Skip to main content

The Planimeter as a Real and Virtual Instrument that Mediates an Infinitesimal Approach to Area

  • Chapter
  • First Online:
Digital Technologies in Designing Mathematics Education Tasks

Part of the book series: Mathematics Education in the Digital Era ((MEDE,volume 8))

Abstract

Drawing on a didactic gap detected between the elementary concept of area and the infinitesimal approach to it within the Italian secondary school curriculum, the notion of swept area is introduced in grades 10–11. The idea of swept area is introduced through the mediation of an artifact, the Polar Planimeter, both as a concrete physical-tool and as a virtual-object. It triggers and supports the semiotic productions of the students so that they can grasp the new concept. The notion of didactic cycle is used for designing students’ learning sequences. The activities in such sequences are of two types: sensory-motor and symbolic. The mediation of the artifact allows intertwining the two types so that the one can constantly be built on the other. Indeed, the practices mentioned above show a deep intertwining between their cultural and cognitive components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Italian expression is similar but not identical with English expressions like “the more … the better”; we leave it since, contrary to what can happen in English, it emphasizes the perfect balance between the two sides of the comparisons with the words and their sounds. This effect can be lost or smoothed over in English.

References

  • Amsler, J. (1856). Amsler, über das Polar-Planimeter. Polytechnisches Journal, Band 140, Nr. LXXIII, 321–327. http://dingler.culture.hu-berlin.de/article/pj140/.

  • Archimedes (1912). The method of Archimedes recently discovered by Heiberg; a supplement to the Works of Archimedes. (T. L. Heath, Trans.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Arzarello, F. (2006). Semiosis as a multimodal process [special issue]. Revista Latinoamericana de Investigacion en Matematica Educativa, 267–299.

    Google Scholar 

  • Arzarello, F., & Robutti, O. (2008). Framing the embodied mind approach within a multimodal paradigm. In Lyn D. English (Ed.), Handbook of international research in mathematics education (2nd ed., pp. 716–745). NY (USA), Abingdon (UK): Routledge, Taylor and Francis.

    Google Scholar 

  • Arzarello, F., Bartolini Bussi, M. G., Leung, A. Y. L., Mariotti, M. A., & Stevenson, I. (2012). Experimental approaches to theoretical thinking: artefacts and proof. In G. Hanna & M. de Villliers (Eds.), Proof and proving in mathematics education (pp. 97–137). Dordrecht Heidelberg London New York: Springer Science + Business Media.

    Google Scholar 

  • Arzarello, F., Robutti, O., & Soldano, C. (2015). Learning with touchscreen devices: a game approach as strategies to improve geometric thinking. In Proceedings of CERME 9, Prague, February 4–8, 2015.

    Google Scholar 

  • Bartolini Bussi, M. G., & Mariotti, M. A. (2008). Semiotic mediation in the mathematics classroom. In L. English, M. Bartolini Bussi, G. Jones, R. Lesh & D. Tirosh (Eds.), Handbook of international research in mathematics education (pp. 746–783). Lea, USA: Routledge.

    Google Scholar 

  • Bartolini Bussi, M. G., Taimina, D., & Isoda, M. (2010). Mathematical models as early technology tools in classrooms at the dawn of ICMI: Felix Klein and perspectives from different parts of the world. ZDM—The International Journal on Mathematics Education, 42(1), 19–31.

    Article  Google Scholar 

  • Boero, P., & Guala, E. (2008). Development of mathematical knowledge and beliefs of teachers: the role of cultural analysis of the content to be taught. In P. Sullivan & T. Wood (Eds.), International handbook of mathematics teacher education: Knowledge and beliefs in mathematics teaching and teaching development (Vol. 1, pp. 223–246). Rotterdam-Taipei: Sense Publ.

    Google Scholar 

  • Borwein, J. M., & Devlin, K. (2008). The computer as crucible: an introduction to experimental mathematics. Massachusetts: A K Peters.

    Google Scholar 

  • Castelnuovo, E. (1958). L’object et l’action dans l’enseignement de la géométrie intuitive. In C. Gattegno, W. Servais, E. Castelnuovo, J. L. Nicolet, T. J. Fletcher, L. Motard, L. Campedelli, A. Biguenet, J. W. Peskett, & P. Puig Adam (Eds.), Le matériel pour l’enseignement des mathématiques (pp. 41–59). Neuchâtel: Delachaux & Niestlé.

    Google Scholar 

  • Cavalieri, B. (1953). Geometria indivisibilibus continuorum nova quadam ratione promota. Bononiae: ex Typographia de Ducijs.

    Google Scholar 

  • Dewey, J. (1938). Logic: The Theory of Inquiry. In JA Boydston (Ed.), The Later Works 1925–1953, John Dewey, Vol. 12 (1986 edition ed.). (pp. 1–549).

    Google Scholar 

  • Douady, R. (1984). Jeux de cadres et dialectiqueoutil-objet dansl’enseignement des mathématiques. Thèsed’État, Univ. de Paris. Recherches en didactique des mathématiques, 7(2), 5–31, 1986.

    Google Scholar 

  • Duval, R. (1995). Quelcognitifretenir en didactique des mathématiques? Actes de l’Écoled’été, 1995.

    Google Scholar 

  • Edwards, A. W. F. (2003). Human genetic diversity: Lewontin’s fallacy. BioEssays, 25, 798–801. doi:10.1002/bies.10315.

    Article  Google Scholar 

  • Epp, S. (1994). The role of proof in problem solving. In A. H. Schoenfeld (Ed.), Mathematical Thinking and Problem Solving (pp. 257–269). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc., Publishers.

    Google Scholar 

  • Eves, H. (1991). Two surprising theorems on Cavalieri congruence. The College Mathematics Journal, 22, 118–124, March 2, 1991.

    Google Scholar 

  • Galileo, G. (1661). The systeme of the world in four dialogues. (T. Salusbury, Trans.) (pp. 219–220). London (Original work published 1632). Retrieved from http://www.chlt.org/sandbox/lhl/Salusbury/.

  • Goldin-Meadow, S. (2003). Hearing gestures: How our hands help us think. Chicago: Chicago University Press.

    Google Scholar 

  • Goodstein, D. L., & Goodstein, J. R. (1996). Feynman’s lost lecture: the motion of planets around the sun. New York: W.W. Norton & Co.

    Google Scholar 

  • Greeno, J. (1994). Comments on Susanna Epp’s chapter. In A. Schoenfeld (Ed.), Mathematical thinking and problem solving (pp. 270–278). Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Hall, R., Nemirovsky, R. (2012). Introduction to the special issue: modalities of body engagement in mathematical activity and learning. Journal of the Learning Sciences, 21(2).

    Google Scholar 

  • Hanna, G. (1996). The ongoing value of proof. In: Proceedings of the International Group for the Psychology of Mathematics Education, Valencia, Spain (Vol. I).

    Google Scholar 

  • Hanna, G. (2000). Proof, explanation and exploration: an overview. Educational Studies in Mathematics, 44, 5–23.

    Article  Google Scholar 

  • Hasan, R. (2002). Semiotic mediation, language and society: Three exotropic theoriesVygotsky, Hallyday and Bernstein. Retrieved from http://posner.library.cmu.edu/Posner/books/pages.cgi?call=520_K38PN&layout=vol0/part0/copy0.

  • Hintikka, J. (1999). Inquiry as inquiry: A logic of scientific discovery. Springer Science + Business Media Dordrecht.

    Google Scholar 

  • Horgan, J. (1993). The death of proof. Scientific American, 93–103.

    Google Scholar 

  • Kepler, J. (1609). Astronomia Nova ΑΙΤΙΟΛΟΓΗΤΟΣ seu physica coelestis, tradita commentariis de motibus stellae Martis ex observationibus G.V. Tychonis Brahe. Heidelberg: Voegelin.

    Google Scholar 

  • Kepler, J. (1615). Nova stereometria doliorvm vinariorvm [New solid geometry of wine barrels]. Retrieved from http://posner.library.cmu.edu/Posner/books/pages.cgi?call=520_K38PN&layout=vol0/part0/copy0.

  • Lakoff, G., & Nunez, R. (2000). Where mathematics comes from: How the embodied mind brings mathematics into being. New York: Basic Books.

    Google Scholar 

  • McNeill, D. (1992). Hand and mind: What gestures reveal about thought. Chicago: University of Chicago Press.

    Google Scholar 

  • National Council of Teachers of Mathematics. (1989). Principles and standards for school mathematics. Reston, VA: National Council of Teachers of Mathematics.

    Google Scholar 

  • National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: National Council of Teachers of Mathematics.

    Google Scholar 

  • Newton, I. (1704) Tractatus de quadratura curvarum (J. Harris, Trans.). London. (Original work published 1710) from Latin. Retrieved from http://www.maths.tcd.ie/pub/HistMath/People/Newton/Quadratura/HarrisIQ.pdf.

  • Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York: Basic Books.

    Google Scholar 

  • Rabardel, P. (1995). Les hommes et les technologies [people and technology]. Paris: Armand Colin.

    Google Scholar 

  • Radziszowski, S., & McKay, B. (1995). R(4,5) = 25. Journal of Graph Theory, 19(1995) 309–322. Retrieved from http://cs.anu.edu.au/~bdm/papers/r45.pdf.

  • Ruthven, K. (2008). Mathematical technologies as a vehicle for intuition and experiment: A foundational theme of the International Commission on Mathematical Instruction, and a continuing preoccupation. International Journal for the History of Mathematics Education, 3(2), 91–102.

    Google Scholar 

  • Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15, 3–14.

    Article  Google Scholar 

  • Smith, D. E. (1913). Intuition and experiment in mathematical teaching in the secondary schools. In Proceedings of the Fifth International Congress of Mathematicians (Vol. II, pp. 611–632).

    Google Scholar 

  • Tall, D. (1989). Concept images, generic organizers, computers and curriculum change. For the Learning of Mathematics, 9(3), 37–42.

    Google Scholar 

  • Wu, H.-H. (1996). The role of Euclidean geometry in high school. Journal of Mathematical Behavior, 15, 221–237.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Manzone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Arzarello, F., Manzone, D. (2017). The Planimeter as a Real and Virtual Instrument that Mediates an Infinitesimal Approach to Area. In: Leung, A., Baccaglini-Frank, A. (eds) Digital Technologies in Designing Mathematics Education Tasks. Mathematics Education in the Digital Era, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-43423-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43423-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43421-6

  • Online ISBN: 978-3-319-43423-0

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics