Skip to main content

Introduction

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Physics ((LNP,volume 928))

Abstract

The whole heliosphere is permeated by the solar wind, a supersonic and super-Alfvénic plasma flow of solar origin which continuously expands into the heliosphere. This medium offers the best opportunity to study directly collisionless plasma phenomena, mainly at low frequencies where large-amplitude fluctuations have been observed. During its expansion, the solar wind develops a strong turbulent character, which evolves towards a state that resembles the well known hydrodynamic turbulence described by Kolmogorov (1941, 1991). Because of the presence of a strong magnetic field carried by the wind, low-frequency fluctuations in the solar wind are usually described within a magnetohydrodynamic (MHD, hereafter) benchmark (Kraichnan 1965; Biskamp 1993; Tu and Marsch 1995; Biskamp 2003; Petrosyan et al. 2010). However, due to some peculiar characteristics, the solar wind turbulence contains some features hardly classified within a general theoretical framework.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This concept will be explained better in the next sections.

References

  • L. Biermann, Kometenschweife und solare korpuskularstrahlung. Z. Astrophys. 29, 274 (1951)

    ADS  Google Scholar 

  • L. Biermann, Solar corpuscular radiation and the interplanetary gas. Observatory 77, 109–110 (1957)

    ADS  Google Scholar 

  • D. Biskamp, Nonlinear Magnetohydrodynamics. Cambridge Monographs on Plasma Physics, vol. 1 (Cambridge University Press, Cambridge, 1993)

    Google Scholar 

  • D. Biskamp, Magnetohydrodynamic Turbulence (Cambridge University Press, Cambridge, 2003)

    Book  MATH  Google Scholar 

  • T. Bohr, M.H. Jensen, G. Paladin, A. Vulpiani, Dynamical Systems Approach to Turbulence. Cambridge Nonlinear Science Series, vol. 8 (Cambridge University Press, Cambridge, 1998)

    Google Scholar 

  • L.F. Burlaga, Intermittent turbulence in large-scale velocity fluctuations at 1 AU near solar maximum. J. Geophys. Res. 98 (17), 17467–17474 (1993). doi:10.1029/93JA01630

    Article  ADS  Google Scholar 

  • L.F. Burlaga, Interplanetary Magnetohydrodynamics. International Series on Astronomy and Astrophysics, vol. 3 (Oxford University Press, New York, 1995)

    Google Scholar 

  • V. Carbone, Cascade model for intermittency in fully developed magnetohydrodynamic turbulence. Phys. Rev. Lett. 71, 1546–1548 (1993). doi:10.1103/PhysRevLett.71.1546

    Article  ADS  Google Scholar 

  • U. Frisch, Turbulence: The Legacy of A.N. Kolmogorov (Cambridge University Press, Cambridge, 1995)

    Google Scholar 

  • J.P. Gollub, H.L. Swinney, Onset of turbulence in a rotating fluid. Phys. Rev. Lett. 35, 927–930 (1975). doi:10.1103/PhysRevLett.35.927

    Article  ADS  Google Scholar 

  • P.R. Halmos, Lectures on Ergodic Theory (Chelsea, New York, 1956)

    MATH  Google Scholar 

  • T.S. Horbury, B. Tsurutani, Ulysses measurements of waves, turbulence and discontinuities, in The Heliosphere Near Solar Minimum: The Ulysses perspective, ed. by A. Balogh, R.G. Marsden, E.J. Smith. Springer-Praxis Books in Astronomy and Space Sciences (Springer, Berlin, 2001), pp. 167–227

    Google Scholar 

  • K. Huang, Statistical Mechanics, 2nd edn. (Wiley, New York, 1987)

    MATH  Google Scholar 

  • G.G. Katul, C.I. Hsieh, J. Sigmon, Energy-inertial scale interaction for temperature and velocity in the unstable surface layer. Boundary-Layer Meteorol. 82, 49–80 (1997). doi:10.1023/A:1000178707511

    Article  ADS  Google Scholar 

  • A.N. Kolmogorov, The local structure turbulence in incompressible viscous fluids for very large reynolds numbers. Dokl. Akad. Nauk. SSSR 30, 301–305 (1941)

    ADS  Google Scholar 

  • A.N. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large reynolds numbers. Proc. R. Soc. London, Ser. A 434, 9–13 (1991)

    Google Scholar 

  • R.H. Kraichnan, Inertial range spectrum of hydromagnetic turbulence. Phys. Fluids 8, 1385–1387 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  • L.D. Landau, E.M. Lifshitz, Physique théorique. Mécanique des fluides, vol. 6 (Editions MIR, Moscow, 1971)

    Google Scholar 

  • E.N. Lorenz, Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130 (1963). doi:10.1175/1520-0469(1963)020¡0130:DNF¿2.0.CO;2

    Article  ADS  Google Scholar 

  • E.N. Parker, Dynamics of the interplanetary gas and magnetic fields. Astrophys. J 128, 664 (1958a). doi:10.1086/146579

    Article  ADS  Google Scholar 

  • E.N. Parker, Interaction of the solar wind with the geomagnetic field. Phys. Fluids 1, 171–187 (1958b). doi:10.1063/1.1724339

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • A. Petrosyan, A. Balogh, M.L. Goldstein, J. Léorat, E. Marsch, K. Petrovay, B. Roberts, R. von Steiger, J.C. Vial, Turbulence in the solar atmosphere and solar wind. Space Sci. Rev. 156, 135–238 (2010). doi:10.1007/s11214-010-9694-3

    Article  ADS  Google Scholar 

  • O. Reynolds, An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and the law of resistance in parallel channels. Philos. Trans. R. Soc. London 174, 935–982 (1883). doi:10.1098/rstl.1883.0029

    Article  MATH  Google Scholar 

  • D. Ruelle, F. Takens, On the nature of turbulence. Commun. Math. Phys. 20, 167 (1971)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • R. Schwenn, The ‘average’ solar wind in the inner heliosphere: structures and slow variations, in Solar Wind Five, ed. by M. Neugebauer. NASA Conference Publication, vol. 2280 (NASA, Washington, DC, 1983), pp. 489–507

    Google Scholar 

  • C.-Y. Tu, E. Marsch, MHD structures, waves and turbulence in the solar wind: observations and theories. Space Sci. Rev. 73 (1/2), 1–210 (1995). doi:10.1007/BF00748891

    Article  ADS  Google Scholar 

  • M. Van Dyke, An Album of Fluid Motion (The Parabolic Press, Stanford, 1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bruno, R., Carbone, V. (2016). Introduction. In: Turbulence in the Solar Wind. Lecture Notes in Physics, vol 928. Springer, Cham. https://doi.org/10.1007/978-3-319-43440-7_1

Download citation

Publish with us

Policies and ethics