. 96, 7841–7851 (1991). doi:10.1029/91JA00144

    Article  ADS  Google Scholar 

  • R. Bruno, B. Bavassano, Cross-helicity depletions in the inner heliosphere, and magnetic field and velocity fluctuation decoupling. Planet. Space Sci. 41, 677–685 (1993). doi:10.1016/0032-0633(93)90052-4

    Article  ADS  Google Scholar 

  • R. Bruno, B. Bavassano, U. Villante, Evidence for long period Alfvén waves in the inner solar system. J. Geophys. Res. 90 (9), 4373–4377 (1985). doi:10.1029/JA090iA05p04373

    Article  ADS  Google Scholar 

  • R. Bruno, B. Bavassano, E. Pietropaolo, On the nature of Alfvénic ‘inward’ modes in the solar wind, in Solar Wind Eight, ed. by D. Winterhalter, J.T. Gosling, S.R. Habbal, W.S. Kurth, M. Neugebauer. AIP Conference Proceedings, vol. 382 (American Institute of Physics, Woodbury, 1996), pp. 229–232. doi:10.1063/1.51389

    Google Scholar 

  • L.F. Burlaga, K.W. Ogilvie, Magnetic and thermal pressures in the solar wind. Solar Phys. 15, 61–99 (1970). doi:10.1007/BF00149472

    Article  ADS  Google Scholar 

  • A. Buttighoffer, M. Pick, E.C. Roelof, S. Hoang, A. Mangeney, L.J. Lanzerotti, R.J. Forsyth, J.L. Phillips, Coronal electron stream and Langmuir wave detection inside a propagation channel at 4.3 AU. J. Geophys. Res. 100, 3369–3381 (1995). doi:10.1029/94JA02033

    Google Scholar 

  • A. Buttighoffer, L.J. Lanzerotti, D.J. Thomson, C.G. Maclennan, R.J. Forsyth, Spectral analysis of the magnetic field inside particle propagation channels detected by Ulysses. Astron. Astrophys. 351, 385–392 (1999)

    ADS  Google Scholar 

  • S. Chandrasekhar, An Introduction to the Study of Stellar Structure (Dover, New York, 1967)

    MATH  Google Scholar 

  • R. Courant, K.O. Friedrichs, Supersonic Flow and Shock Waves. Applied Mathematical Sciences, vol. 21 (Springer, Berlin, 1976)

    Google Scholar 

  • R. Grappin, A. Mangeney, E. Marsch, On the origin of solar wind MHD turbulence – Helios data revisited. J. Geophys. Res. 95 (14), 8197–8209 (1990). doi:10.1029/JA095iA06p08197

    Article  ADS  Google Scholar 

  • R. Grappin, J. Léorat, A. Buttighoffer, Alfvén wave propagation in the high solar corona. Astron. Astrophys. 362, 342–358 (2000)

    ADS  Google Scholar 

  • L. Klein, R. Bruno, B. Bavassano, H. Rosenbauer, Anisotropy and minimum variance of magnetohydrodynamic fluctuations in the inner heliosphere. J. Geophys. Res. 98 (17), 17461–17466 (1993). doi:10.1029/93JA01522

    Article  ADS  Google Scholar 

  • E. Marsch, C.-Y. Tu, Spectral and spatial evolution of compressible turbulence in the inner solar wind. J. Geophys. Res. 95 (14), 11945–11956 (1990). doi:10.1029/JA095iA08p11945

    Article  ADS  Google Scholar 

  • E. Marsch, C.-Y. Tu, Correlations between the fluctuations of pressure, density, temperature and magnetic field in the solar wind. Ann. Geophys. 11, 659–677 (1993a)

    ADS  Google Scholar 

  • E. Marsch, C.-Y. Tu, Modeling results on spatial transport and spectral transfer of solar wind Alfvénic turbulence. J. Geophys. Res. 98 (17), 21045–21059 (1993b). doi:10.1029/93JA02365

    Article  ADS  Google Scholar 

  • W.H. Matthaeus, M.R. Brown, Nearly incompressible magnetohydrodynamics at low mach number. Phys. Fluids 31, 3634–3644 (1988). doi:10.1063/1.866880

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • W.H. Matthaeus, L.W. Klein, S. Ghosh, M.R. Brown, Nearly incompressible magnetohydrodynamics, pseudosound, and solar wind fluctuations. J. Geophys. Res. 96 (15), 5421–5435 (1991). doi:10.1029/90JA02609

    Article  ADS  Google Scholar 

  • D.J. McComas, B.L. Barraclough, J.T. Gosling, C.M. Hammond, J.L. Phillips, M. Neugebauer, A. Balogh, R.J. Forsyth, Structures in the polar solar wind: plasma and field observations from Ulysses. J. Geophys. Res. 100 (9), 19893–19902 (1995). doi:10.1029/95JA01634

    Article  ADS  Google Scholar 

  • D.J. McComas, G.W. Hoogeveen, J.T. Gosling, J.L. Phillips, M. Neugebauer, A. Balogh, R.J. Forsyth, Ulysses observations of pressure-balance structures in the polar solar wind. Astron. Astrophys. 316, 368–373 (1996)

    ADS  Google Scholar 

  • K.G. McCracken, N.F. Ness, The collimation of cosmic rays by the interplanetary magnetic field. J. Geophys. Res. 71, 3315–3325 (1966)

    Article  ADS  Google Scholar 

  • D. Montgomery, M.R. Brown, W.H. Matthaeus, Density fluctuation spectra in magnetohydrodynamic turbulence. J. Geophys. Res. 92 (11), 282–284 (1987). doi:10.1029/JA092iA01p00282

    Article  ADS  Google Scholar 

  • E.N. Parker, Theory of solar wind, in Proceedings of the International Conference on Cosmic Rays. Solar Particles and Sun-Earth Relations, vol. 1 (Tata Institute of Fundamental Research, Bombay, 1963), p. 175

    Google Scholar 

  • D.B. Reisenfeld, D.J. McComas, J.T. Steinberg, Evidence of a solar origin for pressure balance structures in the high-latitude solar wind. Geophys. Res. Lett. 26, 1805–1808 (1999). doi:10.1029/1999GL900368

    Article  ADS  Google Scholar 

  • D.A. Roberts, Observation and simulation of the radial evolution and stream structure of solar wind turbulence, in Solar Wind Seven, ed. by E. Marsch, R. Schwenn. COSPAR Colloquia Series, vol. 3 (Pergamon Press, Oxford, 1992), pp. 533–538

    Google Scholar 

  • D.A. Roberts, M.L. Goldstein, L.W. Klein, W.H. Matthaeus, Origin and evolution of fluctuations in the solar wind: Helios observations and Helios–Voyager comparisons. J. Geophys. Res. 92 (11), 12023–12035 (1987). doi:10.1029/JA092iA11p12023

    Article  ADS  Google Scholar 

  • D.A. Roberts, S. Ghosh, M.L. Goldstein, W.H. Matthaeus, Magnetohydrodynamic simulation of the radial evolution and stream structure of solar-wind turbulence. Phys. Rev. Lett. 67, 3741–3744 (1991). doi:10.1103/PhysRevLett.67.3741

    Article  ADS  Google Scholar 

  • D.A. Roberts, M.L. Goldstein, W.H. Matthaeus, S. Ghosh, Velocity shear generation of solar wind turbulence. J. Geophys. Res. 97 (16), 17115– (1992). doi:10.1029/92JA01144

    Google Scholar 

  • G.L. Siscoe, L. Davis, P.J. Coleman, E.J. Smith, D.E. Jones, Power spectra and discontinuities of the interplanetary magnetic field: Mariner 4. J. Geophys. Res. 73 (12), 61–99 (1968). doi:10.1029/JA073i001p00061

    Article  ADS  Google Scholar 

  • K.M. Thieme, R. Schwenn, E. Marsch, Are structures in high-speed streams signatures of coronal fine structures? Adv. Space Res. 9, 127–130 (1989). doi:10.1016/0273-1177(89)90105-1

    Article  ADS  Google Scholar 

  • C.-Y. Tu, E. Marsch, On the nature of compressive fluctuations in the solar wind. J. Geophys. Res. 99 (18), 21481 (1994)

    Google Scholar 

  • C.-Y. Tu, E. Marsch, H. Rosenbauer, Temperature fluctuation spectra in the inner solar wind. Ann. Geophys. 9, 748–753 (1991)

    ADS  Google Scholar 

  • M. Vellante, A.J. Lazarus, An analysis of solar wind fluctuations between 1 and 10 AU. J. Geophys. Res. 92 (17), 9893–9900 (1987). doi:10.1029/JA092iA09p09893

    Article  ADS  Google Scholar 

  • G.P. Zank, W.H. Matthaeus, Nearly incompressible hydrodynamics and heat conduction. Phys. Rev. Lett. 64, 1243–1246 (1990). doi:10.1103/PhysRevLett.64.1243

    Article  ADS  Google Scholar 

  • G.P. Zank, W.H. Matthaeus, The equations of nearly incompressible fluids. i. Hydrodynamics, turbulence, and waves. Phys. Fluids A 3, 69–82 (1991). doi:10.1063/1.857865

    Google Scholar 

  • G.P. Zank, W.H. Matthaeus, Waves and turbulence in the solar wind. J. Geophys. Res. 97 (16), 17189–17194 (1992). doi:10.1029/92JA01734

    Article  ADS  Google Scholar 

  • G.P. Zank, W.H. Matthaeus, Nearly incompressible fluids. ii – magnetohydrodynamics, turbulence, and waves. Phys. Fluids 5, 257–273 (1993)

    Google Scholar 

  • G.P. Zank, W.H. Matthaeus, L.W. Klein, Temperature and density anti-correlations in solar wind fluctuations. Geophys. Res. Lett. 17, 1239–1242 (1990). doi:10.1029/GL017i009p01239

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bruno, R., Carbone, V. (2016). Compressive Turbulence. In: Turbulence in the Solar Wind. Lecture Notes in Physics, vol 928. Springer, Cham. https://doi.org/10.1007/978-3-319-43440-7_5

Download citation

Publish with us

Policies and ethics