Skip to main content

Early Observations of MHD Turbulence

  • Chapter
  • First Online:
Turbulence in the Solar Wind

Part of the book series: Lecture Notes in Physics ((LNP,volume 928))

  • 1102 Accesses

Abstract

Here we briefly present the history, since the first Mariner missions during the 1960s, of the main steps towards the completion of an observational picture of turbulence in interplanetary space. This retrospective look at all the advances made in this field shows that space flights allowed us to discover a very large laboratory in space. As a matter of fact, in a wind tunnel we deal with characteristic dimensions of the order of L ≤ 10 m and probes of the size of about d ≃ 1 cm. In space, L ≃ 108 m, while “probes” (say spacecrafts) are about d ≃ 5 m. Thus, space provides a much larger laboratory but most of the available data derive from single point measurements. The ESA-Cluster project at the beginning of the past decade and, recently, the NASA-MMS project are the only space missions that allow multiple measurements, i.e. 3D measurements. In this context, after a short definition of the main reference systems in which data is provided, it is useful to recall the basic statistical concepts and numerical tools used to describe MHD turbulence in space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    To be precise, it is worth remarking again that there are no convincing arguments to identify as inertial range the intermediate range of frequencies where the observed spectral properties are typical of fully developed turbulence. From a theoretical point of view here the association “intermediate range” ≃ “inertial range” is somewhat arbitrary. Really an operative definition of inertial range of turbulence is the range of scales where relation (2.42) (for fluid flows) or (2.41) (for MHD flows) is verified.

References

  • C.N. Arge, V.J. Pizzo, Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates. J. Geophys. Res. 105, 10465–10480 (2000). doi:10.1029/1999JA900262

    Article  ADS  Google Scholar 

  • A. Balogh, R.J. Forsyth, E.A. Lucek, T.S. Horbury, E.J. Smith, Heliospheric magnetic field polarity inversions at high heliographic latitudes. Geophys. Res. Lett. 26, 631–634 (1999). doi:10.1029/1999GL900061

    Article  ADS  Google Scholar 

  • A. Barnes, J.V. Hollweg, Large-amplitude hydromagnetic waves. J. Geophys. Res. 79, 2302–2318 (1974). doi:10.1029/JA079i016p02302

    Article  ADS  Google Scholar 

  • G.K. Batchelor, Theory of Homogeneous Turbulence (Cambridge University Press, Cambridge/New York, 1970). Originally published 1953

    Google Scholar 

  • B. Bavassano, R. Bruno, Velocity and magnetic field fluctuations in alfvénic regions of the inner solar wind: three-fluid observations. J. Geophys. Res. 105 (14), 5113–5118 (2000). doi:10.1029/1999JA000336

    Article  ADS  Google Scholar 

  • B. Bavassano, E. Pietropaolo, R. Bruno, Alfvénic turbulence in the polar wind: a statistical study on cross helicity and residual energy variations. J. Geophys. Res. 105 (14), 12697–12704 (2000). doi:10.1029/2000JA900004

    Article  ADS  Google Scholar 

  • B. Bavassano, R. Woo, R. Bruno, Heliospheric plasma sheet and coronal streamers. Geophys. Res. Lett. 24, 1655–1658 (1997). doi:10.1029/97GL01630

    Article  ADS  Google Scholar 

  • B. Bavassano, M. Dobrowolny, F. Mariani, N.F. Ness, Radial evolution of power spectra of interplanetary alfvénic turbulence. J. Geophys. Res. 87, 3617–3622 (1982a). doi:10.1029/JA087iA05p03617

    Article  ADS  Google Scholar 

  • B. Bavassano, M. Dobrowolny, G. Fanfoni, F. Mariani, N.F. Ness, Statistical properties of MHD fluctuations associated with high-speed streams from helios 2 observations. Solar Phys. 78, 373–384 (1982b). doi:10.1007/BF00151617

    Article  ADS  Google Scholar 

  • J.W. Belcher, L. Davis Jr, Large amplitude alfvén waves in the interplanetary medium. J. Geophys. Res. 76, 3534–3563 (1971). doi:10.1029/JA076i016p03534

    Article  ADS  Google Scholar 

  • J.W. Belcher, C.V. Solodyna, Alfvén waves and directional discontinuities in the interplanetary medium. J. Geophys. Res. 80 (9), 181–186 (1975). doi:10.1029/JA080i001p00181

    Article  ADS  Google Scholar 

  • J.S. Bendat, A.G. Piersol, Random Data: Analysis and Measurement Procedures (Wiley-Interscience, New York, 1971)

    MATH  Google Scholar 

  • J.W. Bieber, W. Wanner, W.H. Matthaeus, Dominant two-dimensional solar wind turbulence with implications for cosmic ray transport. J. Geophys. Res. 101 (A2), 2511–2522 (1996). doi:10.1029/95JA02588

    Article  ADS  Google Scholar 

  • A. Bigazzi, L. Biferale, S.M.A. Gama, M. Velli, Small-scale anisotropy and intermittence in high- and low-latitude solar wind. Astrophys. J. 638, 499–507 (2006). doi:10.1086/498665

    Article  ADS  Google Scholar 

  • A. Brandenburg, The inverse cascade and nonlinear alpha-effect in simulations of isotropic helical hydromagnetic turbulence. Astrophys. J. 550, 824–840 (2001). doi:10.1086/319783

    Article  ADS  Google Scholar 

  • S. Bravo, G.A. Stewart, Flux tube expansion factors and solar wind velocity: results from a self-consistent MHD model. Adv. Space Res. 20, 35 (1997). doi:10.1016/S0273-1177(97)00477-8

    Article  ADS  Google Scholar 

  • R. Bruno, Inner heliosphere observations of MHD turbulence in the solar wind – challenges to theory, in Solar Wind Seven, ed. by E. Marsch, R. Schwenn. COSPAR Colloquia Series, vol. 3 (Pergamon Press, Oxford/New York, 1992), pp. 423–428

    Google Scholar 

  • R. Bruno, M. Dobrowolny, Spectral measurements of magnetic energy and magnetic helicity between 0.29 and 0.97 au. Ann. Geophys. 4, 17–22 (1986)

    Google Scholar 

  • R. Bruno, B. Bavassano, U. Villante, Evidence for long period alfvén waves in the inner solar system. J. Geophys. Res. 90 (9), 4373–4377 (1985). doi:10.1029/JA090iA05p04373

    Article  ADS  Google Scholar 

  • R. Bruno, B. Bavassano, E. Pietropaolo, V. Carbone, P. Veltri, Effects of intermittency on interplanetary velocity and magnetic field fluctuations anisotropy. Geophys. Res. Lett. 26, 3185–3188 (1999). doi:10.1029/1999GL010668

    Article  ADS  Google Scholar 

  • R. Bruno, V. Carbone, Z. Vörös, R. D’Amicis, B. Bavassano, M.B. Cattaneo, A. Mura, A. Milillo, S. Orsini, P. Veltri, L. Sorriso-Valvo, T. Zhang, H. Biernat, H. Rucker, W. Baumjohann, D. Jankovičová, P. Kovács, Coordinated study on solar wind turbulence during the Venus-express, ace and ulysses alignment of August 2007. Earth Moon Planets 104, 101–104 (2009). doi:10.1007/s11038-008-9272-9

    Article  ADS  Google Scholar 

  • L.F. Burlaga, J.M. Turner, Microscale ‘alfvén waves’ in the solar wind at 1 au. J. Geophys. Res. 81 (10), 73–77 (1976). doi:10.1029/JA081i001p00073

    Article  ADS  Google Scholar 

  • V. Carbone, P. Veltri, A shell model for anisotropic magnetohydrodynamic turbulence. Geophys. Astrophys. Fluid Dyn. 52, 153–181 (1990). doi:10.1080/03091929008219845

    Article  ADS  Google Scholar 

  • V. Carbone, F. Malara, P. Veltri, A model for the three-dimensional magnetic field correlation spectra of low-frequency solar wind fluctuations during alfvénic periods. J. Geophys. Res. 100 (9), 1763–1778 (1995). doi:10.1029/94JA02500

    Article  ADS  Google Scholar 

  • F. Cattaneo, D.W. Hughes, Nonlinear saturation of the turbulent α effect. Phys. Rev. E 54, 4532 (1996). doi:10.1103/PhysRevE.54.R4532

    Article  ADS  Google Scholar 

  • S.C. Chang, A. Nishida, Spatial structure of transverse oscillations in the interplanetary magnetic field. Astrophys. Space Sci. 23, 301–301 (1973). doi:10.1007/BF00645159

    Article  ADS  Google Scholar 

  • P.J. Coleman, Turbulence, viscosity, and dissipation in the solar-wind plasma. Astrophys. J. 153, 371 (1968). doi:10.1086/149674

    Article  ADS  Google Scholar 

  • S.R. Cranmer, A.A. van Ballegooijen, R.J. Edgar, Self-consistent coronal heating and solar wind acceleration from anisotropic magnetohydrodynamic turbulence. Astrophys. J. Suppl. Ser. 171, 520–551 (2007). doi:10.1086/518001

    Article  ADS  Google Scholar 

  • S. Dasso, L.J. Milano, W.H. Matthaeus, C.W. Smith, Cross-helicity correlations in the solar wind, in Solar Wind Ten, ed. by M. Velli, R. Bruno, F. Malara. AIP Conference Proceedings, vol. 679 (American Institute of Physics, Melville, 2003), pp. 546–549

    Google Scholar 

  • S. Dasso, L.J. Milano, W.H. Matthaeus, C.W. Smith, Anisotropy in fast and slow solar wind fluctuations. Astrophys. J. Lett. 635, 181–184 (2005). doi:10.1086/499559

    Article  ADS  Google Scholar 

  • K.U. Denskat, F.M. Neubauer, Observations of hydromagnetic turbulence in the solar wind, in Solar Wind Five, ed. by M. Neugebauer. NASA Conference Publication, vol. 2280 (NASA, Washington, DC, 1983), pp. 81–91

    Google Scholar 

  • M. Dobrowolny, A. Mangeney, P. Veltri, Properties of magnetohydrodynamic turbulence in the solar wind. Astron. Astrophys. 83, 26–32 (1980)

    ADS  Google Scholar 

  • J.L. Doob, Stochastic Processes (Wiley, New York, 1953)

    MATH  Google Scholar 

  • B. Forsyth, A. Breen, Meeting report: the 3-d sun and heliosphere at solar maximum. Astron. Geophys. 43, 3–32 (2002). doi:10.1046/j.1468-4004.2002.43332.x

    Article  Google Scholar 

  • F.J. Forsyth, A. Balogh, T.S. Horbury, E.J. Smith, The heliospheric magnetic field at solar minimum as observed by ulysses. Adv. Space Res. 19, 839–842 (1997). doi:10.1016/S0273-1177(97)00288-3

    Article  ADS  Google Scholar 

  • U. Frisch, A. Pouquet, J. Leorat, A. Mazure, Possibility of an inverse cascade of magnetic helicity in magnetohydrodynamic turbulence. J. Fluid Mech. 68, 769–778 (1975). doi:10.1017/S002211207500122X

    Article  ADS  MATH  Google Scholar 

  • S. Ghosh, W.H. Matthaeus, D.A. Roberts, M.L. Goldstein, The evolution of slab fluctuations in the presence of pressure-balanced magnetic structures and velocity shears. J. Geophys. Res. 103 (A10), 23691–23704 (1998a). doi:10.1029/98JA02195

    Article  ADS  Google Scholar 

  • S. Ghosh, W.H. Matthaeus, D.A. Roberts, M.L. Goldstein, Waves, structures, and the appearance of two-component turbulence in the solar wind. J. Geophys. Res. 103 (A10), 23705–23716 (1998b). doi:10.1029/98JA02194

    Article  ADS  Google Scholar 

  • P. Goldreich, S. Sridhar, Toward a theory of interstellar turbulence. 2: strong alfvenic turbulence. Astrophys. J. 438, 763–775 (1995). doi:10.1086/175121

    Google Scholar 

  • M.L. Goldstein, D.A. Roberts, C.A. Fitch, The structure of helical interplanetary magnetic fields. Geophys. Res. Lett. 18, 1505–1508 (1991). doi:10.1029/91GL01608

    Article  ADS  Google Scholar 

  • M.L. Goldstein, D.A. Roberts, W.H. Matthaeus, Magnetohydrodynamic turbulence in the solar wind. Ann. Rev. Astron. Astrophys. 33, 283–326 (1995). doi:10.1146/annurev.aa.33.090195.001435

    Article  ADS  Google Scholar 

  • R. Grappin, Onset and decay of two-dimensional magnetohydrodynamic turbulence with velocity magnetic field correlation. Phys. Fluids 29, 2433–2443 (1986). doi:10.1063/1.865536

    Article  ADS  MATH  Google Scholar 

  • R. Grappin, M. Velli, Waves and streams in the expanding solar wind. J. Geophys. Res. 101, 425–444 (1996). doi:10.1029/95JA02147

    Article  ADS  Google Scholar 

  • R. Grappin, J. Leorat, A. Pouquet, Dependence of MHD turbulence spectra on the velocity field-magnetic field correlation. Astron. Astrophys. 126, 51–58 (1983)

    ADS  Google Scholar 

  • R. Grappin, M. Velli, A. Mangeney, Alfvénic versus standard turbulence in the solar wind. Ann. Geophys. 9, 416–426 (1991)

    ADS  Google Scholar 

  • R. Hammer, Energy balance and stability. Adv. Space Res. 2, 261–269 (1982). doi:10.1016/0273-1177(82)90276-9

    Article  ADS  Google Scholar 

  • V.H. Hansteen, E. Leer, Coronal heating, densities, and temperatures and solar wind acceleration. J. Geophys. Res. 100, 21577–21594 (1995). doi:10.1029/95JA02300

    Article  ADS  Google Scholar 

  • D.M. Hassler, I.E. Dammasch, P. Lemaire, P. Brekke, W. Curdt, H.E. Mason, J.-C. Vial, K. Wilhelm, Solar wind outflow and the chromospheric magnetic network. Science 283 (5403), 810–813 (1999). doi:10.1126/science.283.5403.810

    Article  ADS  Google Scholar 

  • J.V. Hollweg, Transition region, corona, and solar wind in coronal holes. J. Geophys. Res. 91, 4111–4125 (1986). doi:10.1029/JA091iA04p04111

    Article  ADS  Google Scholar 

  • T.S. Horbury, M.A. Forman, S. Oughton, Anisotropic scaling of magnetohydrodynamic turbulence. Phys. Rev. Lett. 807 (17) (2008). doi:10.1103/PhysRevLett.101.175005

    Google Scholar 

  • T.S. Horbury, A. Balogh, R.J. Forsyth, E.J. Smith, The rate of turbulent evolution over the sun’s poles. Astron. Astrophys. 316, 333–341 (1996)

    ADS  Google Scholar 

  • P.S. Iroshnikov, Turbulence of a conducting fluid in a strong magnetic field. Sov. Astron. 7, 566 (1963)

    ADS  MathSciNet  Google Scholar 

  • L. Klein, R. Bruno, B. Bavassano, H. Rosenbauer, Anisotropy and minimum variance of magnetohydrodynamic fluctuations in the inner heliosphere. J. Geophys. Res. 98 (17), 17461–17466 (1993). doi:10.1029/93JA01522

    Article  ADS  Google Scholar 

  • L.W. Klein, Observations of turbulence and fluctuations in the solar wind. Ph.D Thesis, Catholic University of America, Washington, DC, 1987

    Google Scholar 

  • L.W. Klein, D.A. Roberts, M.L. Goldstein, Anisotropy and minimum variance directions of solar wind fluctuations in the outer heliosphere. J. Geophys. Res. 96 (15), 3779–3788 (1991). doi:10.1029/90JA02240

    Article  ADS  Google Scholar 

  • L.W. Klein, W.H. Matthaeus, D.A. Roberts, M.L. Goldstein, Evolution of spatial and temporal correlations in the solar wind – Observations and interpretation, in Solar Wind Seven, ed. by E. Marsch, R. Schwenn. COSPAR Colloquia Series, vol. 3 (Pergamon Press, Oxford/New York, 1992), pp. 197–200

    Google Scholar 

  • A.N. Kolmogorov, The local structure turbulence in incompressible viscous fluids for very large Reynolds numbers. Dokl. Akad. Nauk. SSSR 30, 301–305 (1941)

    ADS  Google Scholar 

  • R.H. Kraichnan, Inertial range spectrum of hydromagnetic turbulence. Phys. Fluids 8, 1385–1387 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  • R.H. Kraichnan, On kolmogorov’s inertial-range theories. J. Fluid Mech. 62, 305–330 (1974). doi:10.1017/S002211207400070X

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • F. Krause, K.H. Rädler, Mean field magnetohydrodynamics and dynamo theory (Akademie, Berlin, 1980)

    MATH  Google Scholar 

  • E. Leer, T.E. Holzer, Energy addition in the solar wind. J. Geophys. Res. 85, 4681–4688 (1980). doi:10.1029/JA085iA09p04681

    Article  ADS  Google Scholar 

  • R.P. Lepping, M.H. Acũna, L.F. Burlaga, W.M. Farrell, J.A. Slavin, K.H. Schatten, F. Mariani, N.F. Ness, F.M. Neubauer, Y.C. Whang, J.B. Byrnes, R.S. Kennon, P.V. Panetta, J. Scheifele, E.M. Worley, The wind magnetic field investigation. Space Sci. Rev. 71, 207–229 (1995). doi:10.1007/BF00751330. http://adsabs.harvard.edu/abs/1995SSRv...71..207L; Provided by the SAO/NASA Astrophysics Data System

    Google Scholar 

  • R.H. Levine, M.D. Altschuler, J.W. Harvey, Solar sources of the interplanetary magnetic field and solar wind. J. Geophys. Res. 82, 1061–1065 (1977). doi:10.1029/JA082i007p01061

    Article  ADS  Google Scholar 

  • E. Marsch, C.-Y. Tu, On the radial evolution of MHD turbulence in the inner heliosphere. J. Geophys. Res. 95 (14), 8211–8229 (1990a). doi:10.1029/JA095iA06p08211

    Article  ADS  Google Scholar 

  • E. Marsch, C.-Y. Tu, Spectral and spatial evolution of compressible turbulence in the inner solar wind. J. Geophys. Res. 95 (14), 11945–11956 (1990b). doi:10.1029/JA095iA08p11945

    Article  ADS  Google Scholar 

  • E. Marsch, C.-Y. Tu, Modeling results on spatial transport and spectral transfer of solar wind alfvénic turbulence. J. Geophys. Res. 98 (17), 21045–21059 (1993). doi:10.1029/93JA02365

    Article  ADS  Google Scholar 

  • W.H. Matthaeus, The Alfvén effect reconsidered, in Paper presented at 1986 Sherwood Controlled Fusion Theory Conference (Courant Institute of Mathematical Sciences, New York, 1986)

    Google Scholar 

  • W.H. Matthaeus, M.L. Goldstein, Measurement of the rugged invariants of magnetohydrodynamic turbulence in the solar wind. J. Geophys. Res. 87 (16), 6011–6028 (1982a). doi:10.1029/JA087iA08p06011

    Article  ADS  Google Scholar 

  • W.H. Matthaeus, M.L. Goldstein, Stationarity of magnetohydrodynamic fluctuations in the solar wind. J. Geophys. Res. 87 (16), 10347–10354 (1982b). doi:10.1029/JA087iA12p10347

    Article  ADS  Google Scholar 

  • W.H. Matthaeus, M.L. Goldstein, Low-frequency 1/f noise in the interplanetary magnetic field. Phys. Rev. Lett. 57, 495–498 (1986). doi:10.1103/PhysRevLett.57.495

    Article  ADS  Google Scholar 

  • W.H. Matthaeus, M.L. Goldstein, D.A. Roberts, Evidence for the presence of quasi-two-dimensional nearly incompressible fluctuations in the solar wind. J. Geophys. Res. 95, 20673–20683 (1990). doi:10.1029/JA095iA12p20673

    Article  ADS  Google Scholar 

  • W.H. Matthaeus, S. Dasso, J.M. Weygand, L.J. Milano, C.W. Smith, M.G. Kivelson, Spatial correlation of solar-wind turbulence from two-point measurements. Phys. Rev. Lett. 95 (23) (2005). doi:10.1103/PhysRevLett.95.231101

    Google Scholar 

  • M. Meneguzzi, U. Frisch, A. Pouquet, Helical and nonhelical turbulent dynamos. Phys. Rev. Lett. 47, 1060–1064 (1981). doi:10.1103/PhysRevLett.47.1060

    Article  ADS  Google Scholar 

  • P.D. Mininni, D.O. Gómez, S.M. Mahajan, Dynamo action in magnetohydrodynamics and hall-magnetohydrodynamics. Astrophys. J. 587, 472–481 (2003a). doi:10.1086/368181

    Article  ADS  Google Scholar 

  • P.D. Mininni, D.O. Gómez, S.M. Mahajan, Role of the hall current in magnetohydrodynamic dynamos. Astrophys. J. 584, 1120–1126 (2003b). doi:10.1086/345777

    Article  ADS  Google Scholar 

  • H.K. Moffatt, Magnetic Field Generation in Electrically Conducting Fluids. Cambridge Monographs on Mechanics and Applied Mathematics (Cambridge University Press, Cambridge/New York, 1978)

    Google Scholar 

  • D. Montgomery, Major disruptions, inverse cascades, and the strauss equations. Phys. Scripta 2, 83–88 (1982). doi:10.1088/0031-8949/1982/T2A/009

    Article  Google Scholar 

  • D. Montgomery, Theory of hydromagnetic turbulence, in Solar Wind Five, ed. by M. Neugebauer. NASA Conference Publication, vol. 2280 (NASA, Washington, DC, 1983), pp. 107–130

    Google Scholar 

  • W.-C. Müller, R. Grappin, Spectral energy dynamics in magnetohydrodynamic turbulence. Phys. Rev. Lett. 95, 114502 (2005). doi:10.1103/PhysRevLett.95.114502

    Article  ADS  Google Scholar 

  • Y. Narita, K.-H. Glassmeier, M.L. Goldstein, U. Motschmann, F. Sahraoui, Three-dimensional spatial structures of solar wind turbulence from 10,000-km to 100-km scales. Ann. Geophys. 29, 1731–1738 (2011). doi:10.5194/angeo-29-1731-2011

    Article  ADS  Google Scholar 

  • S. Oughton, Transport of solar wind fluctuations: a turbulence approach. Ph.D Thesis, Delaware University, Wilmington, 1993

    Google Scholar 

  • S. Oughton, E. Priest, W.H. Matthaeus, The influence of a mean magnetic field on three-dimensional MHD turbulence. J. Fluid Mech. 280, 95–117 (1994). doi:10.1017/S0022112094002867

    Article  ADS  MATH  Google Scholar 

  • E.N. Parker, Book note: Cosmical magnetic fields: Their origin and their activity. Astron. Quart. 3, 201–201 (1980)

    ADS  Google Scholar 

  • S. Perri, A. Balogh, Stationarity in solar wind flows. Astrophys. J. 714, 937–943 (2010). doi:10.1088/0004-637X/714/1/937

    Article  ADS  Google Scholar 

  • J.J. Podesta, D.A. Roberts, M.L. Goldstein, Spectral exponents of kinetic and magnetic energy spectra in solar wind turbulence. Astrophys. J. 664, 543–548 (2007). doi:10.1086/519211

    Article  ADS  Google Scholar 

  • B. Poduval, X.P. Zhao, Discrepancies in the prediction of solar wind using potential field source surface model: An investigation of possible sources. J. Geophys. Res. 109 (A18), 8102 (2004). doi:10.1029/2004JA010384

    Google Scholar 

  • J.M. Polygiannakis, X. Moussas, J.J. Quenby, E.J. Smith, Spectral polarization analysis of the interplanetary magnetic field fluctuations. Solar Phys. 149, 381–389 (1994). doi:10.1007/BF00690623

    Article  ADS  Google Scholar 

  • A. Pouquet, U. Frish, J. Leorat, Strong MHD helical turbulence and the nonlinear dynamo effect. J. Fluid Mech. 77, 321–354 (1976). doi:10.1017/S0022112076002140

    Article  ADS  MATH  Google Scholar 

  • D.A. Roberts, Observation and simulation of the radial evolution and stream structure of solar wind turbulence, in Solar Wind Seven, ed. by E. Marsch, R. Schwenn. COSPAR Colloquia Series, vol. 3 (Pergamon Press, Oxford; New York, 1992), pp. 533–538

    Google Scholar 

  • D.A. Roberts, The evolution of the spectrum of velocity fluctuations in the solar wind. Eos Trans. AGU 88 (52), 31–06 (2007)

    Google Scholar 

  • D.A. Roberts, M.L. Goldstein, L.W. Klein, The amplitudes of interplanetary fluctuations – stream structure, heliocentric distance, and frequency dependence. J. Geophys. Res. 95 (14), 4203–4216 (1990). doi:10.1029/JA095iA04p04203

    Article  ADS  Google Scholar 

  • D.A. Roberts, M.L. Goldstein, L.W. Klein, W.H. Matthaeus, The nature and evolution of magnetohydrodynamic fluctuations in the solar wind: Voyager observations. J. Geophys. Res. 92 (11), 11021–11040 (1987a)

    Article  ADS  Google Scholar 

  • D.A. Roberts, M.L. Goldstein, L.W. Klein, W.H. Matthaeus, Origin and evolution of fluctuations in the solar wind: Helios observations and helios–voyager comparisons. J. Geophys. Res. 92 (11), 12023–12035 (1987b). doi:10.1029/JA092iA11p12023

    Article  ADS  Google Scholar 

  • D.A. Roberts, M.L. Goldstein, W.H. Matthaeus, S. Ghosh, Velocity shear generation of solar wind turbulence. J. Geophys. Res. 97 (16), 17115– (1992). doi:10.1029/92JA01144

    Google Scholar 

  • C.T. Russell, Comments on the measurement of power spectra of the interplanetary magnetic field, in Solar Wind, ed. by C.P. Sonett, P.J. Coleman, J.M. Wilcox (NASA, Washington, DC, 1972), pp. 365–374

    Google Scholar 

  • C. Salem, A. Mangeney, S.D. Bale, P. Veltri, Solar wind magnetohydrodynamics turbulence: Anomalous scaling and role of intermittency. Astrophys. J. 702, 537–553 (2009). doi:10.1088/0004-637X/702/1/537

    Article  ADS  Google Scholar 

  • C.J. Salem, Ondes, turbulence et phénomènes dissipatifs dans le vent solaire à partir des observations de la sonde WIND. Ph.D Thesis, Université Paris VII, Observatoire de Paris, Paris, 2000

    Google Scholar 

  • O. Sandbaek, E. Leer, V.H. Hansteen, On the relation between coronal heating, flux tube divergence, and the solar wind proton flux and flow speed. Astrophys. J. 436, 390–399 (1994). doi:10.1086/174913

    Article  ADS  Google Scholar 

  • J. Saur, J.W. Bieber, Geometry of low-frequency solar wind magnetic turbulence: evidence for radially aligned alfénic fluctuations. J. Geophys. Res. 104, 9975–9988 (1999). doi:10.1029/1998JA900077

    Article  ADS  Google Scholar 

  • J. Saur, A. Pouquet, W.H. Matthaeus, Correction to “an acceleration mechanism for the generation of the main auroral oval on Jupiter”. Geophys. Res. Lett. 30, 19–22 (2003)

    Article  Google Scholar 

  • J. Saur, H. Politano, A. Pouquet, W.H. Matthaeus, Evidence for weak MHD turbulence in the middle magnetosphere of jupiter. Astron. Astrophys. 386, 699–708 (2002). doi:10.1051/0004-6361:20020305

    Article  ADS  Google Scholar 

  • F.L. Scarf, J.H. Wolfe, R.W. Silva, A plasma instability associated with thermal anisotropies in the solar wind. J. Geophys. Res. 72 (11), 993–999 (1967). doi:10.1029/JZ072i003p00993

    Article  ADS  Google Scholar 

  • J.V. Shebalin, W.H. Matthaeus, D. Montgomery, Anisotropy in MHD turbulence due to a mean magnetic field. J. Plasma Phys. 29, 525–547 (1983). doi:10.1017/S0022377800000933

    Article  ADS  Google Scholar 

  • C.W. Smith, The geometry of turbulent magnetic fluctuations at high heliographic latitudes, in Solar Wind Ten, ed. by M. Velli, R. Bruno, F. Malara. AIP Conference Proceedings, vol. 679 (American Institute of Physics, Melville, NY, 2003), pp. 413–416

    Google Scholar 

  • C.W. Smith, M.L. Goldstein, W.H. Matthaeus, Turbulence analysis of the jovian upstream ‘wave’ phenomenon. J. Geophys. Res. 88 (17), 5581–5593 (1983). doi:10.1029/JA088iA07p05581

    Article  ADS  Google Scholar 

  • C.W. Smith, M.L. Goldstein, W.H. Matthaeus, A.F. Viñas, Erratum: Correction to ‘turbulence analysis of the Jovian upstream ‘wave’ phenomenon’. J. Geophys. Res. 89 (18), 9159–9160 (1984). doi:10.1029/JA089iA10p09159

    Article  ADS  Google Scholar 

  • C.V. Solodyna, J.W. Belcher, On the minimum variance direction of magnetic field fluctuations in the azimuthal velocity structure of the solar wind. Geophys. Res. Lett. 3, 565–568 (1976). doi:10.1029/GL003i009p00565

    Article  ADS  Google Scholar 

  • B.U.O. Sonnerup, L.J. Cahill, Magnetopause structure and attitude from explorer 12 observations. J. Geophys. Res. 72 (11), 171 (1967). doi:10.1029/JZ072i001p00171

    Google Scholar 

  • L. Sorriso-Valvo, E. Yordanova, V. Carbone, On the scaling properties of anisotropy of interplanetary magnetic turbulent fluctuations. Europhys. Lett. 90 (2010). doi:10.1209/0295-5075/90/59001

    Google Scholar 

  • L. Sorriso-Valvo, V. Carbone, R. Bruno, P. Veltri, Persistence of small-scale anisotropy of magnetic turbulence as observed in the solar wind. Europhys. Lett. 75, 832–838 (2006). doi:10.1209/epl/i2006-10172-y

    Article  ADS  Google Scholar 

  • G.I. Taylor, The spectrum of turbulence. Proc. R. Soc. Lond. Ser. A 164, 476–490 (1938)

    Article  ADS  MATH  Google Scholar 

  • H. Tennekes, J.L. Lumely, A First Course In Turbulence, vol. MCFL-49 (MIT, Cambridge, 1972)

    Google Scholar 

  • C.-Y. Tu, A self-consistent two-time scale solar wind model, in Solar Wind Six, ed. by V.J. Pizzo, T. Holzer, D.G. Sime. NCAR Technical Notes, vol. 306 (National Center for Atmospheric Research, Boulder, 1987a), p. 112

    Google Scholar 

  • C.-Y. Tu, A solar wind model with the power spectrum of alfvénic fluctuations. Solar Phys. 109, 149–186 (1987b). doi:10.1007/BF00167405

    Article  ADS  Google Scholar 

  • C.-Y. Tu, The damping of interplanetary alfvénic fluctuations and the heating of the solar wind. J. Geophys. Res. 93, 7–20 (1988). doi:10.1029/JA093iA01p00007

    Article  ADS  Google Scholar 

  • C.-Y. Tu, E. Marsch, Transfer equations for spectral densities of inhomogeneous MHD turbulence. J. Plasma Phys. 44, 103–122 (1990). doi:10.1017/S002237780001504X

    Article  ADS  Google Scholar 

  • C.-Y. Tu, E. Marsch, A model of solar wind fluctuations with two components: alfvén waves and convective structures. J. Geophys. Res. 98 (17), 1257–1276 (1993). doi:10.1029/92JA01947

    Article  ADS  Google Scholar 

  • C.-Y. Tu, E. Marsch, Comment on ‘evolution of energy-containing turbulent eddies in the solar wind’ by W.H. Matthaeus, S. Oughton, D.H. Pontius, Jr., and Y. Zhou. J. Geophys. Res. 100 (9), 12323–12328 (1995a). doi:10.1029/95JA01103

    Google Scholar 

  • C.-Y. Tu, E. Marsch, MHD structures, waves and turbulence in the solar wind: observations and theories. Space Sci. Rev. 73 (1/2), 1–210 (1995b). doi:10.1007/BF00748891

    Article  ADS  Google Scholar 

  • C.-Y. Tu, J.W. Freeman, R.E. Lopez, The proton temperature and the total hourly variance of the magnetic field components in different solar wind speed regions. Solar Phys. 119, 197–206 (1989). doi:10.1007/BF00146220

    Article  ADS  Google Scholar 

  • C.-Y. Tu, Z.-Y. Pu, F.-S. Wei, The power spectrum of interplanetary alfvénic fluctuations derivation of the governing equation and its solution. J. Geophys. Res. 89 (18), 9695–9702 (1984). doi:10.1029/JA089iA11p09695

    Article  ADS  Google Scholar 

  • A.J. Turner, G. Gogoberidze, S.C. Chapman, B. Hnat, W.-C. Müller, Nonaxisymmetric anisotropy of solar wind turbulence. Phys. Rev. Lett. 107 (2011). doi:10.1103/PhysRevLett.107.095002

    Google Scholar 

  • P. Veltri, An observational picture of solar-wind MHD turbulence. Nuovo Cimento C 3, 45–55 (1980). doi:10.1007/BF02509190

    Article  ADS  Google Scholar 

  • P. Veltri, A. Mangeney, M. Dobrowolny, Cross-helicity effects in anisotropic MHD turbulence. Nuovo Cimento B 68, 235–251 (1982). doi:10.1007/BF02890146

    Article  ADS  Google Scholar 

  • Y.-M. Wang, Flux-tube divergence, coronal heating, and the solar wind. Astrophys. J. Lett. 410, 123–126 (1993). doi:10.1086/186895

    Article  ADS  Google Scholar 

  • Y.-M. Wang, Two types of slow solar wind. Astrophys. J. Lett. 437, 67–70 (1994). doi:10.1086/187684

    Article  ADS  Google Scholar 

  • Y.-M. Wang, N.R. Sheeley Jr, Solar wind speed and coronal flux-tube expansion. Astrophys. J. 355, 726–732 (1990). doi:10.1086/168805

    Article  ADS  Google Scholar 

  • W. Wanner, G. Wibberenz, A study of the propagation of solar energetic protons in the inner heliosphere. J. Geophys. Res. 98 (17), 3513–3528 (1993). doi:10.1029/92JA02546

    Article  ADS  Google Scholar 

  • J.M. Weygand, W.H. Matthaeus, S. Dasso, M.G. Kivelson, R.J. Walker, Taylor scale and effective magnetic reynolds number determination from plasma sheet and solar wind magnetic field fluctuations. J. Geophys. Res. 112 (2007). doi:10.1029/2007JA012486

    Google Scholar 

  • Y.C. Whang, Y.-M. Wang, N.R. Sheeley Jr, L.F. Burlaga, Global structure of the out-of-ecliptic solar wind. J. Geophys. Res. 110 (A9), 3103 (2005). doi:10.1029/2004JA010875

    Google Scholar 

  • G.L. Withbroe, The temperature structure, mass, and energy flow in the corona and inner solar wind. Astrophys. J. 325, 442–467 (1988). doi:10.1086/166015

    Article  ADS  Google Scholar 

  • G.P. Zank, W.H. Matthaeus, Waves and turbulence in the solar wind. J. Geophys. Res. 97 (16), 17189–17194 (1992). doi:10.1029/92JA01734

    Article  ADS  Google Scholar 

  • S.J. Zweben, C.R. Menyuk, R.J. Taylor, Small-scale magnetic fluctuations inside the Macrotor tokamak. Phys. Rev. Lett. 42, 1720 (1979)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bruno, R., Carbone, V. (2016). Early Observations of MHD Turbulence. In: Turbulence in the Solar Wind. Lecture Notes in Physics, vol 928. Springer, Cham. https://doi.org/10.1007/978-3-319-43440-7_3

Download citation

Publish with us

Policies and ethics